Commit f325f9ce authored by Sandrine Bailleux's avatar Sandrine Bailleux Committed by TrustedFirmware Code Review
Browse files

Merge "doc: Split the User Guide into multiple files" into integration

parents d537ee79 43f35ef5
......@@ -115,21 +115,27 @@ Memory impact
~~~~~~~~~~~~~
Using library at ROM will modify the memory layout of the BL images:
- The ROM library needs a page aligned RAM section to hold the RW data. This
section is defined by the ROMLIB_RW_BASE and ROMLIB_RW_END macros.
On Arm platforms a section of 1 page (0x1000) is allocated at the top of SRAM.
This will have for effect to shift down all the BL images by 1 page.
section is defined by the ROMLIB_RW_BASE and ROMLIB_RW_END macros.
On Arm platforms a section of 1 page (0x1000) is allocated at the top of SRAM.
This will have for effect to shift down all the BL images by 1 page.
- Depending on the functions moved to the ROM library, the size of the BL images
will be reduced.
For example: moving MbedTLS function into the ROM library reduces BL1 and
BL2, but not BL31.
will be reduced.
For example: moving MbedTLS function into the ROM library reduces BL1 and
BL2, but not BL31.
- This change in BL images size can be taken into consideration to optimize the
memory layout when defining the BLx_BASE macros.
memory layout when defining the BLx_BASE macros.
Build library at ROM
~~~~~~~~~~~~~~~~~~~~~
The environment variable ``CROSS_COMPILE`` must be set as per the user guide.
The environment variable ``CROSS_COMPILE`` must be set appropriately. Refer to
:ref:`Performing an Initial Build` for more information about setting this
variable.
In the below example the usage of ROMLIB together with mbed TLS is demonstrated
to showcase the benefits of library at ROM - it's not mandatory.
......
Alternative Boot Flows
======================
EL3 payloads alternative boot flow
----------------------------------
On a pre-production system, the ability to execute arbitrary, bare-metal code at
the highest exception level is required. It allows full, direct access to the
hardware, for example to run silicon soak tests.
Although it is possible to implement some baremetal secure firmware from
scratch, this is a complex task on some platforms, depending on the level of
configuration required to put the system in the expected state.
Rather than booting a baremetal application, a possible compromise is to boot
``EL3 payloads`` through TF-A instead. This is implemented as an alternative
boot flow, where a modified BL2 boots an EL3 payload, instead of loading the
other BL images and passing control to BL31. It reduces the complexity of
developing EL3 baremetal code by:
- putting the system into a known architectural state;
- taking care of platform secure world initialization;
- loading the SCP_BL2 image if required by the platform.
When booting an EL3 payload on Arm standard platforms, the configuration of the
TrustZone controller is simplified such that only region 0 is enabled and is
configured to permit secure access only. This gives full access to the whole
DRAM to the EL3 payload.
The system is left in the same state as when entering BL31 in the default boot
flow. In particular:
- Running in EL3;
- Current state is AArch64;
- Little-endian data access;
- All exceptions disabled;
- MMU disabled;
- Caches disabled.
.. _alt_boot_flows_el3_payload:
Booting an EL3 payload
~~~~~~~~~~~~~~~~~~~~~~
The EL3 payload image is a standalone image and is not part of the FIP. It is
not loaded by TF-A. Therefore, there are 2 possible scenarios:
- The EL3 payload may reside in non-volatile memory (NVM) and execute in
place. In this case, booting it is just a matter of specifying the right
address in NVM through ``EL3_PAYLOAD_BASE`` when building TF-A.
- The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at
run-time.
To help in the latter scenario, the ``SPIN_ON_BL1_EXIT=1`` build option can be
used. The infinite loop that it introduces in BL1 stops execution at the right
moment for a debugger to take control of the target and load the payload (for
example, over JTAG).
It is expected that this loading method will work in most cases, as a debugger
connection is usually available in a pre-production system. The user is free to
use any other platform-specific mechanism to load the EL3 payload, though.
Preloaded BL33 alternative boot flow
------------------------------------
Some platforms have the ability to preload BL33 into memory instead of relying
on TF-A to load it. This may simplify packaging of the normal world code and
improve performance in a development environment. When secure world cold boot
is complete, TF-A simply jumps to a BL33 base address provided at build time.
For this option to be used, the ``PRELOADED_BL33_BASE`` build option has to be
used when compiling TF-A. For example, the following command will create a FIP
without a BL33 and prepare to jump to a BL33 image loaded at address
0x80000000:
.. code:: shell
make PRELOADED_BL33_BASE=0x80000000 PLAT=fvp all fip
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
......@@ -597,7 +597,7 @@ registered function to initialize BL32 before running BL33. This initialization
is not necessary for AArch32 SPs.
Details on BL32 initialization and the SPD's role are described in the
"Secure-EL1 Payloads and Dispatchers" section below.
:ref:`firmware_design_sel1_spd` section below.
BL33 (Non-trusted Firmware) execution
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
......@@ -868,7 +868,7 @@ not all been instantiated in the current implementation.
TF-A provides a Test Secure-EL1 Payload (TSP) and its associated Dispatcher
(TSPD). Details of SPD design and TSP/TSPD operation are described in the
"Secure-EL1 Payloads and Dispatchers" section below.
:ref:`firmware_design_sel1_spd` section below.
#. CPU implementation service
......@@ -1875,10 +1875,7 @@ BL image during boot.
| MHU |
0x04000000 +----------+
Library at ROM
---------------
Please refer to the :ref:`Library at ROM` document.
.. _firmware_design_fip:
Firmware Image Package (FIP)
----------------------------
......@@ -2543,7 +2540,7 @@ Architecture Extension-specific code is included in the build. Otherwise, TF-A
targets the base Armv8.0-A architecture; i.e. as if ``ARM_ARCH_MAJOR`` == 8
and ``ARM_ARCH_MINOR`` == 0, which are also their respective default values.
See also the *Summary of build options* in :ref:`User Guide`.
.. seealso:: :ref:`Build Options`
For details on the Architecture Extension and available features, please refer
to the respective Architecture Extension Supplement.
......
......@@ -6,6 +6,7 @@ System Design
:caption: Contents
:numbered:
alt-boot-flows
auth-framework
cpu-specific-build-macros
firmware-design
......@@ -13,3 +14,8 @@ System Design
psci-pd-tree
reset-design
trusted-board-boot
trusted-board-boot-build
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
......@@ -115,8 +115,8 @@ only.
It allows the Arm FVP port to support the ``RESET_TO_BL31`` configuration, in
which case the ``bl31.bin`` image must be loaded to its run address in Trusted
SRAM and all CPU reset vectors be changed from the default ``0x0`` to this run
address. See the :ref:`User Guide` for details of running the FVP models in this
way.
address. See the :ref:`Arm Fixed Virtual Platforms (FVP)` for details of running
the FVP models in this way.
Although technically it would be possible to program the reset base address with
the right support in the SCP firmware, this is currently not implemented so the
......
Building FIP images with support for Trusted Board Boot
=======================================================
Trusted Board Boot primarily consists of the following two features:
- Image Authentication, described in :ref:`Trusted Board Boot`, and
- Firmware Update, described in :ref:`Firmware Update (FWU)`
The following steps should be followed to build FIP and (optionally) FWU_FIP
images with support for these features:
#. Fulfill the dependencies of the ``mbedtls`` cryptographic and image parser
modules by checking out a recent version of the `mbed TLS Repository`_. It
is important to use a version that is compatible with TF-A and fixes any
known security vulnerabilities. See `mbed TLS Security Center`_ for more
information. See the :ref:`Prerequisites` document for the appropriate
version of mbed TLS to use.
The ``drivers/auth/mbedtls/mbedtls_*.mk`` files contain the list of mbed TLS
source files the modules depend upon.
``include/drivers/auth/mbedtls/mbedtls_config.h`` contains the configuration
options required to build the mbed TLS sources.
