Commit e4f559ff authored by Yann Gautier's avatar Yann Gautier
Browse files

stm32mp1: Add PMIC support



If a PMIC companion chip is present on board, it has to be configured
for regulators supplies.
This check is done with board DT configuration.
Signed-off-by: default avatarYann Gautier <yann.gautier@st.com>
Signed-off-by: default avatarPascal Paillet <p.paillet@st.com>
parent 278c34df
/*
* Copyright (c) 2016-2018, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <delay_timer.h>
#include <errno.h>
#include <mmio.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stm32_i2c.h>
/* STM32 I2C registers offsets */
#define I2C_CR1 0x00U
#define I2C_CR2 0x04U
#define I2C_OAR1 0x08U
#define I2C_OAR2 0x0CU
#define I2C_TIMINGR 0x10U
#define I2C_TIMEOUTR 0x14U
#define I2C_ISR 0x18U
#define I2C_ICR 0x1CU
#define I2C_PECR 0x20U
#define I2C_RXDR 0x24U
#define I2C_TXDR 0x28U
#define MAX_DELAY 0xFFFFFFFFU
/* I2C TIMING clear register Mask */
#define TIMING_CLEAR_MASK 0xF0FFFFFFU
/* Timeout 25 ms */
#define I2C_TIMEOUT_BUSY 25U
#define MAX_NBYTE_SIZE 255U
static int i2c_request_memory_write(struct i2c_handle_s *hi2c,
uint16_t dev_addr, uint16_t mem_addr,
uint16_t mem_add_size, uint32_t timeout,
uint32_t tick_start);
static int i2c_request_memory_read(struct i2c_handle_s *hi2c, uint16_t dev_addr,
uint16_t mem_addr, uint16_t mem_add_size,
uint32_t timeout, uint32_t tick_start);
/* Private functions to handle flags during polling transfer */
static int i2c_wait_flag(struct i2c_handle_s *hi2c, uint32_t flag,
uint8_t awaited_value, uint32_t timeout,
uint32_t tick_start);
static int i2c_wait_txis(struct i2c_handle_s *hi2c, uint32_t timeout,
uint32_t tick_start);
static int i2c_wait_stop(struct i2c_handle_s *hi2c, uint32_t timeout,
uint32_t tick_start);
static int i2c_ack_failed(struct i2c_handle_s *hi2c, uint32_t timeout,
uint32_t tick_start);
/* Private function to flush TXDR register */
static void i2c_flush_txdr(struct i2c_handle_s *hi2c);
/* Private function to start, restart or stop a transfer */
static void i2c_transfer_config(struct i2c_handle_s *hi2c, uint16_t dev_addr,
uint16_t size, uint32_t i2c_mode,
uint32_t request);
/*
* @brief Initialize the I2C device.
* @param hi2c: Pointer to a struct i2c_handle_s structure that contains
* the configuration information for the specified I2C.
* @retval 0 if OK, negative value else
*/
int stm32_i2c_init(struct i2c_handle_s *hi2c)
{
if (hi2c == NULL) {
return -ENOENT;
}
if (hi2c->i2c_state == I2C_STATE_RESET) {
hi2c->lock = 0;
}
hi2c->i2c_state = I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
mmio_clrbits_32(hi2c->i2c_base_addr + I2C_CR1, I2C_CR1_PE);
/* Configure I2Cx: Frequency range */
mmio_write_32(hi2c->i2c_base_addr + I2C_TIMINGR,
hi2c->i2c_init.timing & TIMING_CLEAR_MASK);
/* Disable Own Address1 before set the Own Address1 configuration */
mmio_clrbits_32(hi2c->i2c_base_addr + I2C_OAR1, I2C_OAR1_OA1EN);
/* Configure I2Cx: Own Address1 and ack own address1 mode */
if (hi2c->i2c_init.addressing_mode == I2C_ADDRESSINGMODE_7BIT) {
mmio_write_32(hi2c->i2c_base_addr + I2C_OAR1,
I2C_OAR1_OA1EN | hi2c->i2c_init.own_address1);
} else { /* I2C_ADDRESSINGMODE_10BIT */
mmio_write_32(hi2c->i2c_base_addr + I2C_OAR1,
I2C_OAR1_OA1EN | I2C_OAR1_OA1MODE |
hi2c->i2c_init.own_address1);
}
/* Configure I2Cx: Addressing Master mode */
if (hi2c->i2c_init.addressing_mode == I2C_ADDRESSINGMODE_10BIT) {
mmio_write_32(hi2c->i2c_base_addr + I2C_CR2, I2C_CR2_ADD10);
}
/*
* Enable the AUTOEND by default, and enable NACK
* (should be disable only during Slave process)
*/
mmio_setbits_32(hi2c->i2c_base_addr + I2C_CR2,
I2C_CR2_AUTOEND | I2C_CR2_NACK);
/* Disable Own Address2 before set the Own Address2 configuration */
mmio_clrbits_32(hi2c->i2c_base_addr + I2C_OAR2, I2C_DUALADDRESS_ENABLE);
/* Configure I2Cx: Dual mode and Own Address2 */
mmio_write_32(hi2c->i2c_base_addr + I2C_OAR2,
hi2c->i2c_init.dual_address_mode |
hi2c->i2c_init.own_address2 |
(hi2c->i2c_init.own_address2_masks << 8));
/* Configure I2Cx: Generalcall and NoStretch mode */
mmio_write_32(hi2c->i2c_base_addr + I2C_CR1,
hi2c->i2c_init.general_call_mode |
hi2c->i2c_init.no_stretch_mode);
/* Enable the selected I2C peripheral */
mmio_setbits_32(hi2c->i2c_base_addr + I2C_CR1, I2C_CR1_PE);
hi2c->i2c_err = I2C_ERROR_NONE;
hi2c->i2c_state = I2C_STATE_READY;
hi2c->i2c_mode = I2C_MODE_NONE;
return 0;
}
/*
* @brief Write an amount of data in blocking mode to a specific memory address
* @param hi2c: Pointer to a struct i2c_handle_s structure that contains
* the configuration information for the specified I2C.
* @param dev_addr: Target device address
* @param mem_addr: Internal memory address
* @param mem_add_size: size of internal memory address
* @param p_data: Pointer to data buffer
* @param size: Amount of data to be sent
* @param timeout: timeout duration
* @retval 0 if OK, negative value else
*/
int stm32_i2c_mem_write(struct i2c_handle_s *hi2c, uint16_t dev_addr,
uint16_t mem_addr, uint16_t mem_add_size,
uint8_t *p_data, uint16_t size, uint32_t timeout)
{
uint32_t tickstart;
if ((hi2c->i2c_state != I2C_STATE_READY) || (hi2c->lock != 0U)) {
return -EBUSY;
}
if ((p_data == NULL) || (size == 0U)) {
return -EINVAL;
}
hi2c->lock = 1;
tickstart = (uint32_t)read_cntpct_el0();
if (i2c_wait_flag(hi2c, I2C_FLAG_BUSY, 1, I2C_TIMEOUT_BUSY,
tickstart) != 0) {
return -EIO;
}
hi2c->i2c_state = I2C_STATE_BUSY_TX;
hi2c->i2c_mode = I2C_MODE_MEM;
hi2c->i2c_err = I2C_ERROR_NONE;
hi2c->p_buff = p_data;
hi2c->xfer_count = size;
/* Send Slave Address and Memory Address */
if (i2c_request_memory_write(hi2c, dev_addr, mem_addr, mem_add_size,
timeout, tickstart) != 0) {
hi2c->lock = 0;
return -EIO;
}
/*
* Set NBYTES to write and reload
* if hi2c->xfer_count > MAX_NBYTE_SIZE
*/
if (hi2c->xfer_count > MAX_NBYTE_SIZE) {
hi2c->xfer_size = MAX_NBYTE_SIZE;
i2c_transfer_config(hi2c, dev_addr, hi2c->xfer_size,
I2C_RELOAD_MODE, I2C_NO_STARTSTOP);
} else {
hi2c->xfer_size = hi2c->xfer_count;
i2c_transfer_config(hi2c, dev_addr, hi2c->xfer_size,
I2C_AUTOEND_MODE, I2C_NO_STARTSTOP);
}
do {
if (i2c_wait_txis(hi2c, timeout, tickstart) != 0) {
return -EIO;
}
mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR, *hi2c->p_buff);
hi2c->p_buff++;
hi2c->xfer_count--;
hi2c->xfer_size--;
if ((hi2c->xfer_count != 0U) && (hi2c->xfer_size == 0U)) {
/* Wait until TCR flag is set */
if (i2c_wait_flag(hi2c, I2C_FLAG_TCR, 0, timeout,
tickstart) != 0) {
return -EIO;
}
if (hi2c->xfer_count > MAX_NBYTE_SIZE) {
hi2c->xfer_size = MAX_NBYTE_SIZE;
i2c_transfer_config(hi2c, dev_addr,
hi2c->xfer_size,
I2C_RELOAD_MODE,
I2C_NO_STARTSTOP);
} else {
hi2c->xfer_size = hi2c->xfer_count;
i2c_transfer_config(hi2c, dev_addr,
hi2c->xfer_size,
I2C_AUTOEND_MODE,
I2C_NO_STARTSTOP);
}
}
} while (hi2c->xfer_count > 0U);
/*
* No need to Check TC flag, with AUTOEND mode the stop
* is automatically generated.
* Wait until STOPF flag is reset.
*/
if (i2c_wait_stop(hi2c, timeout, tickstart) != 0) {
return -EIO;
}
mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, I2C_FLAG_STOPF);
mmio_clrbits_32(hi2c->i2c_base_addr + I2C_CR2, I2C_RESET_CR2);
hi2c->i2c_state = I2C_STATE_READY;
hi2c->i2c_mode = I2C_MODE_NONE;
hi2c->lock = 0;
return 0;
}
/*
* @brief Read an amount of data in blocking mode from a specific memory
* address
* @param hi2c: Pointer to a struct i2c_handle_s structure that contains
* the configuration information for the specified I2C.
* @param dev_addr: Target device address
* @param mem_addr: Internal memory address
* @param mem_add_size: size of internal memory address
* @param p_data: Pointer to data buffer
* @param size: Amount of data to be sent
* @param timeout: timeout duration
* @retval 0 if OK, negative value else
*/
int stm32_i2c_mem_read(struct i2c_handle_s *hi2c, uint16_t dev_addr,
uint16_t mem_addr, uint16_t mem_add_size,
uint8_t *p_data, uint16_t size, uint32_t timeout)
{
uint32_t tickstart;
if ((hi2c->i2c_state != I2C_STATE_READY) || (hi2c->lock != 0U)) {
return -EBUSY;
}
if ((p_data == NULL) || (size == 0U)) {
return -EINVAL;
}
hi2c->lock = 1;
tickstart = (uint32_t)read_cntpct_el0();
if (i2c_wait_flag(hi2c, I2C_FLAG_BUSY, 1, I2C_TIMEOUT_BUSY,
tickstart) != 0) {
return -EIO;
}
hi2c->i2c_state = I2C_STATE_BUSY_RX;
hi2c->i2c_mode = I2C_MODE_MEM;
hi2c->i2c_err = I2C_ERROR_NONE;
hi2c->p_buff = p_data;
hi2c->xfer_count = size;
/* Send Slave Address and Memory Address */
if (i2c_request_memory_read(hi2c, dev_addr, mem_addr, mem_add_size,
timeout, tickstart) != 0) {
hi2c->lock = 0;
return -EIO;
}
/*
* Send Slave Address.
* Set NBYTES to write and reload if hi2c->xfer_count > MAX_NBYTE_SIZE
* and generate RESTART.
*/
if (hi2c->xfer_count > MAX_NBYTE_SIZE) {
hi2c->xfer_size = MAX_NBYTE_SIZE;
i2c_transfer_config(hi2c, dev_addr, hi2c->xfer_size,
I2C_RELOAD_MODE, I2C_GENERATE_START_READ);
} else {
hi2c->xfer_size = hi2c->xfer_count;
i2c_transfer_config(hi2c, dev_addr, hi2c->xfer_size,
I2C_AUTOEND_MODE, I2C_GENERATE_START_READ);
}
do {
if (i2c_wait_flag(hi2c, I2C_FLAG_RXNE, 0, timeout,
tickstart) != 0) {
return -EIO;
}
*hi2c->p_buff = mmio_read_8(hi2c->i2c_base_addr + I2C_RXDR);
hi2c->p_buff++;
hi2c->xfer_size--;
hi2c->xfer_count--;
if ((hi2c->xfer_count != 0U) && (hi2c->xfer_size == 0U)) {
if (i2c_wait_flag(hi2c, I2C_FLAG_TCR, 0, timeout,
tickstart) != 0) {
return -EIO;
}
if (hi2c->xfer_count > MAX_NBYTE_SIZE) {
hi2c->xfer_size = MAX_NBYTE_SIZE;
i2c_transfer_config(hi2c, dev_addr,
hi2c->xfer_size,
I2C_RELOAD_MODE,
I2C_NO_STARTSTOP);
} else {
hi2c->xfer_size = hi2c->xfer_count;
i2c_transfer_config(hi2c, dev_addr,
hi2c->xfer_size,
I2C_AUTOEND_MODE,
I2C_NO_STARTSTOP);
}
}
} while (hi2c->xfer_count > 0U);
/*
* No need to Check TC flag, with AUTOEND mode the stop
* is automatically generated
* Wait until STOPF flag is reset
*/
if (i2c_wait_stop(hi2c, timeout, tickstart) != 0) {
return -EIO;
}
mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, I2C_FLAG_STOPF);
mmio_clrbits_32(hi2c->i2c_base_addr + I2C_CR2, I2C_RESET_CR2);
hi2c->i2c_state = I2C_STATE_READY;
hi2c->i2c_mode = I2C_MODE_NONE;
hi2c->lock = 0;
return 0;
}
/*
* @brief Checks if target device is ready for communication.
* @note This function is used with Memory devices
* @param hi2c: Pointer to a struct i2c_handle_s structure that contains
* the configuration information for the specified I2C.
* @param dev_addr: Target device address
* @param trials: Number of trials
* @param timeout: timeout duration
* @retval 0 if OK, negative value else
*/
int stm32_i2c_is_device_ready(struct i2c_handle_s *hi2c,
uint16_t dev_addr, uint32_t trials,
uint32_t timeout)
{
uint32_t i2c_trials = 0U;
if ((hi2c->i2c_state != I2C_STATE_READY) || (hi2c->lock != 0U)) {
return -EBUSY;
}
if ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & I2C_FLAG_BUSY) !=
0U) {
return -EBUSY;
}
hi2c->lock = 1;
hi2c->i2c_state = I2C_STATE_BUSY;
hi2c->i2c_err = I2C_ERROR_NONE;
do {
uint32_t tickstart;
/* Generate Start */
if (hi2c->i2c_init.addressing_mode == I2C_ADDRESSINGMODE_7BIT) {
mmio_write_32(hi2c->i2c_base_addr + I2C_CR2,
(((uint32_t)dev_addr & I2C_CR2_SADD) |
I2C_CR2_START | I2C_CR2_AUTOEND) &
~I2C_CR2_RD_WRN);
} else {
mmio_write_32(hi2c->i2c_base_addr + I2C_CR2,
(((uint32_t)dev_addr & I2C_CR2_SADD) |
I2C_CR2_START | I2C_CR2_ADD10) &
~I2C_CR2_RD_WRN);
}
/*
* No need to Check TC flag, with AUTOEND mode the stop
* is automatically generated
* Wait until STOPF flag is set or a NACK flag is set
*/
tickstart = (uint32_t)read_cntpct_el0();
while (((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) &
(I2C_FLAG_STOPF | I2C_FLAG_AF)) == 0U) &&
(hi2c->i2c_state != I2C_STATE_TIMEOUT)) {
if (timeout != MAX_DELAY) {
if ((((uint32_t)read_cntpct_el0() - tickstart) >
timeout) || (timeout == 0U)) {
hi2c->i2c_state = I2C_STATE_READY;
hi2c->i2c_err |=
I2C_ERROR_TIMEOUT;
hi2c->lock = 0;
return -EIO;
}
}
}
/* Check if the NACKF flag has not been set */
if ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) &
I2C_FLAG_AF) == 0U) {
if (i2c_wait_flag(hi2c, I2C_FLAG_STOPF, 0, timeout,
tickstart) != 0) {
return -EIO;
}
mmio_write_32(hi2c->i2c_base_addr + I2C_ICR,
I2C_FLAG_STOPF);
hi2c->i2c_state = I2C_STATE_READY;
hi2c->lock = 0;
return 0;
}
if (i2c_wait_flag(hi2c, I2C_FLAG_STOPF, 0, timeout,
tickstart) != 0) {
return -EIO;
}
mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, I2C_FLAG_AF);
mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, I2C_FLAG_STOPF);
if (i2c_trials == trials) {
mmio_setbits_32(hi2c->i2c_base_addr + I2C_CR2,
I2C_CR2_STOP);
if (i2c_wait_flag(hi2c, I2C_FLAG_STOPF, 0, timeout,
tickstart) != 0) {
return -EIO;
}
mmio_write_32(hi2c->i2c_base_addr + I2C_ICR,
I2C_FLAG_STOPF);
}
i2c_trials++;
} while (i2c_trials < trials);
hi2c->i2c_state = I2C_STATE_READY;
hi2c->i2c_err |= I2C_ERROR_TIMEOUT;
hi2c->lock = 0;
return -EIO;
}
/*
* @brief Master sends target device address followed by internal memory
* address for write request.
* @param hi2c: Pointer to a struct i2c_handle_s structure that contains
* the configuration information for the specified I2C.