Note that the mbed TLS library is licensed under the Apache version 2.0
license. Using mbed TLS source code will affect the licensing of TF-A
binaries that are built using this library.
#. To build the FIP image, ensure the following command line variables are set
while invoking ``make`` to build TF-A:
- ``MBEDTLS_DIR=<path of the directory containing mbed TLS sources>``
- ``TRUSTED_BOARD_BOOT=1``
- ``GENERATE_COT=1``
In the case of Arm platforms, the location of the ROTPK hash must also be
specified at build time. Two locations are currently supported (see
``ARM_ROTPK_LOCATION`` build option):
- ``ARM_ROTPK_LOCATION=regs``: the ROTPK hash is obtained from the Trusted
root-key storage registers present in the platform. On Juno, this
registers are read-only. On FVP Base and Cortex models, the registers
are read-only, but the value can be specified using the command line
option ``bp.trusted_key_storage.public_key`` when launching the model.
On both Juno and FVP models, the default value corresponds to an
ECDSA-SECP256R1 public key hash, whose private part is not currently
available.
- ``ARM_ROTPK_LOCATION=devel_rsa``: use the ROTPK hash that is hardcoded
in the Arm platform port. The private/public RSA key pair may be
found in ``plat/arm/board/common/rotpk``.
- ``ARM_ROTPK_LOCATION=devel_ecdsa``: use the ROTPK hash that is hardcoded
in the Arm platform port. The private/public ECDSA key pair may be
found in ``plat/arm/board/common/rotpk``.
Example of command line using RSA development keys:
.. code:: shell
MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
BL33=<path-to>/<bl33_image> \
all fip
The result of this build will be the bl1.bin and the fip.bin binaries. This
FIP will include the certificates corresponding to the Chain of Trust
described in the TBBR-client document. These certificates can also be found
in the output build directory.
#. The optional FWU_FIP contains any additional images to be loaded from
Non-Volatile storage during the :ref:`Firmware Update (FWU)` process. To build the
FWU_FIP, any FWU images required by the platform must be specified on the
command line. On Arm development platforms like Juno, these are:
- NS_BL2U. The AP non-secure Firmware Updater image.
- SCP_BL2U. The SCP Firmware Update Configuration image.
Example of Juno command line for generating both ``fwu`` and ``fwu_fip``
targets using RSA development:
::
MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
BL33=<path-to>/<bl33_image> \
SCP_BL2=<path-to>/<scp_bl2_image> \
SCP_BL2U=<path-to>/<scp_bl2u_image> \
NS_BL2U=<path-to>/<ns_bl2u_image> \
all fip fwu_fip
.. note::
The BL2U image will be built by default and added to the FWU_FIP.
The user may override this by adding ``BL2U=<path-to>/<bl2u_image>``
to the command line above.
.. note::
Building and installing the non-secure and SCP FWU images (NS_BL1U,
NS_BL2U and SCP_BL2U) is outside the scope of this document.
The result of this build will be bl1.bin, fip.bin and fwu_fip.bin binaries.
Both the FIP and FWU_FIP will include the certificates corresponding to the
Chain of Trust described in the TBBR-client document. These certificates
can also be found in the output build directory.
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
.. _mbed TLS Repository: https://github.com/ARMmbed/mbedtls.git
.. _mbed TLS Security Center: https://tls.mbed.org/security
......@@ -187,8 +187,8 @@ The next step is executed for all the boot loader images.
The Trusted Board Boot implementation spans both generic and platform-specific
BL1 and BL2 code, and in tool code on the host build machine. The feature is
enabled through use of specific build flags as described in the
:ref:`User Guide`.
enabled through use of specific build flags as described in
:ref:`Build Options`.
On the host machine, a tool generates the certificates, which are included in
the FIP along with the boot loader images. These certificates are loaded in
......@@ -222,9 +222,12 @@ passed as inputs to the ``fiptool`` utility for creating the FIP.
The certificates are also stored individually in the in the output build
directory.
The tool resides in the ``tools/cert_create`` directory. It uses OpenSSL SSL
library version 1.0.1 or later to generate the X.509 certificates. Instructions
for building and using the tool can be found in the :ref:`User Guide`.
The tool resides in the ``tools/cert_create`` directory. It uses the OpenSSL SSL
library version to generate the X.509 certificates. The specific version of the
library that is required is given in the :ref:`Prerequisites` document.
Instructions for building and using the tool can be found at
:ref:`tools_build_cert_create`.
--------------
......
User Guide
==========
This document describes how to build Trusted Firmware-A (TF-A) and run it with a
tested set of other software components using defined configurations on the Juno
Arm development platform and Arm Fixed Virtual Platform (FVP) models. It is
possible to use other software components, configurations and platforms but that
is outside the scope of this document.
This document assumes that the reader has previous experience running a fully
bootable Linux software stack on Juno or FVP using the prebuilt binaries and
filesystems provided by Linaro. Further information may be found in the
`Linaro instructions`_. It also assumes that the user understands the role of
the different software components required to boot a Linux system:
- Specific firmware images required by the platform (e.g. SCP firmware on Juno)
- Normal world bootloader (e.g. UEFI or U-Boot)
- Device tree
- Linux kernel image
- Root filesystem
This document also assumes that the user is familiar with the `FVP models`_ and
the different command line options available to launch the model.
This document should be used in conjunction with the :ref:`Firmware Design`.
Host machine requirements
-------------------------
The minimum recommended machine specification for building the software and
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM. For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
The software has been tested on Ubuntu 16.04 LTS (64-bit). Packages used for
building the software were installed from that distribution unless otherwise
specified.
The software has also been built on Windows 7 Enterprise SP1, using CMD.EXE,
Cygwin, and Msys (MinGW) shells, using version 5.3.1 of the GNU toolchain.
Tools
-----
Install the required packages to build TF-A with the following command:
.. code:: shell
sudo apt-get install device-tree-compiler build-essential gcc make git libssl-dev
Download and install the AArch32 (arm-eabi) or AArch64 little-endian
(aarch64-linux-gnu) GCC 8.3-2019.03 cross compiler from `Arm Developer page`_.
Optionally, TF-A can be built using clang version 4.0 or newer or Arm
Compiler 6. See instructions below on how to switch the default compiler.
In addition, the following optional packages and tools may be needed:
- ``device-tree-compiler`` (dtc) package if you need to rebuild the Flattened Device
Tree (FDT) source files (``.dts`` files) provided with this software. The
version of dtc must be 1.4.6 or above.
- For debugging, Arm `Development Studio 5 (DS-5)`_.
- To create and modify the diagram files included in the documentation, `Dia`_.
This tool can be found in most Linux distributions. Inkscape is needed to
generate the actual \*.png files.
TF-A has been tested with pre-built binaries and file systems from
`Linaro Release 19.06`_. Alternatively, you can build the binaries from
source using instructions provided at the `Arm Platforms User guide`_.
Getting the TF-A source code
----------------------------
Clone the repository from the Gerrit server. The project details may be found
on the `arm-trusted-firmware-a project page`_. We recommend the "`Clone with
commit-msg hook`" clone method, which will setup the git commit hook that
automatically generates and inserts appropriate `Change-Id:` lines in your
commit messages.
Checking source code style
~~~~~~~~~~~~~~~~~~~~~~~~~~
Trusted Firmware follows the `Linux Coding Style`_ . When making changes to the
source, for submission to the project, the source must be in compliance with
this style guide.
Additional, project-specific guidelines are defined in the
:ref:`Coding Style & Guidelines` document.
To assist with coding style compliance, the project Makefile contains two
targets which both utilise the `checkpatch.pl` script that ships with the Linux
source tree. The project also defines certain *checkpatch* options in the
``.checkpatch.conf`` file in the top-level directory.
.. note::
Checkpatch errors will gate upstream merging of pull requests.
Checkpatch warnings will not gate merging but should be reviewed and fixed if
possible.