* @param dev_addr: Target device address
* @param mem_addr: Internal memory address
* @param mem_add_size: size of internal memory address
* @param timeout: timeout duration
* @param tick_start Tick start value
* @retval 0 if OK, negative value else
*/
static int i2c_request_memory_write(struct i2c_handle_s *hi2c,
uint16_t dev_addr, uint16_t mem_addr,
uint16_t mem_add_size, uint32_t timeout,
uint32_t tick_start)
{
i2c_transfer_config(hi2c, dev_addr, mem_add_size, I2C_RELOAD_MODE,
I2C_GENERATE_START_WRITE);
if (i2c_wait_txis(hi2c, timeout, tick_start) != 0) {
return -EIO;
}
if (mem_add_size == I2C_MEMADD_SIZE_8BIT) {
/* Send Memory Address */
mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR,
(uint8_t)(mem_addr & 0x00FFU));
} else {
/* Send MSB of Memory Address */
mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR,
(uint8_t)((mem_addr & 0xFF00U) >> 8));
/* Wait until TXIS flag is set */
if (i2c_wait_txis(hi2c, timeout, tick_start) != 0) {
return -EIO;
}
/* Send LSB of Memory Address */
mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR,
(uint8_t)(mem_addr & 0x00FFU));
}
if (i2c_wait_flag(hi2c, I2C_FLAG_TCR, 0, timeout, tick_start) !=
0) {
return -EIO;
}
return 0;
}
/*
* @brief Master sends target device address followed by internal memory
* address for read request.
* @param hi2c: Pointer to a struct i2c_handle_s structure that contains
* the configuration information for the specified I2C.
* @param dev_addr: Target device address
* @param mem_addr: Internal memory address
* @param mem_add_size: size of internal memory address
* @param timeout: timeout duration
* @param tick_start Tick start value
* @retval 0 if OK, negative value else
*/
static int i2c_request_memory_read(struct i2c_handle_s *hi2c, uint16_t dev_addr,
uint16_t mem_addr, uint16_t mem_add_size,
uint32_t timeout, uint32_t tick_start)
{
i2c_transfer_config(hi2c, dev_addr, mem_add_size, I2C_SOFTEND_MODE,
I2C_GENERATE_START_WRITE);
if (i2c_wait_txis(hi2c, timeout, tick_start) != 0) {
return -EIO;
}
if (mem_add_size == I2C_MEMADD_SIZE_8BIT) {
/* Send Memory Address */
mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR,
(uint8_t)(mem_addr & 0x00FFU));
} else {
/* Send MSB of Memory Address */
mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR,
(uint8_t)((mem_addr & 0xFF00U) >> 8));
/* Wait until TXIS flag is set */
if (i2c_wait_txis(hi2c, timeout, tick_start) != 0) {
return -EIO;
}
/* Send LSB of Memory Address */
mmio_write_8(hi2c->i2c_base_addr + I2C_TXDR,
(uint8_t)(mem_addr & 0x00FFU));
}
if (i2c_wait_flag(hi2c, I2C_FLAG_TC, 0, timeout, tick_start) != 0) {
return -EIO;
}
return 0;
}
/*
* @brief I2C Tx data register flush process.
* @param hi2c: I2C handle.
* @retval None
*/
static void i2c_flush_txdr(struct i2c_handle_s *hi2c)
{
/*
* If a pending TXIS flag is set,
* write a dummy data in TXDR to clear it.
*/
if ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & I2C_FLAG_TXIS) !=
0U) {
mmio_write_32(hi2c->i2c_base_addr + I2C_TXDR, 0);
}
/* Flush TX register if not empty */
if ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & I2C_FLAG_TXE) ==
0U) {
mmio_setbits_32(hi2c->i2c_base_addr + I2C_ISR,
I2C_FLAG_TXE);
}
}
/*
* @brief This function handles I2C Communication timeout.
* @param hi2c: Pointer to a struct i2c_handle_s structure that contains
* the configuration information for the specified I2C.
* @param flag: Specifies the I2C flag to check.
* @param awaited_value: The awaited bit value for the flag (0 or 1).
* @param timeout: timeout duration
* @param tick_start: Tick start value
* @retval 0 if OK, negative value else
*/
static int i2c_wait_flag(struct i2c_handle_s *hi2c, uint32_t flag,
uint8_t awaited_value, uint32_t timeout,
uint32_t tick_start)
{
uint8_t flag_check;
do {
flag_check = ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) &
flag) == flag) ? 1U : 0U;
if (timeout != MAX_DELAY) {
if ((((uint32_t)read_cntpct_el0() - tick_start) >
timeout) || (timeout == 0U)) {
hi2c->i2c_err |= I2C_ERROR_TIMEOUT;
hi2c->i2c_state = I2C_STATE_READY;
hi2c->i2c_mode = I2C_MODE_NONE;
hi2c->lock = 0;
return -EIO;
}
}
} while (flag_check == awaited_value);
return 0;
}
/*
* @brief This function handles I2C Communication timeout for specific usage
* of TXIS flag.
* @param hi2c: Pointer to a struct i2c_handle_s structure that contains
* the configuration information for the specified I2C.
* @param timeout: timeout duration
* @param tick_start: Tick start value
* @retval 0 if OK, negative value else
*/
static int i2c_wait_txis(struct i2c_handle_s *hi2c, uint32_t timeout,
uint32_t tick_start)
{
while ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) &
I2C_FLAG_TXIS) == 0U) {
if (i2c_ack_failed(hi2c, timeout, tick_start) != 0) {
return -EIO;
}
if (timeout != MAX_DELAY) {
if ((((uint32_t)read_cntpct_el0() - tick_start) >
timeout) || (timeout == 0U)) {
hi2c->i2c_err |= I2C_ERROR_TIMEOUT;
hi2c->i2c_state = I2C_STATE_READY;
hi2c->i2c_mode = I2C_MODE_NONE;
hi2c->lock = 0;
return -EIO;
}
}
}
return 0;
}
/*
* @brief This function handles I2C Communication timeout for specific
* usage of STOP flag.
* @param hi2c: Pointer to a struct i2c_handle_s structure that contains
* the configuration information for the specified I2C.
* @param timeout: timeout duration
* @param tick_start: Tick start value
* @retval 0 if OK, negative value else
*/
static int i2c_wait_stop(struct i2c_handle_s *hi2c, uint32_t timeout,
uint32_t tick_start)
{
while ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) &
I2C_FLAG_STOPF) == 0U) {
if (i2c_ack_failed(hi2c, timeout, tick_start) != 0) {
return -EIO;
}
if ((((uint32_t)read_cntpct_el0() - tick_start) > timeout) ||
(timeout == 0U)) {
hi2c->i2c_err |= I2C_ERROR_TIMEOUT;
hi2c->i2c_state = I2C_STATE_READY;
hi2c->i2c_mode = I2C_MODE_NONE;
hi2c->lock = 0;
return -EIO;
}
}
return 0;
}
/*
* @brief This function handles Acknowledge failed detection during
* an I2C Communication.
* @param hi2c: Pointer to a struct i2c_handle_s structure that contains
* the configuration information for the specified I2C.
* @param timeout: timeout duration
* @param tick_start: Tick start value
* @retval 0 if OK, negative value else
*/
static int i2c_ack_failed(struct i2c_handle_s *hi2c, uint32_t timeout,
uint32_t tick_start)
{
if ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) & I2C_FLAG_AF) == 0U) {
return 0;
}
/*
* Wait until STOP Flag is reset.
* AutoEnd should be initiate after AF.
*/
while ((mmio_read_32(hi2c->i2c_base_addr + I2C_ISR) &
I2C_FLAG_STOPF) == 0U) {
if (timeout != MAX_DELAY) {
if ((((uint32_t)read_cntpct_el0() - tick_start) >
timeout) || (timeout == 0U)) {
hi2c->i2c_err |= I2C_ERROR_TIMEOUT;
hi2c->i2c_state = I2C_STATE_READY;
hi2c->i2c_mode = I2C_MODE_NONE;
hi2c->lock = 0;
return -EIO;
}
}
}
mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, I2C_FLAG_AF);
mmio_write_32(hi2c->i2c_base_addr + I2C_ICR, I2C_FLAG_STOPF);
i2c_flush_txdr(hi2c);
mmio_clrbits_32(hi2c->i2c_base_addr + I2C_CR2, I2C_RESET_CR2);
hi2c->i2c_err |= I2C_ERROR_AF;
hi2c->i2c_state = I2C_STATE_READY;
hi2c->i2c_mode = I2C_MODE_NONE;
hi2c->lock = 0;
return -EIO;
}
/*
* @brief Handles I2Cx communication when starting transfer or during transfer
* (TC or TCR flag are set).
* @param hi2c: I2C handle.
* @param dev_addr: Specifies the slave address to be programmed.
* @param size: Specifies the number of bytes to be programmed.
* This parameter must be a value between 0 and 255.
* @param i2c_mode: New state of the I2C START condition generation.
* This parameter can be one of the following values:
* @arg @ref I2C_RELOAD_MODE: Enable Reload mode .
* @arg @ref I2C_AUTOEND_MODE: Enable Automatic end mode.
* @arg @ref I2C_SOFTEND_MODE: Enable Software end mode.
* @param request: New state of the I2C START condition generation.
* This parameter can be one of the following values:
* @arg @ref I2C_NO_STARTSTOP: Don't Generate stop and start condition.
* @arg @ref I2C_GENERATE_STOP: Generate stop condition
* (size should be set to 0).
* @arg @ref I2C_GENERATE_START_READ: Generate Restart for read request.
* @arg @ref I2C_GENERATE_START_WRITE: Generate Restart for write request.
* @retval None
*/
static void i2c_transfer_config(struct i2c_handle_s *hi2c, uint16_t dev_addr,
uint16_t size, uint32_t i2c_mode,
uint32_t request)
{
uint32_t clr_value, set_value;
clr_value = (I2C_CR2_SADD | I2C_CR2_NBYTES | I2C_CR2_RELOAD |
I2C_CR2_AUTOEND | I2C_CR2_START | I2C_CR2_STOP) |
(I2C_CR2_RD_WRN & (request >> (31U - I2C_CR2_RD_WRN_OFFSET)));
set_value = ((uint32_t)dev_addr & I2C_CR2_SADD) |
(((uint32_t)size << I2C_CR2_NBYTES_OFFSET) & I2C_CR2_NBYTES) |
i2c_mode | request;
mmio_clrsetbits_32(hi2c->i2c_base_addr + I2C_CR2, clr_value, set_value);
}
/*
* @brief Configure I2C Analog noise filter.
* @param hi2c: Pointer to a struct i2c_handle_s structure that contains
* the configuration information for the specified I2Cx peripheral
* @param analog_filter: New state of the Analog filter.
* @retval 0 if OK, negative value else
*/
int stm32_i2c_config_analog_filter(struct i2c_handle_s *hi2c,
uint32_t analog_filter)
{
if ((hi2c->i2c_state != I2C_STATE_READY) || (hi2c->lock != 0U)) {
return -EBUSY;
}
hi2c->lock = 1;
hi2c->i2c_state = I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
mmio_clrbits_32(hi2c->i2c_base_addr + I2C_CR1, I2C_CR1_PE);
/* Reset I2Cx ANOFF bit */
mmio_clrbits_32(hi2c->i2c_base_addr + I2C_CR1, I2C_CR1_ANFOFF);
/* Set analog filter bit*/
mmio_setbits_32(hi2c->i2c_base_addr + I2C_CR1, analog_filter);
/* Enable the selected I2C peripheral */
mmio_setbits_32(hi2c->i2c_base_addr + I2C_CR1, I2C_CR1_PE);
hi2c->i2c_state = I2C_STATE_READY;
hi2c->lock = 0;
return 0;
}
/*
* Copyright (c) 2017-2018, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <debug.h>
#include <delay_timer.h>
#include <errno.h>
#include <libfdt.h>
#include <mmio.h>
#include <mmio.h>
#include <platform_def.h>
#include <stdbool.h>
#include <stm32_gpio.h>
#include <stm32mp1_clk.h>
#include <stm32mp1_dt.h>
#include <stm32mp1_pmic.h>
#include <stpmu1.h>
#include <utils_def.h>
/* I2C Timing hard-coded value, for I2C clock source is HSI at 64MHz */
#define I2C_TIMING 0x10D07DB5
#define I2C_TIMEOUT 0xFFFFF
#define MASK_RESET_BUCK3 BIT(2)
#define STPMU1_LDO12356_OUTPUT_MASK (uint8_t)(GENMASK(6, 2))
#define STPMU1_LDO12356_OUTPUT_SHIFT 2
#define STPMU1_LDO3_MODE (uint8_t)(BIT(7))
#define STPMU1_LDO3_DDR_SEL 31U
#define STPMU1_LDO3_1800000 (9U << STPMU1_LDO12356_OUTPUT_SHIFT)
#define STPMU1_BUCK_OUTPUT_SHIFT 2
#define STPMU1_BUCK3_1V8 (39U << STPMU1_BUCK_OUTPUT_SHIFT)
#define STPMU1_DEFAULT_START_UP_DELAY_MS 1
static struct i2c_handle_s i2c_handle;
static uint32_t pmic_i2c_addr;
static int dt_get_pmic_node(void *fdt)
{
return fdt_node_offset_by_compatible(fdt, -1, "st,stpmu1");
}
bool dt_check_pmic(void)
{
int node;
void *fdt;
if (fdt_get_address(&fdt) == 0) {
return false;
}
node = dt_get_pmic_node(fdt);
if (node < 0) {
VERBOSE("%s: No PMIC node found in DT\n", __func__);
return false;
}
return fdt_check_status(node);
}
static int dt_pmic_i2c_config(struct dt_node_info *i2c_info)
{
int pmic_node, i2c_node;
void *fdt;
const fdt32_t *cuint;
if (fdt_get_address(&fdt) == 0) {
return -ENOENT;
}
pmic_node = dt_get_pmic_node(fdt);
if (pmic_node < 0) {
return -FDT_ERR_NOTFOUND;
}
cuint = fdt_getprop(fdt, pmic_node, "reg", NULL);
if (cuint == NULL) {
return -FDT_ERR_NOTFOUND;
}
pmic_i2c_addr = fdt32_to_cpu(*cuint) << 1;
if (pmic_i2c_addr > UINT16_MAX) {
return -EINVAL;
}
i2c_node = fdt_parent_offset(fdt, pmic_node);
if (i2c_node < 0) {
return -FDT_ERR_NOTFOUND;
}
dt_fill_device_info(i2c_info, i2c_node);
if (i2c_info->base == 0U) {
return -FDT_ERR_NOTFOUND;
}
return dt_set_pinctrl_config(i2c_node);
}
int dt_pmic_enable_boot_on_regulators(void)
{
int pmic_node, regulators_node, regulator_node;
void *fdt;
if (fdt_get_address(&fdt) == 0) {
return -ENOENT;
}
pmic_node = dt_get_pmic_node(fdt);
if (pmic_node < 0) {
return -FDT_ERR_NOTFOUND;
}
regulators_node = fdt_subnode_offset(fdt, pmic_node, "regulators");
fdt_for_each_subnode(regulator_node, fdt, regulators_node) {
const fdt32_t *cuint;
const char *node_name;
uint16_t voltage;
if (fdt_getprop(fdt, regulator_node, "regulator-boot-on",
NULL) == NULL) {
continue;
}
cuint = fdt_getprop(fdt, regulator_node,
"regulator-min-microvolt", NULL);
if (cuint == NULL) {
continue;
}
/* DT uses microvolts, whereas driver awaits millivolts */
voltage = (uint16_t)(fdt32_to_cpu(*cuint) / 1000U);
node_name = fdt_get_name(fdt, regulator_node, NULL);
if (stpmu1_is_regulator_enabled(node_name) == 0U) {
int status;
status = stpmu1_regulator_voltage_set(node_name,
voltage);
if (status != 0) {
return status;
}
status = stpmu1_regulator_enable(node_name);
if (status != 0) {
return status;
}
}
}
return 0;
}
void initialize_pmic_i2c(void)
{
int ret;
struct dt_node_info i2c_info;
if (dt_pmic_i2c_config(&i2c_info) != 0) {
ERROR("I2C configuration failed\n");
panic();
}
if (stm32mp1_clk_enable((uint32_t)i2c_info.clock) < 0) {
ERROR("I2C clock enable failed\n");
panic();
}
/* Initialize PMIC I2C */
i2c_handle.i2c_base_addr = i2c_info.base;
i2c_handle.i2c_init.timing = I2C_TIMING;
i2c_handle.i2c_init.own_address1 = pmic_i2c_addr;
i2c_handle.i2c_init.addressing_mode = I2C_ADDRESSINGMODE_7BIT;
i2c_handle.i2c_init.dual_address_mode = I2C_DUALADDRESS_DISABLE;
i2c_handle.i2c_init.own_address2 = 0;
i2c_handle.i2c_init.own_address2_masks = I2C_OAR2_OA2NOMASK;
i2c_handle.i2c_init.general_call_mode = I2C_GENERALCALL_DISABLE;
i2c_handle.i2c_init.no_stretch_mode = I2C_NOSTRETCH_DISABLE;
ret = stm32_i2c_init(&i2c_handle);
if (ret != 0) {
ERROR("Cannot initialize I2C %x (%d)\n",
i2c_handle.i2c_base_addr, ret);
panic();
}
ret = stm32_i2c_config_analog_filter(&i2c_handle,
I2C_ANALOGFILTER_ENABLE);
if (ret != 0) {
ERROR("Cannot initialize I2C analog filter (%d)\n", ret);
panic();
}
ret = stm32_i2c_is_device_ready(&i2c_handle, (uint16_t)pmic_i2c_addr, 1,
I2C_TIMEOUT);
if (ret != 0) {
ERROR("I2C device not ready (%d)\n", ret);
panic();
}
stpmu1_bind_i2c(&i2c_handle, (uint16_t)pmic_i2c_addr);
}
void initialize_pmic(void)
{
int status;
uint8_t read_val;
initialize_pmic_i2c();
status = stpmu1_register_read(VERSION_STATUS_REG, &read_val);
if (status != 0) {
panic();
}
INFO("PMIC version = 0x%x\n", read_val);
/* Keep VDD on during the reset cycle */
status = stpmu1_register_update(MASK_RESET_BUCK_REG,
MASK_RESET_BUCK3,
MASK_RESET_BUCK3);
if (status != 0) {
panic();
}
}
int pmic_ddr_power_init(enum ddr_type ddr_type)
{