To check the entire source tree, you must first download copies of
``checkpatch.pl``, ``spelling.txt`` and ``const_structs.checkpatch`` available
in the `Linux master tree`_ *scripts* directory, then set the ``CHECKPATCH``
environment variable to point to ``checkpatch.pl`` (with the other 2 files in
the same directory) and build the `checkcodebase` target:
.. code:: shell
make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
To just check the style on the files that differ between your local branch and
the remote master, use:
.. code:: shell
make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
If you wish to check your patch against something other than the remote master,
set the ``BASE_COMMIT`` variable to your desired branch. By default, ``BASE_COMMIT``
is set to ``origin/master``.
Building TF-A
-------------
- Before building TF-A, the environment variable ``CROSS_COMPILE`` must point
to the cross compiler.
For AArch64:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
For AArch32:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-eabi-
It is possible to build TF-A using Clang or Arm Compiler 6. To do so
``CC`` needs to point to the clang or armclang binary, which will
also select the clang or armclang assembler. Be aware that the
GNU linker is used by default. In case of being needed the linker
can be overridden using the ``LD`` variable. Clang linker version 6 is
known to work with TF-A.
In both cases ``CROSS_COMPILE`` should be set as described above.
Arm Compiler 6 will be selected when the base name of the path assigned
to ``CC`` matches the string 'armclang'.
For AArch64 using Arm Compiler 6:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all
Clang will be selected when the base name of the path assigned to ``CC``
contains the string 'clang'. This is to allow both clang and clang-X.Y
to work.
For AArch64 using clang:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
make CC=<path-to-clang>/bin/clang PLAT=<platform> all
- Change to the root directory of the TF-A source tree and build.
For AArch64:
.. code:: shell
make PLAT=<platform> all
For AArch32:
.. code:: shell
make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all
Notes:
- If ``PLAT`` is not specified, ``fvp`` is assumed by default. See the
`Summary of build options`_ for more information on available build
options.
- (AArch32 only) ``AARCH32_SP`` is the AArch32 EL3 Runtime Software and it
corresponds to the BL32 image. A minimal ``AARCH32_SP``, sp_min, is
provided by TF-A to demonstrate how PSCI Library can be integrated with
an AArch32 EL3 Runtime Software. Some AArch32 EL3 Runtime Software may
include other runtime services, for example Trusted OS services. A guide
to integrate PSCI library with AArch32 EL3 Runtime Software can be found
at :ref:`PSCI Library Integration guide for Armv8-A AArch32 systems`.
- (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32
image, is not compiled in by default. Refer to the
`Building the Test Secure Payload`_ section below.
- By default this produces a release version of the build. To produce a
debug version instead, refer to the "Debugging options" section below.
- The build process creates products in a ``build`` directory tree, building
the objects and binaries for each boot loader stage in separate
sub-directories. The following boot loader binary files are created
from the corresponding ELF files:
- ``build/<platform>/<build-type>/bl1.bin``
- ``build/<platform>/<build-type>/bl2.bin``
- ``build/<platform>/<build-type>/bl31.bin`` (AArch64 only)
- ``build/<platform>/<build-type>/bl32.bin`` (mandatory for AArch32)
where ``<platform>`` is the name of the chosen platform and ``<build-type>``
is either ``debug`` or ``release``. The actual number of images might differ
depending on the platform.
- Build products for a specific build variant can be removed using:
.. code:: shell
make DEBUG=<D> PLAT=<platform> clean
... where ``<D>`` is ``0`` or ``1``, as specified when building.
The build tree can be removed completely using:
.. code:: shell
make realclean
Summary of build options
~~~~~~~~~~~~~~~~~~~~~~~~
Build Options
=============
The TF-A build system supports the following build options. Unless mentioned
otherwise, these options are expected to be specified at the build command
......@@ -241,8 +8,10 @@ build system doesn't track dependency for build options. Therefore, if any of
the build options are changed from a previous build, a clean build must be
performed.
.. _build_options_common:
Common build options
^^^^^^^^^^^^^^^^^^^^
--------------------
- ``AARCH32_INSTRUCTION_SET``: Choose the AArch32 instruction set that the
compiler should use. Valid values are T32 and A32. It defaults to T32 due to
......@@ -282,12 +51,6 @@ Common build options
enable this use-case. For now, this option is only supported when BL2_AT_EL3
is set to '1'.
- ``BL2_INV_DCACHE``: This is an optional build option which control dcache
invalidation upon BL2 entry. Some platform cannot handle cache operations
during entry as the coherency unit is not yet initialized. This may cause
crashing. Leaving this option to '1' (default) will allow the operation.
This option is only relevant when BL2_AT_EL3 is set to '1'.
- ``BL31``: This is an optional build option which specifies the path to
BL31 image for the ``fip`` target. In this case, the BL31 in TF-A will not
be built.
......@@ -319,9 +82,8 @@ Common build options
- ``BRANCH_PROTECTION``: Numeric value to enable ARMv8.3 Pointer Authentication
and ARMv8.5 Branch Target Identification support for TF-A BL images themselves.
If enabled, it is needed to use a compiler (e.g GCC 9.1 and later versions) that
supports the option ``-mbranch-protection``.
Selects the branch protection features to use:
If enabled, it is needed to use a compiler that supports the option
``-mbranch-protection``. Selects the branch protection features to use:
- 0: Default value turns off all types of branch protection
- 1: Enables all types of branch protection features
- 2: Return address signing to its standard level
......@@ -385,13 +147,6 @@ Common build options
registers to be included when saving and restoring the CPU context. Default
is 0.
- ``CTX_INCLUDE_MTE_REGS``: Enables register saving/reloading support for
ARMv8.5 Memory Tagging Extension. A value of 0 will disable
saving/reloading and restrict the use of MTE to the normal world if the
CPU has support, while a value of 1 enables the saving/reloading, allowing
the use of MTE in both the secure and non-secure worlds. Default is 0
(disabled) and this feature is experimental.
- ``CTX_INCLUDE_PAUTH_REGS``: Boolean option that, when set to 1, enables
Pointer Authentication for Secure world. This will cause the ARMv8.3-PAuth
registers to be included when saving and restoring the CPU context as
......@@ -590,20 +345,10 @@ Common build options
- ``KEY_ALG``: This build flag enables the user to select the algorithm to be
used for generating the PKCS keys and subsequent signing of the certificate.
It accepts 2 values: ``rsa`` and ``ecdsa``. The default value of this flag
is ``rsa`` which is the TBBR compliant PKCS#1 RSA 2.1 scheme.
- ``KEY_SIZE``: This build flag enables the user to select the key size for
the algorithm specified by ``KEY_ALG``. The valid values for ``KEY_SIZE``
depend on the chosen algorithm.
+-----------+------------------------------------+
| KEY_ALG | Possible key sizes |
+===========+====================================+
| rsa | 1024, 2048 (default), 3072, 4096 |
+-----------+------------------------------------+
| ecdsa | unavailable |
+-----------+------------------------------------+
It accepts 3 values: ``rsa``, ``rsa_1_5`` and ``ecdsa``. The option
``rsa_1_5`` is the legacy PKCS#1 RSA 1.5 algorithm which is not TBBR
compliant and is retained only for compatibility. The default value of this
flag is ``rsa`` which is the TBBR compliant PKCS#1 RSA 2.1 scheme.
- ``HASH_ALG``: This build flag enables the user to select the secure hash
algorithm. It accepts 3 values: ``sha256``, ``sha384`` and ``sha512``.
......@@ -703,21 +448,6 @@ Common build options
file that contains the ROT private key in PEM format. If ``SAVE_KEYS=1``, this
file name will be used to save the key.
- ``SANITIZE_UB``: This option enables the Undefined Behaviour sanitizer. It
can take 3 values: 'off' (default), 'on' and 'trap'. When using 'trap',
gcc and clang will insert calls to ``__builtin_trap`` on detected
undefined behaviour, which defaults to a ``brk`` instruction. When using
'on', undefined behaviour is translated to a call to special handlers which
prints the exact location of the problem and its cause and then panics.