bool buck3_at_1v8 = false;
uint8_t read_val;
int status;
switch (ddr_type) {
case STM32MP_DDR3:
/* Set LDO3 to sync mode */
status = stpmu1_register_read(LDO3_CONTROL_REG, &read_val);
if (status != 0) {
return status;
}
read_val &= ~STPMU1_LDO3_MODE;
read_val &= ~STPMU1_LDO12356_OUTPUT_MASK;
read_val |= STPMU1_LDO3_DDR_SEL << STPMU1_LDO12356_OUTPUT_SHIFT;
status = stpmu1_register_write(LDO3_CONTROL_REG, read_val);
if (status != 0) {
return status;
}
status = stpmu1_regulator_voltage_set("buck2", 1350);
if (status != 0) {
return status;
}
status = stpmu1_regulator_enable("buck2");
if (status != 0) {
return status;
}
mdelay(STPMU1_DEFAULT_START_UP_DELAY_MS);
status = stpmu1_regulator_enable("vref_ddr");
if (status != 0) {
return status;
}
mdelay(STPMU1_DEFAULT_START_UP_DELAY_MS);
status = stpmu1_regulator_enable("ldo3");
if (status != 0) {
return status;
}
mdelay(STPMU1_DEFAULT_START_UP_DELAY_MS);
break;
case STM32MP_LPDDR2:
/*
* Set LDO3 to 1.8V
* Set LDO3 to bypass mode if BUCK3 = 1.8V
* Set LDO3 to normal mode if BUCK3 != 1.8V
*/
status = stpmu1_register_read(BUCK3_CONTROL_REG, &read_val);
if (status != 0) {
return status;
}
if ((read_val & STPMU1_BUCK3_1V8) == STPMU1_BUCK3_1V8) {
buck3_at_1v8 = true;
}
status = stpmu1_register_read(LDO3_CONTROL_REG, &read_val);
if (status != 0) {
return status;
}
read_val &= ~STPMU1_LDO3_MODE;
read_val &= ~STPMU1_LDO12356_OUTPUT_MASK;
read_val |= STPMU1_LDO3_1800000;
if (buck3_at_1v8) {
read_val |= STPMU1_LDO3_MODE;
}
status = stpmu1_register_write(LDO3_CONTROL_REG, read_val);
if (status != 0) {
return status;
}
status = stpmu1_regulator_voltage_set("buck2", 1200);
if (status != 0) {
return status;
}
status = stpmu1_regulator_enable("ldo3");
if (status != 0) {
return status;
}
mdelay(STPMU1_DEFAULT_START_UP_DELAY_MS);
status = stpmu1_regulator_enable("buck2");
if (status != 0) {
return status;
}
mdelay(STPMU1_DEFAULT_START_UP_DELAY_MS);
status = stpmu1_regulator_enable("vref_ddr");
if (status != 0) {
return status;
}
mdelay(STPMU1_DEFAULT_START_UP_DELAY_MS);
break;
default:
break;
};
return 0;
}
/*
* Copyright (c) 2016-2018, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <debug.h>
#include <platform.h>
#include <stpmu1.h>
#include <string.h>
struct regul_struct {
const char *dt_node_name;
const uint16_t *voltage_table;
uint8_t voltage_table_size;
uint8_t control_reg;
uint8_t low_power_reg;
};
static struct i2c_handle_s *stpmu_i2c_handle;
static uint16_t stpmu_i2c_addr;
/* Voltage tables in mV */
static const uint16_t buck1_voltage_table[] = {
600,
625,
650,
675,
700,
725,
750,
775,
800,
825,
850,
875,
900,
925,
950,
975,
1000,
1025,
1050,
1075,
1100,
1125,
1150,
1175,
1200,
1225,
1250,
1275,
1300,
1325,
1350,
1350,
};
static const uint16_t buck2_voltage_table[] = {
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1050,
1050,
1100,
1100,
1150,
1150,
1200,
1200,
1250,
1250,
1300,
1300,
1350,
1350,
1400,
1400,
1450,
1450,
1500,
};
static const uint16_t buck3_voltage_table[] = {
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1000,
1100,
1100,
1100,
1100,
1200,
1200,
1200,
1200,
1300,
1300,
1300,
1300,
1400,
1400,
1400,
1400,
1500,
1600,
1700,
1800,
1900,
2000,
2100,
2200,
2300,
2400,
2500,
2600,
2700,
2800,
2900,
3000,
3100,
3200,
3300,
3400,
};
static const uint16_t buck4_voltage_table[] = {
600,
625,
650,
675,
700,
725,
750,
775,
800,
825,
850,
875,
900,
925,
950,
975,
1000,
1025,
1050,
1075,
1100,
1125,
1150,
1175,
1200,
1225,
1250,
1275,
1300,
1300,
1350,
1350,
1400,
1400,
1450,
1450,
1500,
1600,
1700,
1800,
1900,
2000,
2100,
2200,
2300,
2400,
2500,
2600,
2700,
2800,
2900,
3000,
3100,
3200,
3300,
3400,
3500,
3600,
3700,
3800,
3900,
};
static const uint16_t ldo1_voltage_table[] = {
1700,
1700,
1700,
1700,
1700,
1700,
1700,
1700,
1700,
1800,
1900,
2000,
2100,
2200,
2300,
2400,
2500,
2600,
2700,
2800,
2900,
3000,
3100,
3200,
3300,
};
static const uint16_t ldo2_voltage_table[] = {
1700,
1700,
1700,
1700,
1700,
1700,
1700,
1700,
1700,
1800,
1900,
2000,
2100,
2200,
2300,
2400,
2500,
2600,
2700,
2800,
2900,
3000,
3100,
3200,
3300,
};
static const uint16_t ldo3_voltage_table[] = {
1700,
1700,
1700,
1700,
1700,
1700,
1700,
1700,
1700,
1800,
1900,
2000,
2100,
2200,
2300,
2400,
2500,
2600,
2700,
2800,
2900,
3000,
3100,
3200,
3300,
3300,
3300,
3300,
3300,
3300,
3300,
0xFFFF, /* VREFDDR */
};
static const uint16_t ldo5_voltage_table[] = {
1700,
1700,
1700,
1700,
1700,
1700,
1700,
1700,
1700,
1800,
1900,
2000,
2100,
2200,
2300,
2400,
2500,
2600,
2700,
2800,
2900,
3000,
3100,
3200,
3300,
3400,
3500,
3600,
3700,
3800,
3900,
};
static const uint16_t ldo6_voltage_table[] = {
900,
1000,
1100,
1200,
1300,
1400,
1500,
1600,
1700,
1800,
1900,
2000,
2100,
2200,
2300,
2400,
2500,
2600,
2700,
2800,
2900,
3000,
3100,
3200,
3300,
};
static const uint16_t ldo4_voltage_table[] = {
3300,
};
static const uint16_t vref_ddr_voltage_table[] = {
3300,
};
/* Table of Regulators in PMIC SoC */
static const struct regul_struct regulators_table[] = {
{
.dt_node_name = "buck1",
.voltage_table = buck1_voltage_table,
.voltage_table_size = ARRAY_SIZE(buck1_voltage_table),
.control_reg = BUCK1_CONTROL_REG,
.low_power_reg = BUCK1_PWRCTRL_REG,
},
{
.dt_node_name = "buck2",
.voltage_table = buck2_voltage_table,
.voltage_table_size = ARRAY_SIZE(buck2_voltage_table),
.control_reg = BUCK2_CONTROL_REG,
.low_power_reg = BUCK2_PWRCTRL_REG,
},
{
.dt_node_name = "buck3",
.voltage_table = buck3_voltage_table,
.voltage_table_size = ARRAY_SIZE(buck3_voltage_table),
.control_reg = BUCK3_CONTROL_REG,
.low_power_reg = BUCK3_PWRCTRL_REG,
},
{
.dt_node_name = "buck4",
.voltage_table = buck4_voltage_table,
.voltage_table_size = ARRAY_SIZE(buck4_voltage_table),
.control_reg = BUCK4_CONTROL_REG,
.low_power_reg = BUCK4_PWRCTRL_REG,
},
{
.dt_node_name = "ldo1",
.voltage_table = ldo1_voltage_table,
.voltage_table_size = ARRAY_SIZE(ldo1_voltage_table),
.control_reg = LDO1_CONTROL_REG,
.low_power_reg = LDO1_PWRCTRL_REG,
},
{
.dt_node_name = "ldo2",
.voltage_table = ldo2_voltage_table,
.voltage_table_size = ARRAY_SIZE(ldo2_voltage_table),
.control_reg = LDO2_CONTROL_REG,
.low_power_reg = LDO2_PWRCTRL_REG,
},
{
.dt_node_name = "ldo3",
.voltage_table = ldo3_voltage_table,
.voltage_table_size = ARRAY_SIZE(ldo3_voltage_table),
.control_reg = LDO3_CONTROL_REG,
.low_power_reg = LDO3_PWRCTRL_REG,
},
{
.dt_node_name = "ldo4",
.voltage_table = ldo4_voltage_table,
.voltage_table_size = ARRAY_SIZE(ldo4_voltage_table),
.control_reg = LDO4_CONTROL_REG,
.low_power_reg = LDO4_PWRCTRL_REG,
},
{
.dt_node_name = "ldo5",
.voltage_table = ldo5_voltage_table,
.voltage_table_size = ARRAY_SIZE(ldo5_voltage_table),
.control_reg = LDO5_CONTROL_REG,
.low_power_reg = LDO5_PWRCTRL_REG,
},
{
.dt_node_name = "ldo6",
.voltage_table = ldo6_voltage_table,
.voltage_table_size = ARRAY_SIZE(ldo6_voltage_table),
.control_reg = LDO6_CONTROL_REG,
.low_power_reg = LDO6_PWRCTRL_REG,
},
{
.dt_node_name = "vref_ddr",
.voltage_table = vref_ddr_voltage_table,
.voltage_table_size = ARRAY_SIZE(vref_ddr_voltage_table),
.control_reg = VREF_DDR_CONTROL_REG,
.low_power_reg = VREF_DDR_PWRCTRL_REG,
},
};
#define MAX_REGUL ARRAY_SIZE(regulators_table)
static const struct regul_struct *stpmu1_get_regulator_data(const char *name)
{
uint8_t i;
for (i = 0 ; i < MAX_REGUL ; i++) {
if (strncmp(name, regulators_table[i].dt_node_name,
strlen(regulators_table[i].dt_node_name)) == 0) {
return &regulators_table[i];
}
}
/* Regulator not found */
panic();
return NULL;
}
static uint8_t stpmu1_voltage_find_index(const char *name,
uint16_t millivolts)
{
const struct regul_struct *regul = stpmu1_get_regulator_data(name);
uint8_t i;
for (i = 0 ; i < regul->voltage_table_size ; i++) {
if (regul->voltage_table[i] == millivolts) {
return i;
}
}
/* Voltage not found */
panic();
return 0;
}
int stpmu1_switch_off(void)
{
return stpmu1_register_update(MAIN_CONTROL_REG, 1,
SOFTWARE_SWITCH_OFF_ENABLED);
}
int stpmu1_regulator_enable(const char *name)
{
const struct regul_struct *regul = stpmu1_get_regulator_data(name);
return stpmu1_register_update(regul->control_reg, BIT(0), BIT(0));
}
int stpmu1_regulator_disable(const char *name)
{
const struct regul_struct *regul = stpmu1_get_regulator_data(name);
return stpmu1_register_update(regul->control_reg, 0, BIT(0));
}
uint8_t stpmu1_is_regulator_enabled(const char *name)
{
uint8_t val;
const struct regul_struct *regul = stpmu1_get_regulator_data(name);
if (stpmu1_register_read(regul->control_reg, &val) != 0) {
panic();
}
return (val & 0x1U);
}
int stpmu1_regulator_voltage_set(const char *name, uint16_t millivolts)
{
uint8_t voltage_index = stpmu1_voltage_find_index(name, millivolts);
const struct regul_struct *regul = stpmu1_get_regulator_data(name);
return stpmu1_register_update(regul->control_reg, voltage_index << 2,
0xFC);
}
int stpmu1_register_read(uint8_t register_id, uint8_t *value)
{
return stm32_i2c_mem_read(stpmu_i2c_handle, stpmu_i2c_addr,
(uint16_t)register_id, I2C_MEMADD_SIZE_8BIT,
value, 1, 100000);
}
int stpmu1_register_write(uint8_t register_id, uint8_t value)
{
int status;
status = stm32_i2c_mem_write(stpmu_i2c_handle, stpmu_i2c_addr,
(uint16_t)register_id,
I2C_MEMADD_SIZE_8BIT, &value, 1, 100000);
if (status != 0) {
return status;
}
if ((register_id != WATCHDOG_CONTROL_REG) && (register_id <= 0x40U)) {
uint8_t readval;
status = stpmu1_register_read(register_id, &readval);
if (status != 0) {
return status;
}
if (readval != value) {
return -1;
}
}
return 0;
}
int stpmu1_register_update(uint8_t register_id, uint8_t value, uint8_t mask)
{
int status;
uint8_t val;
status = stpmu1_register_read(register_id, &val);
if (status != 0) {
return status;
}
/* Clear bits to update */
val &= ~mask;
/* Update appropriate bits*/
val |= (value & mask);
/* Send new value on I2C Bus */
return stpmu1_register_write(register_id, val);
}
void stpmu1_bind_i2c(struct i2c_handle_s *i2c_handle, uint16_t i2c_addr)
{
stpmu_i2c_handle = i2c_handle;
stpmu_i2c_addr = i2c_addr;
}
/*
* Copyright (c) 2016-2018, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __STM32MP1_I2C_H
#define __STM32MP1_I2C_H
#include <stdint.h>
#include <utils_def.h>
/* Bit definition for I2C_CR1 register */
#define I2C_CR1_PE BIT(0)
#define I2C_CR1_TXIE BIT(1)
#define I2C_CR1_RXIE BIT(2)
#define I2C_CR1_ADDRIE BIT(3)
#define I2C_CR1_NACKIE BIT(4)
#define I2C_CR1_STOPIE BIT(5)
#define I2C_CR1_TCIE BIT(6)
#define I2C_CR1_ERRIE BIT(7)
#define I2C_CR1_DNF GENMASK(11, 8)
#define I2C_CR1_ANFOFF BIT(12)
#define I2C_CR1_SWRST BIT(13)
#define I2C_CR1_TXDMAEN BIT(14)
#define I2C_CR1_RXDMAEN BIT(15)
#define I2C_CR1_SBC BIT(16)
#define I2C_CR1_NOSTRETCH BIT(17)
#define I2C_CR1_WUPEN BIT(18)
#define I2C_CR1_GCEN BIT(19)
#define I2C_CR1_SMBHEN BIT(22)
#define I2C_CR1_SMBDEN BIT(21)
#define I2C_CR1_ALERTEN BIT(22)
#define I2C_CR1_PECEN BIT(23)
/* Bit definition for I2C_CR2 register */
#define I2C_CR2_SADD GENMASK(9, 0)
#define I2C_CR2_RD_WRN BIT(10)
#define I2C_CR2_RD_WRN_OFFSET 10U
#define I2C_CR2_ADD10 BIT(11)
#define I2C_CR2_HEAD10R BIT(12)
#define I2C_CR2_START BIT(13)
#define I2C_CR2_STOP BIT(14)
#define I2C_CR2_NACK BIT(15)
#define I2C_CR2_NBYTES GENMASK(23, 16)
#define I2C_CR2_NBYTES_OFFSET 16U
#define I2C_CR2_RELOAD BIT(24)
#define I2C_CR2_AUTOEND BIT(25)
#define I2C_CR2_PECBYTE BIT(26)
/* Bit definition for I2C_OAR1 register */
#define I2C_OAR1_OA1 GENMASK(9, 0)
#define I2C_OAR1_OA1MODE BIT(10)
#define I2C_OAR1_OA1EN BIT(15)
/* Bit definition for I2C_OAR2 register */
#define I2C_OAR2_OA2 GENMASK(7, 1)
#define I2C_OAR2_OA2MSK GENMASK(10, 8)
#define I2C_OAR2_OA2NOMASK 0
#define I2C_OAR2_OA2MASK01 BIT(8)
#define I2C_OAR2_OA2MASK02 BIT(9)
#define I2C_OAR2_OA2MASK03 GENMASK(9, 8)
#define I2C_OAR2_OA2MASK04 BIT(10)
#define I2C_OAR2_OA2MASK05 (BIT(8) | BIT(10))
#define I2C_OAR2_OA2MASK06 (BIT(9) | BIT(10))
#define I2C_OAR2_OA2MASK07 GENMASK(10, 8)
#define I2C_OAR2_OA2EN BIT(15)
/* Bit definition for I2C_TIMINGR register */
#define I2C_TIMINGR_SCLL GENMASK(7, 0)
#define I2C_TIMINGR_SCLH GENMASK(15, 8)
#define I2C_TIMINGR_SDADEL GENMASK(19, 16)
#define I2C_TIMINGR_SCLDEL GENMASK(23, 20)
#define I2C_TIMINGR_PRESC GENMASK(31, 28)
/* Bit definition for I2C_TIMEOUTR register */
#define I2C_TIMEOUTR_TIMEOUTA GENMASK(11, 0)
#define I2C_TIMEOUTR_TIDLE BIT(12)
#define I2C_TIMEOUTR_TIMOUTEN BIT(15)
#define I2C_TIMEOUTR_TIMEOUTB GENMASK(27, 16)
#define I2C_TIMEOUTR_TEXTEN BIT(31)
/* Bit definition for I2C_ISR register */
#define I2C_ISR_TXE BIT(0)
#define I2C_ISR_TXIS BIT(1)
#define I2C_ISR_RXNE BIT(2)
#define I2C_ISR_ADDR BIT(3)
#define I2C_ISR_NACKF BIT(4)
#define I2C_ISR_STOPF BIT(5)
#define I2C_ISR_TC BIT(6)
#define I2C_ISR_TCR BIT(7)
#define I2C_ISR_BERR BIT(8)
#define I2C_ISR_ARLO BIT(9)
#define I2C_ISR_OVR BIT(10)
#define I2C_ISR_PECERR BIT(11)
#define I2C_ISR_TIMEOUT BIT(12)
#define I2C_ISR_ALERT BIT(13)
#define I2C_ISR_BUSY BIT(15)
#define I2C_ISR_DIR BIT(16)
#define I2C_ISR_ADDCODE GENMASK(23, 17)
/* Bit definition for I2C_ICR register */
#define I2C_ICR_ADDRCF BIT(3)
#define I2C_ICR_NACKCF BIT(4)
#define I2C_ICR_STOPCF BIT(5)
#define I2C_ICR_BERRCF BIT(8)
#define I2C_ICR_ARLOCF BIT(9)
#define I2C_ICR_OVRCF BIT(10)
#define I2C_ICR_PECCF BIT(11)
#define I2C_ICR_TIMOUTCF BIT(12)
#define I2C_ICR_ALERTCF BIT(13)
struct stm32_i2c_init_s {
uint32_t timing; /* Specifies the I2C_TIMINGR_register value
* This parameter is calculated by referring
* to I2C initialization section in Reference
* manual.