.. note::
Because of the space penalty of the Undefined Behaviour sanitizer,
this option will increase the size of the binary. Depending on the
memory constraints of the target platform, it may not be possible to
enable the sanitizer for all images (BL1 and BL2 are especially
likely to be memory constrained). We recommend that the
sanitizer is enabled only in debug builds.
- ``SAVE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
certificate generation tool to save the keys used to establish the Chain of
Trust. Allowed options are '0' or '1'. Default is '0' (do not save).
......@@ -743,8 +473,8 @@ Common build options
- ``SEPARATE_CODE_AND_RODATA``: Whether code and read-only data should be
isolated on separate memory pages. This is a trade-off between security and
memory usage. See "Isolating code and read-only data on separate memory
pages" section in :ref:`Firmware Design`. This flag is disabled by default
and affects all BL images.
pages" section in :ref:`Firmware Design`. This flag is disabled by default and
affects all BL images.
- ``SPD``: Choose a Secure Payload Dispatcher component to be built into TF-A.
This build option is only valid if ``ARCH=aarch64``. The value should be
......@@ -812,12 +542,8 @@ Common build options
- ``USE_ROMLIB``: This flag determines whether library at ROM will be used.
This feature creates a library of functions to be placed in ROM and thus
reduces SRAM usage. Refer to :ref:`Library at ROM` for further details.
Default is 0.
- ``USE_SPINLOCK_CAS``: Setting this build flag to 1 selects the spinlock
implementation variant using the ARMv8.1-LSE compare-and-swap instruction.
Notice this option is experimental and only available to AArch64 builds.
reduces SRAM usage. Refer to :ref:`Library at ROM` for further details. Default
is 0.
- ``V``: Verbose build. If assigned anything other than 0, the build commands
are printed. Default is 0.
......@@ -836,166 +562,8 @@ Common build options
cluster platforms). If this option is enabled, then warm boot path
enables D-caches immediately after enabling MMU. This option defaults to 0.
Arm development platform specific build options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- ``ARM_BL31_IN_DRAM``: Boolean option to select loading of BL31 in TZC secured
DRAM. By default, BL31 is in the secure SRAM. Set this flag to 1 to load
BL31 in TZC secured DRAM. If TSP is present, then setting this option also
sets the TSP location to DRAM and ignores the ``ARM_TSP_RAM_LOCATION`` build
flag.
- ``ARM_CONFIG_CNTACR``: boolean option to unlock access to the ``CNTBase<N>``
frame registers by setting the ``CNTCTLBase.CNTACR<N>`` register bits. The
frame number ``<N>`` is defined by ``PLAT_ARM_NSTIMER_FRAME_ID``, which should
match the frame used by the Non-Secure image (normally the Linux kernel).
Default is true (access to the frame is allowed).
- ``ARM_DISABLE_TRUSTED_WDOG``: boolean option to disable the Trusted Watchdog.
By default, Arm platforms use a watchdog to trigger a system reset in case
an error is encountered during the boot process (for example, when an image
could not be loaded or authenticated). The watchdog is enabled in the early
platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
Trusted Watchdog may be disabled at build time for testing or development
purposes.
- ``ARM_LINUX_KERNEL_AS_BL33``: The Linux kernel expects registers x0-x3 to
have specific values at boot. This boolean option allows the Trusted Firmware
to have a Linux kernel image as BL33 by preparing the registers to these
values before jumping to BL33. This option defaults to 0 (disabled). For
AArch64 ``RESET_TO_BL31`` and for AArch32 ``RESET_TO_SP_MIN`` must be 1 when
using it. If this option is set to 1, ``ARM_PRELOADED_DTB_BASE`` must be set
to the location of a device tree blob (DTB) already loaded in memory. The
Linux Image address must be specified using the ``PRELOADED_BL33_BASE``
option.
- ``ARM_PLAT_MT``: This flag determines whether the Arm platform layer has to
cater for the multi-threading ``MT`` bit when accessing MPIDR. When this flag
is set, the functions which deal with MPIDR assume that the ``MT`` bit in
MPIDR is set and access the bit-fields in MPIDR accordingly. Default value of
this flag is 0. Note that this option is not used on FVP platforms.
- ``ARM_RECOM_STATE_ID_ENC``: The PSCI1.0 specification recommends an encoding
for the construction of composite state-ID in the power-state parameter.
The existing PSCI clients currently do not support this encoding of
State-ID yet. Hence this flag is used to configure whether to use the
recommended State-ID encoding or not. The default value of this flag is 0,
in which case the platform is configured to expect NULL in the State-ID
field of power-state parameter.
- ``ARM_ROTPK_LOCATION``: used when ``TRUSTED_BOARD_BOOT=1``. It specifies the
location of the ROTPK hash returned by the function ``plat_get_rotpk_info()``
for Arm platforms. Depending on the selected option, the proper private key
must be specified using the ``ROT_KEY`` option when building the Trusted
Firmware. This private key will be used by the certificate generation tool
to sign the BL2 and Trusted Key certificates. Available options for
``ARM_ROTPK_LOCATION`` are:
- ``regs`` : return the ROTPK hash stored in the Trusted root-key storage
registers. The private key corresponding to this ROTPK hash is not
currently available.
- ``devel_rsa`` : return a development public key hash embedded in the BL1
and BL2 binaries. This hash has been obtained from the RSA public key
``arm_rotpk_rsa.der``, located in ``plat/arm/board/common/rotpk``. To use
this option, ``arm_rotprivk_rsa.pem`` must be specified as ``ROT_KEY`` when
creating the certificates.
- ``devel_ecdsa`` : return a development public key hash embedded in the BL1
and BL2 binaries. This hash has been obtained from the ECDSA public key
``arm_rotpk_ecdsa.der``, located in ``plat/arm/board/common/rotpk``. To use
this option, ``arm_rotprivk_ecdsa.pem`` must be specified as ``ROT_KEY``
when creating the certificates.
- ``ARM_TSP_RAM_LOCATION``: location of the TSP binary. Options:
- ``tsram`` : Trusted SRAM (default option when TBB is not enabled)
- ``tdram`` : Trusted DRAM (if available)
- ``dram`` : Secure region in DRAM (default option when TBB is enabled,
configured by the TrustZone controller)
- ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile TF-A with version 1
of the translation tables library instead of version 2. It is set to 0 by
default, which selects version 2.
- ``ARM_CRYPTOCELL_INTEG`` : bool option to enable TF-A to invoke Arm®
TrustZone® CryptoCell functionality for Trusted Board Boot on capable Arm
platforms. If this option is specified, then the path to the CryptoCell
SBROM library must be specified via ``CCSBROM_LIB_PATH`` flag.
For a better understanding of these options, the Arm development platform memory
map is explained in the :ref:`Firmware Design`.
Arm CSS platform specific build options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- ``CSS_DETECT_PRE_1_7_0_SCP``: Boolean flag to detect SCP version
incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
compatible change to the MTL protocol, used for AP/SCP communication.
TF-A no longer supports earlier SCP versions. If this option is set to 1
then TF-A will detect if an earlier version is in use. Default is 1.
- ``CSS_LOAD_SCP_IMAGES``: Boolean flag, which when set, adds SCP_BL2 and
SCP_BL2U to the FIP and FWU_FIP respectively, and enables them to be loaded
during boot. Default is 1.
- ``CSS_USE_SCMI_SDS_DRIVER``: Boolean flag which selects SCMI/SDS drivers
instead of SCPI/BOM driver for communicating with the SCP during power
management operations and for SCP RAM Firmware transfer. If this option
is set to 1, then SCMI/SDS drivers will be used. Default is 0.
Arm FVP platform specific build options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to
build the topology tree within TF-A. By default TF-A is configured for dual
cluster topology and this option can be used to override the default value.
- ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The
default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as
explained in the options below:
- ``FVP_CCI`` : The CCI driver is selected. This is the default
if 0 < ``FVP_CLUSTER_COUNT`` <= 2.
- ``FVP_CCN`` : The CCN driver is selected. This is the default
if ``FVP_CLUSTER_COUNT`` > 2.
- ``FVP_MAX_CPUS_PER_CLUSTER``: Sets the maximum number of CPUs implemented in
a single cluster. This option defaults to 4.
- ``FVP_MAX_PE_PER_CPU``: Sets the maximum number of PEs implemented on any CPU
in the system. This option defaults to 1. Note that the build option
``ARM_PLAT_MT`` doesn't have any effect on FVP platforms.
- ``FVP_USE_GIC_DRIVER`` : Selects the GIC driver to be built. Options:
- ``FVP_GIC600`` : The GIC600 implementation of GICv3 is selected
- ``FVP_GICV2`` : The GICv2 only driver is selected
- ``FVP_GICV3`` : The GICv3 only driver is selected (default option)
- ``FVP_USE_SP804_TIMER`` : Use the SP804 timer instead of the Generic Timer
for functions that wait for an arbitrary time length (udelay and mdelay).
The default value is 0.
- ``FVP_HW_CONFIG_DTS`` : Specify the path to the DTS file to be compiled
to DTB and packaged in FIP as the HW_CONFIG. See :ref:`Firmware Design` for
details on HW_CONFIG. By default, this is initialized to a sensible DTS
file in ``fdts/`` folder depending on other build options. But some cases,
like shifted affinity format for MPIDR, cannot be detected at build time
and this option is needed to specify the appropriate DTS file.
- ``FVP_HW_CONFIG`` : Specify the path to the HW_CONFIG blob to be packaged in
FIP. See :ref:`Firmware Design` for details on HW_CONFIG. This option is
similar to the ``FVP_HW_CONFIG_DTS`` option, but it directly specifies the
HW_CONFIG blob instead of the DTS file. This option is useful to override
the default HW_CONFIG selected by the build system.
ARM JUNO platform specific build options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- ``JUNO_TZMP1`` : Boolean option to configure Juno to be used for TrustZone
Media Protection (TZ-MP1). Default value of this flag is 0.
Debugging options
~~~~~~~~~~~~~~~~~
-----------------
To compile a debug version and make the build more verbose use
......@@ -1030,7 +598,7 @@ ignored as the linker is called directly.
It is also possible to introduce an infinite loop to help in debugging the
post-BL2 phase of TF-A. This can be done by rebuilding BL1 with the
``SPIN_ON_BL1_EXIT=1`` build flag. Refer to the `Summary of build options`_
``SPIN_ON_BL1_EXIT=1`` build flag. Refer to the :ref:`build_options_common`
section. In this case, the developer may take control of the target using a
debugger when indicated by the console output. When using DS-5, the following
commands can be used:
......@@ -1050,1165 +618,6 @@ commands can be used:
# Resume execution
continue
Building the Test Secure Payload
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The TSP is coupled with a companion runtime service in the BL31 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL31 image
must be recompiled as well. For more information on SPs and SPDs, see the
:ref:`Secure-EL1 Payloads and Dispatchers <firmware_design_sel1_spd>` section
in the :ref:`Firmware Design` document.
First clean the TF-A build directory to get rid of any previous BL31 binary.
Then to build the TSP image use:
.. code:: shell
make PLAT=<platform> SPD=tspd all
An additional boot loader binary file is created in the ``build`` directory:
::
build/<platform>/<build-type>/bl32.bin
Building and using the FIP tool
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Firmware Image Package (FIP) is a packaging format used by TF-A to package
firmware images in a single binary. The number and type of images that should
be packed in a FIP is platform specific and may include TF-A images and other
firmware images required by the platform. For example, most platforms require
a BL33 image which corresponds to the normal world bootloader (e.g. UEFI or
U-Boot).
The TF-A build system provides the make target ``fip`` to create a FIP file
for the specified platform using the FIP creation tool included in the TF-A
project. Examples below show how to build a FIP file for FVP, packaging TF-A
and BL33 images.
For AArch64:
.. code:: shell
make PLAT=fvp BL33=<path-to>/bl33.bin fip
For AArch32:
.. code:: shell
make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=<path-to>/bl33.bin fip
The resulting FIP may be found in:
::
build/fvp/<build-type>/fip.bin
For advanced operations on FIP files, it is also possible to independently build
the tool and create or modify FIPs using this tool. To do this, follow these
steps:
It is recommended to remove old artifacts before building the tool:
.. code:: shell
make -C tools/fiptool clean
Build the tool:
.. code:: shell
make [DEBUG=1] [V=1] fiptool
The tool binary can be located in:
::
./tools/fiptool/fiptool
Invoking the tool with ``help`` will print a help message with all available
options.
Example 1: create a new Firmware package ``fip.bin`` that contains BL2 and BL31:
.. code:: shell
./tools/fiptool/fiptool create \
--tb-fw build/<platform>/<build-type>/bl2.bin \
--soc-fw build/<platform>/<build-type>/bl31.bin \
fip.bin
Example 2: view the contents of an existing Firmware package:
.. code:: shell
./tools/fiptool/fiptool info <path-to>/fip.bin
Example 3: update the entries of an existing Firmware package:
.. code:: shell
# Change the BL2 from Debug to Release version
./tools/fiptool/fiptool update \
--tb-fw build/<platform>/release/bl2.bin \
build/<platform>/debug/fip.bin
Example 4: unpack all entries from an existing Firmware package:
.. code:: shell
# Images will be unpacked to the working directory
./tools/fiptool/fiptool unpack <path-to>/fip.bin
Example 5: remove an entry from an existing Firmware package:
.. code:: shell
./tools/fiptool/fiptool remove \
--tb-fw build/<platform>/debug/fip.bin
Note that if the destination FIP file exists, the create, update and
remove operations will automatically overwrite it.
The unpack operation will fail if the images already exist at the
destination. In that case, use -f or --force to continue.
More information about FIP can be found in the :ref:`Firmware Design` document.
Building FIP images with support for Trusted Board Boot
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Trusted Board Boot primarily consists of the following two features:
- Image Authentication, described in :ref:`Trusted Board Boot`, and
- Firmware Update, described in :ref:`Firmware Update (FWU)`
The following steps should be followed to build FIP and (optionally) FWU_FIP
images with support for these features:
#. Fulfill the dependencies of the ``mbedtls`` cryptographic and image parser
modules by checking out a recent version of the `mbed TLS Repository`_. It
is important to use a version that is compatible with TF-A and fixes any
known security vulnerabilities. See `mbed TLS Security Center`_ for more
information. The latest version of TF-A is tested with tag
``mbedtls-2.16.2``.
The ``drivers/auth/mbedtls/mbedtls_*.mk`` files contain the list of mbed TLS
source files the modules depend upon.
``include/drivers/auth/mbedtls/mbedtls_config.h`` contains the configuration
options required to build the mbed TLS sources.
Note that the mbed TLS library is licensed under the Apache version 2.0
license. Using mbed TLS source code will affect the licensing of TF-A
binaries that are built using this library.
#. To build the FIP image, ensure the following command line variables are set
while invoking ``make`` to build TF-A:
- ``MBEDTLS_DIR=<path of the directory containing mbed TLS sources>``
- ``TRUSTED_BOARD_BOOT=1``
- ``GENERATE_COT=1``
In the case of Arm platforms, the location of the ROTPK hash must also be
specified at build time. Two locations are currently supported (see
``ARM_ROTPK_LOCATION`` build option):
- ``ARM_ROTPK_LOCATION=regs``: the ROTPK hash is obtained from the Trusted
root-key storage registers present in the platform. On Juno, this
registers are read-only. On FVP Base and Cortex models, the registers
are read-only, but the value can be specified using the command line
option ``bp.trusted_key_storage.public_key`` when launching the model.
On both Juno and FVP models, the default value corresponds to an
ECDSA-SECP256R1 public key hash, whose private part is not currently
available.
- ``ARM_ROTPK_LOCATION=devel_rsa``: use the ROTPK hash that is hardcoded
in the Arm platform port. The private/public RSA key pair may be
found in ``plat/arm/board/common/rotpk``.
- ``ARM_ROTPK_LOCATION=devel_ecdsa``: use the ROTPK hash that is hardcoded
in the Arm platform port. The private/public ECDSA key pair may be
found in ``plat/arm/board/common/rotpk``.
Example of command line using RSA development keys:
.. code:: shell
MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
BL33=<path-to>/<bl33_image> \
all fip
The result of this build will be the bl1.bin and the fip.bin binaries. This
FIP will include the certificates corresponding to the Chain of Trust
described in the TBBR-client document. These certificates can also be found
in the output build directory.
#. The optional FWU_FIP contains any additional images to be loaded from
Non-Volatile storage during the :ref:`Firmware Update (FWU)` process. To
build the FWU_FIP, any FWU images required by the platform must be specified
on the command line. On Arm development platforms like Juno, these are:
- NS_BL2U. The AP non-secure Firmware Updater image.
- SCP_BL2U. The SCP Firmware Update Configuration image.
Example of Juno command line for generating both ``fwu`` and ``fwu_fip``
targets using RSA development:
::
MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
BL33=<path-to>/<bl33_image> \
SCP_BL2=<path-to>/<scp_bl2_image> \
SCP_BL2U=<path-to>/<scp_bl2u_image> \
NS_BL2U=<path-to>/<ns_bl2u_image> \
all fip fwu_fip
.. note::
The BL2U image will be built by default and added to the FWU_FIP.
The user may override this by adding ``BL2U=<path-to>/<bl2u_image>``
to the command line above.
.. note::
Building and installing the non-secure and SCP FWU images (NS_BL1U,
NS_BL2U and SCP_BL2U) is outside the scope of this document.
The result of this build will be bl1.bin, fip.bin and fwu_fip.bin binaries.
Both the FIP and FWU_FIP will include the certificates corresponding to the
Chain of Trust described in the TBBR-client document. These certificates
can also be found in the output build directory.
Building the Certificate Generation Tool
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``cert_create`` tool is built as part of the TF-A build process when the
``fip`` make target is specified and TBB is enabled (as described in the
previous section), but it can also be built separately with the following
command:
.. code:: shell
make PLAT=<platform> [DEBUG=1] [V=1] certtool
For platforms that require their own IDs in certificate files, the generic
'cert_create' tool can be built with the following command. Note that the target
platform must define its IDs within a ``platform_oid.h`` header file for the
build to succeed.
.. code:: shell
make PLAT=<platform> USE_TBBR_DEFS=0 [DEBUG=1] [V=1] certtool
``DEBUG=1`` builds the tool in debug mode. ``V=1`` makes the build process more
verbose. The following command should be used to obtain help about the tool:
.. code:: shell
./tools/cert_create/cert_create -h
Building a FIP for Juno and FVP
-------------------------------
This section provides Juno and FVP specific instructions to build Trusted
Firmware, obtain the additional required firmware, and pack it all together in
a single FIP binary. It assumes that a `Linaro Release`_ has been installed.
.. note::
Pre-built binaries for AArch32 are available from Linaro Release 16.12
onwards. Before that release, pre-built binaries are only available for
AArch64.
.. warning::
Follow the full instructions for one platform before switching to a
different one. Mixing instructions for different platforms may result in
corrupted binaries.
.. warning::
The uboot image downloaded by the Linaro workspace script does not always
match the uboot image packaged as BL33 in the corresponding fip file. It is
recommended to use the version that is packaged in the fip file using the
instructions below.
.. note::
For the FVP, the kernel FDT is packaged in FIP during build and loaded
by the firmware at runtime. See `Obtaining the Flattened Device Trees`_
section for more info on selecting the right FDT to use.
#. Clean the working directory
.. code:: shell
make realclean
#. Obtain SCP_BL2 (Juno) and BL33 (all platforms)
Use the fiptool to extract the SCP_BL2 and BL33 images from the FIP
package included in the Linaro release:
.. code:: shell
# Build the fiptool
make [DEBUG=1] [V=1] fiptool
# Unpack firmware images from Linaro FIP
./tools/fiptool/fiptool unpack <path-to-linaro-release>/[SOFTWARE]/fip.bin
The unpack operation will result in a set of binary images extracted to the
current working directory. The SCP_BL2 image corresponds to
``scp-fw.bin`` and BL33 corresponds to ``nt-fw.bin``.
.. note::
The fiptool will complain if the images to be unpacked already
exist in the current directory. If that is the case, either delete those
files or use the ``--force`` option to overwrite.
.. note::
For AArch32, the instructions below assume that nt-fw.bin is a
normal world boot loader that supports AArch32.
#. Build TF-A images and create a new FIP for FVP
.. code:: shell
# AArch64
make PLAT=fvp BL33=nt-fw.bin all fip
# AArch32
make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=nt-fw.bin all fip
#. Build TF-A images and create a new FIP for Juno
For AArch64:
Building for AArch64 on Juno simply requires the addition of ``SCP_BL2``
as a build parameter.
.. code:: shell
make PLAT=juno BL33=nt-fw.bin SCP_BL2=scp-fw.bin all fip
For AArch32:
Hardware restrictions on Juno prevent cold reset into AArch32 execution mode,
therefore BL1 and BL2 must be compiled for AArch64, and BL32 is compiled
separately for AArch32.
- Before building BL32, the environment variable ``CROSS_COMPILE`` must point
to the AArch32 cross compiler.
.. code:: shell
export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-eabi-
- Build BL32 in AArch32.
.. code:: shell
make ARCH=aarch32 PLAT=juno AARCH32_SP=sp_min \
RESET_TO_SP_MIN=1 JUNO_AARCH32_EL3_RUNTIME=1 bl32
- Save ``bl32.bin`` to a temporary location and clean the build products.
::
cp <path-to-build>/bl32.bin <path-to-temporary>
make realclean
- Before building BL1 and BL2, the environment variable ``CROSS_COMPILE``
must point to the AArch64 cross compiler.
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
- The following parameters should be used to build BL1 and BL2 in AArch64
and point to the BL32 file.
.. code:: shell
make ARCH=aarch64 PLAT=juno JUNO_AARCH32_EL3_RUNTIME=1 \
BL33=nt-fw.bin SCP_BL2=scp-fw.bin \
BL32=<path-to-temporary>/bl32.bin all fip
The resulting BL1 and FIP images may be found in:
::
# Juno
./build/juno/release/bl1.bin
./build/juno/release/fip.bin
# FVP
./build/fvp/release/bl1.bin
./build/fvp/release/fip.bin
Booting Firmware Update images
-------------------------------------
When Firmware Update (FWU) is enabled there are at least 2 new images
that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
FWU FIP.
Juno
~~~~
The new images must be programmed in flash memory by adding
an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
on the Juno SD card (where ``x`` depends on the revision of the Juno board).
Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
programming" for more information. User should ensure these do not
overlap with any other entries in the file.
::
NOR10UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
NOR10ADDRESS: 0x00400000 ;Image Flash Address [ns_bl2u_base_address]
NOR10FILE: \SOFTWARE\fwu_fip.bin ;Image File Name
NOR10LOAD: 00000000 ;Image Load Address
NOR10ENTRY: 00000000 ;Image Entry Point
NOR11UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
NOR11ADDRESS: 0x03EB8000 ;Image Flash Address [ns_bl1u_base_address]
NOR11FILE: \SOFTWARE\ns_bl1u.bin ;Image File Name
NOR11LOAD: 00000000 ;Image Load Address
The address ns_bl1u_base_address is the value of NS_BL1U_BASE - 0x8000000.
In the same way, the address ns_bl2u_base_address is the value of
NS_BL2U_BASE - 0x8000000.
FVP
~~~
The additional fip images must be loaded with:
::
--data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_address]
--data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_address]
The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
In the same way, the address ns_bl2u_base_address is the value of
NS_BL2U_BASE.
EL3 payloads alternative boot flow
----------------------------------
On a pre-production system, the ability to execute arbitrary, bare-metal code at
the highest exception level is required. It allows full, direct access to the
hardware, for example to run silicon soak tests.
Although it is possible to implement some baremetal secure firmware from
scratch, this is a complex task on some platforms, depending on the level of
configuration required to put the system in the expected state.
Rather than booting a baremetal application, a possible compromise is to boot
``EL3 payloads`` through TF-A instead. This is implemented as an alternative
boot flow, where a modified BL2 boots an EL3 payload, instead of loading the
other BL images and passing control to BL31. It reduces the complexity of
developing EL3 baremetal code by:
- putting the system into a known architectural state;
- taking care of platform secure world initialization;
- loading the SCP_BL2 image if required by the platform.
When booting an EL3 payload on Arm standard platforms, the configuration of the
TrustZone controller is simplified such that only region 0 is enabled and is
configured to permit secure access only. This gives full access to the whole
DRAM to the EL3 payload.
The system is left in the same state as when entering BL31 in the default boot
flow. In particular:
- Running in EL3;
- Current state is AArch64;
- Little-endian data access;
- All exceptions disabled;
- MMU disabled;
- Caches disabled.
Booting an EL3 payload
~~~~~~~~~~~~~~~~~~~~~~
The EL3 payload image is a standalone image and is not part of the FIP. It is
not loaded by TF-A. Therefore, there are 2 possible scenarios:
- The EL3 payload may reside in non-volatile memory (NVM) and execute in
place. In this case, booting it is just a matter of specifying the right
address in NVM through ``EL3_PAYLOAD_BASE`` when building TF-A.
- The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at
run-time.
To help in the latter scenario, the ``SPIN_ON_BL1_EXIT=1`` build option can be
used. The infinite loop that it introduces in BL1 stops execution at the right
moment for a debugger to take control of the target and load the payload (for
example, over JTAG).
It is expected that this loading method will work in most cases, as a debugger
connection is usually available in a pre-production system. The user is free to
use any other platform-specific mechanism to load the EL3 payload, though.
Booting an EL3 payload on FVP
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
the secondary CPUs holding pen to work properly. Unfortunately, its reset value
is undefined on the FVP platform and the FVP platform code doesn't clear it.
Therefore, one must modify the way the model is normally invoked in order to
clear the mailbox at start-up.
One way to do that is to create an 8-byte file containing all zero bytes using
the following command:
.. code:: shell
dd if=/dev/zero of=mailbox.dat bs=1 count=8
and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
using the following model parameters:
::
--data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs]
--data=mailbox.dat@0x04000000 [Foundation FVP]
To provide the model with the EL3 payload image, the following methods may be
used:
#. If the EL3 payload is able to execute in place, it may be programmed into
flash memory. On Base Cortex and AEM FVPs, the following model parameter
loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
used for the FIP):
::
-C bp.flashloader1.fname="<path-to>/<el3-payload>"
On Foundation FVP, there is no flash loader component and the EL3 payload
may be programmed anywhere in flash using method 3 below.
#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
command may be used to load the EL3 payload ELF image over JTAG:
::
load <path-to>/el3-payload.elf
#. The EL3 payload may be pre-loaded in volatile memory using the following
model parameters:
::
--data cluster0.cpu0="<path-to>/el3-payload>"@address [Base FVPs]
--data="<path-to>/<el3-payload>"@address [Foundation FVP]
The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
used when building TF-A.
Booting an EL3 payload on Juno
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the EL3 payload is able to execute in place, it may be programmed in flash
memory by adding an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
on the Juno SD card (where ``x`` depends on the revision of the Juno board).
Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
programming" for more information.
Alternatively, the same DS-5 command mentioned in the FVP section above can
be used to load the EL3 payload's ELF file over JTAG on Juno.
Preloaded BL33 alternative boot flow
------------------------------------
Some platforms have the ability to preload BL33 into memory instead of relying
on TF-A to load it. This may simplify packaging of the normal world code and
improve performance in a development environment. When secure world cold boot
is complete, TF-A simply jumps to a BL33 base address provided at build time.
For this option to be used, the ``PRELOADED_BL33_BASE`` build option has to be
used when compiling TF-A. For example, the following command will create a FIP
without a BL33 and prepare to jump to a BL33 image loaded at address
0x80000000:
.. code:: shell
make PRELOADED_BL33_BASE=0x80000000 PLAT=fvp all fip
Boot of a preloaded kernel image on Base FVP
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following example uses a simplified boot flow by directly jumping from the
TF-A to the Linux kernel, which will use a ramdisk as filesystem. This can be
useful if both the kernel and the device tree blob (DTB) are already present in
memory (like in FVP).
For example, if the kernel is loaded at ``0x80080000`` and the DTB is loaded at
address ``0x82000000``, the firmware can be built like this:
.. code:: shell
CROSS_COMPILE=aarch64-linux-gnu- \
make PLAT=fvp DEBUG=1 \
RESET_TO_BL31=1 \
ARM_LINUX_KERNEL_AS_BL33=1 \
PRELOADED_BL33_BASE=0x80080000 \
ARM_PRELOADED_DTB_BASE=0x82000000 \
all fip
Now, it is needed to modify the DTB so that the kernel knows the address of the
ramdisk. The following script generates a patched DTB from the provided one,
assuming that the ramdisk is loaded at address ``0x84000000``. Note that this
script assumes that the user is using a ramdisk image prepared for U-Boot, like
the ones provided by Linaro. If using a ramdisk without this header,the ``0x40``
offset in ``INITRD_START`` has to be removed.
.. code:: bash
#!/bin/bash
# Path to the input DTB
KERNEL_DTB=<path-to>/<fdt>
# Path to the output DTB
PATCHED_KERNEL_DTB=<path-to>/<patched-fdt>
# Base address of the ramdisk
INITRD_BASE=0x84000000
# Path to the ramdisk
INITRD=<path-to>/<ramdisk.img>
# Skip uboot header (64 bytes)
INITRD_START=$(printf "0x%x" $((${INITRD_BASE} + 0x40)) )
INITRD_SIZE=$(stat -Lc %s ${INITRD})
INITRD_END=$(printf "0x%x" $((${INITRD_BASE} + ${INITRD_SIZE})) )
CHOSEN_NODE=$(echo \
"/ { \
chosen { \
linux,initrd-start = <${INITRD_START}>; \
linux,initrd-end = <${INITRD_END}>; \
}; \
};")
echo $(dtc -O dts -I dtb ${KERNEL_DTB}) ${CHOSEN_NODE} | \
dtc -O dtb -o ${PATCHED_KERNEL_DTB} -
And the FVP binary can be run with the following command:
.. code:: shell
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBAR=0x04020000 \
-C cluster0.cpu1.RVBAR=0x04020000 \
-C cluster0.cpu2.RVBAR=0x04020000 \
-C cluster0.cpu3.RVBAR=0x04020000 \
-C cluster1.cpu0.RVBAR=0x04020000 \
-C cluster1.cpu1.RVBAR=0x04020000 \
-C cluster1.cpu2.RVBAR=0x04020000 \
-C cluster1.cpu3.RVBAR=0x04020000 \
--data cluster0.cpu0="<path-to>/bl31.bin"@0x04020000 \
--data cluster0.cpu0="<path-to>/<patched-fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk.img>"@0x84000000
Boot of a preloaded kernel image on Juno
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Trusted Firmware must be compiled in a similar way as for FVP explained
above. The process to load binaries to memory is the one explained in
`Booting an EL3 payload on Juno`_.
.. _user_guide_run_fvp:
Running the software on FVP
---------------------------
The latest version of the AArch64 build of TF-A has been tested on the following
Arm FVPs without shifted affinities, and that do not support threaded CPU cores
(64-bit host machine only).
.. note::
The FVP models used are Version 11.6 Build 45, unless otherwise stated.
- ``FVP_Base_AEMv8A-AEMv8A``
- ``FVP_Base_AEMv8A-AEMv8A-AEMv8A-AEMv8A-CCN502``
- ``FVP_Base_RevC-2xAEMv8A``
- ``FVP_Base_Cortex-A32x4``
- ``FVP_Base_Cortex-A35x4``
- ``FVP_Base_Cortex-A53x4``
- ``FVP_Base_Cortex-A55x4+Cortex-A75x4``
- ``FVP_Base_Cortex-A55x4``
- ``FVP_Base_Cortex-A57x1-A53x1``
- ``FVP_Base_Cortex-A57x2-A53x4``
- ``FVP_Base_Cortex-A57x4-A53x4``
- ``FVP_Base_Cortex-A57x4``
- ``FVP_Base_Cortex-A72x4-A53x4``
- ``FVP_Base_Cortex-A72x4``
- ``FVP_Base_Cortex-A73x4-A53x4``
- ``FVP_Base_Cortex-A73x4``
- ``FVP_Base_Cortex-A75x4``
- ``FVP_Base_Cortex-A76x4``
- ``FVP_Base_Cortex-A76AEx4``
- ``FVP_Base_Cortex-A76AEx8``
- ``FVP_Base_Cortex-A77x4`` (Version 11.7 build 36)
- ``FVP_Base_Neoverse-N1x4``
- ``FVP_Base_Zeusx4``
- ``FVP_CSS_SGI-575`` (Version 11.3 build 42)
- ``FVP_CSS_SGM-775`` (Version 11.3 build 42)
- ``FVP_RD_E1Edge`` (Version 11.3 build 42)
- ``FVP_RD_N1Edge``
- ``Foundation_Platform``
The latest version of the AArch32 build of TF-A has been tested on the following
Arm FVPs without shifted affinities, and that do not support threaded CPU cores
(64-bit host machine only).
- ``FVP_Base_AEMv8A-AEMv8A``
- ``FVP_Base_Cortex-A32x4``
.. note::
The ``FVP_Base_RevC-2xAEMv8A`` FVP only supports shifted affinities, which
is not compatible with legacy GIC configurations. Therefore this FVP does not
support these legacy GIC configurations.
.. note::
The build numbers quoted above are those reported by launching the FVP
with the ``--version`` parameter.
.. note::
Linaro provides a ramdisk image in prebuilt FVP configurations and full
file systems that can be downloaded separately. To run an FVP with a virtio
file system image an additional FVP configuration option
``-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>`` can be
used.
.. note::
The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an ``unhandled argument`` error in this case.
.. note::
FVPs can be launched with ``--cadi-server`` option such that a
CADI-compliant debugger (for example, Arm DS-5) can connect to and control
its execution.
.. warning::
Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202
the internal synchronisation timings changed compared to older versions of
the models. The models can be launched with ``-Q 100`` option if they are
required to match the run time characteristics of the older versions.
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from `Arm's website`_.
The Cortex-A models listed above are also available to download from
`Arm's website`_.
Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect TF-A
and normal world software behavior is provided below.
Obtaining the Flattened Device Trees
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Depending on the FVP configuration and Linux configuration used, different
FDT files are required. FDT source files for the Foundation and Base FVPs can
be found in the TF-A source directory under ``fdts/``. The Foundation FVP has
a subset of the Base FVP components. For example, the Foundation FVP lacks
CLCD and MMC support, and has only one CPU cluster.
.. note::
It is not recommended to use the FDTs built along the kernel because not
all FDTs are available from there.
The dynamic configuration capability is enabled in the firmware for FVPs.
This means that the firmware can authenticate and load the FDT if present in
FIP. A default FDT is packaged into FIP during the build based on
the build configuration. This can be overridden by using the ``FVP_HW_CONFIG``
or ``FVP_HW_CONFIG_DTS`` build options (refer to the
`Arm FVP platform specific build options`_ section for detail on the options).
- ``fvp-base-gicv2-psci.dts``
For use with models such as the Cortex-A57-A53 Base FVPs without shifted
affinities and with Base memory map configuration.
- ``fvp-base-gicv2-psci-aarch32.dts``
For use with models such as the Cortex-A32 Base FVPs without shifted
affinities and running Linux in AArch32 state with Base memory map
configuration.
- ``fvp-base-gicv3-psci.dts``
For use with models such as the Cortex-A57-A53 Base FVPs without shifted
affinities and with Base memory map configuration and Linux GICv3 support.
- ``fvp-base-gicv3-psci-1t.dts``
For use with models such as the AEMv8-RevC Base FVP with shifted affinities,
single threaded CPUs, Base memory map configuration and Linux GICv3 support.
- ``fvp-base-gicv3-psci-dynamiq.dts``
For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities,
single cluster, single threaded CPUs, Base memory map configuration and Linux
GICv3 support.
- ``fvp-base-gicv3-psci-aarch32.dts``
For use with models such as the Cortex-A32 Base FVPs without shifted
affinities and running Linux in AArch32 state with Base memory map
configuration and Linux GICv3 support.
- ``fvp-foundation-gicv2-psci.dts``
For use with Foundation FVP with Base memory map configuration.
- ``fvp-foundation-gicv3-psci.dts``
(Default) For use with Foundation FVP with Base memory map configuration
and Linux GICv3 support.
Running on the Foundation FVP with reset to BL1 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``Foundation_Platform`` parameters should be used to boot Linux with
4 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/Foundation_Platform \
--cores=4 \
--arm-v8.0 \
--secure-memory \
--visualization \
--gicv3 \
--data="<path-to>/<bl1-binary>"@0x0 \
--data="<path-to>/<FIP-binary>"@0x08000000 \
--data="<path-to>/<kernel-binary>"@0x80080000 \
--data="<path-to>/<ramdisk-binary>"@0x84000000
Notes:
- BL1 is loaded at the start of the Trusted ROM.
- The Firmware Image Package is loaded at the start of NOR FLASH0.
- The firmware loads the FDT packaged in FIP to the DRAM. The FDT load address
is specified via the ``hw_config_addr`` property in ``TB_FW_CONFIG`` for FVP.
- The default use-case for the Foundation FVP is to use the ``--gicv3`` option
and enable the GICv3 device in the model. Note that without this option,
the Foundation FVP defaults to legacy (Versatile Express) memory map which
is not supported by TF-A.
- In order for TF-A to run correctly on the Foundation FVP, the architecture
versions must match. The Foundation FVP defaults to the highest v8.x
version it supports but the default build for TF-A is for v8.0. To avoid
issues either start the Foundation FVP to use v8.0 architecture using the
``--arm-v8.0`` option, or build TF-A with an appropriate value for
``ARM_ARCH_MINOR``.
Running on the AEMv8 Base FVP with reset to BL1 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_RevC-2xAEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
.. note::
The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires
a specific DTS for all the CPUs to be loaded.
Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch32 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.CONFIG64=0 \
-C cluster0.cpu1.CONFIG64=0 \
-C cluster0.cpu2.CONFIG64=0 \
-C cluster0.cpu3.CONFIG64=0 \
-C cluster1.cpu0.CONFIG64=0 \
-C cluster1.cpu1.CONFIG64=0 \
-C cluster1.cpu2.CONFIG64=0 \
-C cluster1.cpu3.CONFIG64=0 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
boot Linux with 8 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_Cortex-A57x4-A53x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
boot Linux with 4 CPUs using the AArch32 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_Cortex-A32x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running on the AEMv8 Base FVP with reset to BL31 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_RevC-2xAEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBAR=0x04010000 \
-C cluster0.cpu1.RVBAR=0