*/
uint32_t own_address1; /* Specifies the first device own address.
* This parameter can be a 7-bit or 10-bit
* address.
*/
uint32_t addressing_mode; /* Specifies if 7-bit or 10-bit addressing
* mode is selected.
* This parameter can be a value of @ref
* I2C_ADDRESSING_MODE.
*/
uint32_t dual_address_mode; /* Specifies if dual addressing mode is
* selected.
* This parameter can be a value of @ref
* I2C_DUAL_ADDRESSING_MODE.
*/
uint32_t own_address2; /* Specifies the second device own address
* if dual addressing mode is selected.
* This parameter can be a 7-bit address.
*/
uint32_t own_address2_masks; /* Specifies the acknowledge mask address
* second device own address if dual
* addressing mode is selected.
* This parameter can be a value of @ref
* I2C_OWN_ADDRESS2_MASKS.
*/
uint32_t general_call_mode; /* Specifies if general call mode is
* selected.
* This parameter can be a value of @ref
* I2C_GENERAL_CALL_ADDRESSING_MODE.
*/
uint32_t no_stretch_mode; /* Specifies if nostretch mode is
* selected.
* This parameter can be a value of @ref
* I2C_NOSTRETCH_MODE.
*/
};
enum i2c_state_e {
I2C_STATE_RESET = 0x00U, /* Peripheral is not yet
* initialized.
*/
I2C_STATE_READY = 0x20U, /* Peripheral Initialized
* and ready for use.
*/
I2C_STATE_BUSY = 0x24U, /* An internal process is
* ongoing.
*/
I2C_STATE_BUSY_TX = 0x21U, /* Data Transmission process
* is ongoing.
*/
I2C_STATE_BUSY_RX = 0x22U, /* Data Reception process
* is ongoing.
*/
I2C_STATE_LISTEN = 0x28U, /* Address Listen Mode is
* ongoing.
*/
I2C_STATE_BUSY_TX_LISTEN = 0x29U, /* Address Listen Mode
* and Data Transmission
* process is ongoing.
*/
I2C_STATE_BUSY_RX_LISTEN = 0x2AU, /* Address Listen Mode
* and Data Reception
* process is ongoing.
*/
I2C_STATE_ABORT = 0x60U, /* Abort user request ongoing. */
I2C_STATE_TIMEOUT = 0xA0U, /* Timeout state. */
I2C_STATE_ERROR = 0xE0U /* Error. */
};
enum i2c_mode_e {
I2C_MODE_NONE = 0x00U, /* No I2C communication on going. */
I2C_MODE_MASTER = 0x10U, /* I2C communication is in Master Mode. */
I2C_MODE_SLAVE = 0x20U, /* I2C communication is in Slave Mode. */
I2C_MODE_MEM = 0x40U /* I2C communication is in Memory Mode. */
};
#define I2C_ERROR_NONE 0x00000000U /* No error */
#define I2C_ERROR_BERR 0x00000001U /* BERR error */
#define I2C_ERROR_ARLO 0x00000002U /* ARLO error */
#define I2C_ERROR_AF 0x00000004U /* ACKF error */
#define I2C_ERROR_OVR 0x00000008U /* OVR error */
#define I2C_ERROR_DMA 0x00000010U /* DMA transfer error */
#define I2C_ERROR_TIMEOUT 0x00000020U /* Timeout error */
#define I2C_ERROR_SIZE 0x00000040U /* Size Management error */
struct i2c_handle_s {
uint32_t i2c_base_addr; /* Registers base address */
struct stm32_i2c_init_s i2c_init; /* Communication parameters */
uint8_t *p_buff; /* Pointer to transfer buffer */
uint16_t xfer_size; /* Transfer size */
uint16_t xfer_count; /* Transfer counter */
uint32_t prev_state; /* Communication previous
* state
*/
uint8_t lock; /* Locking object */
enum i2c_state_e i2c_state; /* Communication state */
enum i2c_mode_e i2c_mode; /* Communication mode */
uint32_t i2c_err; /* Error code */
};
#define I2C_ADDRESSINGMODE_7BIT 0x00000001U
#define I2C_ADDRESSINGMODE_10BIT 0x00000002U
#define I2C_DUALADDRESS_DISABLE 0x00000000U
#define I2C_DUALADDRESS_ENABLE I2C_OAR2_OA2EN
#define I2C_GENERALCALL_DISABLE 0x00000000U
#define I2C_GENERALCALL_ENABLE I2C_CR1_GCEN
#define I2C_NOSTRETCH_DISABLE 0x00000000U
#define I2C_NOSTRETCH_ENABLE I2C_CR1_NOSTRETCH
#define I2C_MEMADD_SIZE_8BIT 0x00000001U
#define I2C_MEMADD_SIZE_16BIT 0x00000002U
#define I2C_RELOAD_MODE I2C_CR2_RELOAD
#define I2C_AUTOEND_MODE I2C_CR2_AUTOEND
#define I2C_SOFTEND_MODE 0x00000000U
#define I2C_NO_STARTSTOP 0x00000000U
#define I2C_GENERATE_STOP (BIT(31) | I2C_CR2_STOP)
#define I2C_GENERATE_START_READ (BIT(31) | I2C_CR2_START | \
I2C_CR2_RD_WRN)
#define I2C_GENERATE_START_WRITE (BIT(31) | I2C_CR2_START)
#define I2C_FLAG_TXE I2C_ISR_TXE
#define I2C_FLAG_TXIS I2C_ISR_TXIS
#define I2C_FLAG_RXNE I2C_ISR_RXNE
#define I2C_FLAG_ADDR I2C_ISR_ADDR
#define I2C_FLAG_AF I2C_ISR_NACKF
#define I2C_FLAG_STOPF I2C_ISR_STOPF
#define I2C_FLAG_TC I2C_ISR_TC
#define I2C_FLAG_TCR I2C_ISR_TCR
#define I2C_FLAG_BERR I2C_ISR_BERR
#define I2C_FLAG_ARLO I2C_ISR_ARLO
#define I2C_FLAG_OVR I2C_ISR_OVR
#define I2C_FLAG_PECERR I2C_ISR_PECERR
#define I2C_FLAG_TIMEOUT I2C_ISR_TIMEOUT
#define I2C_FLAG_ALERT I2C_ISR_ALERT
#define I2C_FLAG_BUSY I2C_ISR_BUSY
#define I2C_FLAG_DIR I2C_ISR_DIR
#define I2C_RESET_CR2 (I2C_CR2_SADD | I2C_CR2_HEAD10R | \
I2C_CR2_NBYTES | I2C_CR2_RELOAD | \
I2C_CR2_RD_WRN)
#define I2C_ANALOGFILTER_ENABLE ((uint32_t)0x00000000U)
#define I2C_ANALOGFILTER_DISABLE I2C_CR1_ANFOFF
int stm32_i2c_init(struct i2c_handle_s *hi2c);
int stm32_i2c_mem_write(struct i2c_handle_s *hi2c, uint16_t dev_addr,
uint16_t mem_addr, uint16_t mem_add_size,
uint8_t *p_data, uint16_t size, uint32_t timeout);
int stm32_i2c_mem_read(struct i2c_handle_s *hi2c, uint16_t dev_addr,
uint16_t mem_addr, uint16_t mem_add_size,
uint8_t *p_data, uint16_t size, uint32_t timeout);
int stm32_i2c_is_device_ready(struct i2c_handle_s *hi2c, uint16_t dev_addr,
uint32_t trials, uint32_t timeout);
int stm32_i2c_config_analog_filter(struct i2c_handle_s *hi2c,
uint32_t analog_filter);
#endif /* __STM32MP1_I2C_H */
/*
* Copyright (c) 2017-2018, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __STM32MP1_PMIC_H__
#define __STM32MP1_PMIC_H__
#include <stdbool.h>
bool dt_check_pmic(void);
int dt_pmic_enable_boot_on_regulators(void);
void initialize_pmic_i2c(void);
void initialize_pmic(void);
int pmic_ddr_power_init(enum ddr_type ddr_type);
#endif /* __STM32MP1_PMIC_H__ */
/*
* Copyright (c) 2016-2018, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __STPMU1_H__
#define __STPMU1_H__
#include <stm32_i2c.h>
#include <utils_def.h>
#define TURN_ON_REG 0x1U
#define TURN_OFF_REG 0x2U
#define ICC_LDO_TURN_OFF_REG 0x3U
#define ICC_BUCK_TURN_OFF_REG 0x4U
#define RESET_STATUS_REG 0x5U
#define VERSION_STATUS_REG 0x6U
#define MAIN_CONTROL_REG 0x10U
#define PADS_PULL_REG 0x11U
#define BUCK_PULL_DOWN_REG 0x12U
#define LDO14_PULL_DOWN_REG 0x13U
#define LDO56_PULL_DOWN_REG 0x14U
#define VIN_CONTROL_REG 0x15U
#define PONKEY_TIMER_REG 0x16U
#define MASK_RANK_BUCK_REG 0x17U
#define MASK_RESET_BUCK_REG 0x18U
#define MASK_RANK_LDO_REG 0x19U
#define MASK_RESET_LDO_REG 0x1AU
#define WATCHDOG_CONTROL_REG 0x1BU
#define WATCHDOG_TIMER_REG 0x1CU
#define BUCK_ICC_TURNOFF_REG 0x1DU
#define LDO_ICC_TURNOFF_REG 0x1EU
#define BUCK_APM_CONTROL_REG 0x1FU
#define BUCK1_CONTROL_REG 0x20U
#define BUCK2_CONTROL_REG 0x21U
#define BUCK3_CONTROL_REG 0x22U
#define BUCK4_CONTROL_REG 0x23U
#define VREF_DDR_CONTROL_REG 0x24U
#define LDO1_CONTROL_REG 0x25U
#define LDO2_CONTROL_REG 0x26U
#define LDO3_CONTROL_REG 0x27U
#define LDO4_CONTROL_REG 0x28U
#define LDO5_CONTROL_REG 0x29U
#define LDO6_CONTROL_REG 0x2AU
#define BUCK1_PWRCTRL_REG 0x30U
#define BUCK2_PWRCTRL_REG 0x31U
#define BUCK3_PWRCTRL_REG 0x32U
#define BUCK4_PWRCTRL_REG 0x33U
#define VREF_DDR_PWRCTRL_REG 0x34U
#define LDO1_PWRCTRL_REG 0x35U
#define LDO2_PWRCTRL_REG 0x36U
#define LDO3_PWRCTRL_REG 0x37U
#define LDO4_PWRCTRL_REG 0x38U
#define LDO5_PWRCTRL_REG 0x39U
#define LDO6_PWRCTRL_REG 0x3AU
#define FREQUENCY_SPREADING_REG 0x3BU
#define USB_CONTROL_REG 0x40U
#define ITLATCH1_REG 0x50U
#define ITLATCH2_REG 0x51U
#define ITLATCH3_REG 0x52U
#define ITLATCH4_REG 0x53U
#define ITSETLATCH1_REG 0x60U
#define ITSETLATCH2_REG 0x61U
#define ITSETLATCH3_REG 0x62U
#define ITSETLATCH4_REG 0x63U
#define ITCLEARLATCH1_REG 0x70U
#define ITCLEARLATCH2_REG 0x71U
#define ITCLEARLATCH3_REG 0x72U
#define ITCLEARLATCH4_REG 0x73U
#define ITMASK1_REG 0x80U
#define ITMASK2_REG 0x81U
#define ITMASK3_REG 0x82U
#define ITMASK4_REG 0x83U
#define ITSETMASK1_REG 0x90U
#define ITSETMASK2_REG 0x91U
#define ITSETMASK3_REG 0x92U
#define ITSETMASK4_REG 0x93U
#define ITCLEARMASK1_REG 0xA0U
#define ITCLEARMASK2_REG 0xA1U
#define ITCLEARMASK3_REG 0xA2U
#define ITCLEARMASK4_REG 0xA3U
#define ITSOURCE1_REG 0xB0U
#define ITSOURCE2_REG 0xB1U
#define ITSOURCE3_REG 0xB2U
#define ITSOURCE4_REG 0xB3U
#define LDO_VOLTAGE_MASK 0x7CU
#define BUCK_VOLTAGE_MASK 0xFCU
#define LDO_BUCK_VOLTAGE_SHIFT 2
#define LDO_ENABLE_MASK 0x01U
#define BUCK_ENABLE_MASK 0x01U
#define BUCK_HPLP_ENABLE_MASK 0x02U
#define LDO_HPLP_ENABLE_MASK 0x02U
#define LDO_BUCK_HPLP_SHIFT 1
#define LDO_BUCK_RANK_MASK 0x01U
#define LDO_BUCK_RESET_MASK 0x01U
#define LDO_BUCK_PULL_DOWN_MASK 0x03U
/* Main PMIC Control Register (MAIN_CONTROL_REG) */
#define ICC_EVENT_ENABLED BIT(4)
#define PWRCTRL_POLARITY_HIGH BIT(3)
#define PWRCTRL_PIN_VALID BIT(2)
#define RESTART_REQUEST_ENABLED BIT(1)
#define SOFTWARE_SWITCH_OFF_ENABLED BIT(0)
/* Main PMIC PADS Control Register (PADS_PULL_REG) */
#define WAKEUP_DETECTOR_DISABLED BIT(4)
#define PWRCTRL_PD_ACTIVE BIT(3)
#define PWRCTRL_PU_ACTIVE BIT(2)
#define WAKEUP_PD_ACTIVE BIT(1)
#define PONKEY_PU_ACTIVE BIT(0)
/* Main PMIC VINLOW Control Register (VIN_CONTROL_REGC DMSC) */
#define SWIN_DETECTOR_ENABLED BIT(7)
#define SWOUT_DETECTOR_ENABLED BIT(6)
#define VINLOW_HYST_MASK 0x3
#define VINLOW_HYST_SHIFT 4
#define VINLOW_THRESHOLD_MASK 0x7
#define VINLOW_THRESHOLD_SHIFT 1
#define VINLOW_ENABLED 0x01
#define VINLOW_CTRL_REG_MASK 0xFF
/* USB Control Register */
#define BOOST_OVP_DISABLED BIT(7)
#define VBUS_OTG_DETECTION_DISABLED BIT(6)
#define OCP_LIMIT_HIGH BIT(3)
#define SWIN_SWOUT_ENABLED BIT(2)
#define USBSW_OTG_SWITCH_ENABLED BIT(1)
int stpmu1_switch_off(void);
int stpmu1_register_read(uint8_t register_id, uint8_t *value);
int stpmu1_register_write(uint8_t register_id, uint8_t value);
int stpmu1_register_update(uint8_t register_id, uint8_t value, uint8_t mask);
int stpmu1_regulator_enable(const char *name);
int stpmu1_regulator_disable(const char *name);
uint8_t stpmu1_is_regulator_enabled(const char *name);
int stpmu1_regulator_voltage_set(const char *name, uint16_t millivolts);
void stpmu1_bind_i2c(struct i2c_handle_s *i2c_handle, uint16_t i2c_addr);
#endif /* __STPMU1_H__ */
......@@ -18,6 +18,7 @@
#include <platform_def.h>
#include <stm32mp1_clk.h>
#include <stm32mp1_dt.h>
#include <stm32mp1_pmic.h>
#include <stm32mp1_private.h>
#include <stm32mp1_context.h>
#include <stm32mp1_pwr.h>
......@@ -34,6 +35,10 @@ void bl2_el3_early_platform_setup(u_register_t arg0, u_register_t arg1,
void bl2_platform_setup(void)
{
if (dt_check_pmic()) {
initialize_pmic();
}
INFO("BL2 runs SP_MIN setup\n");
}
......
......@@ -42,6 +42,9 @@ PLAT_BL_COMMON_SOURCES += ${LIBFDT_SRCS} \
drivers/st/clk/stm32mp1_clk.c \
drivers/st/clk/stm32mp1_clkfunc.c \
drivers/st/gpio/stm32_gpio.c \
drivers/st/pmic/stm32_i2c.c \
drivers/st/pmic/stm32mp1_pmic.c \
drivers/st/pmic/stpmu1.c \
drivers/st/reset/stm32mp1_reset.c \
plat/st/stm32mp1/stm32mp1_context.c \
plat/st/stm32mp1/stm32mp1_dt.c \
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment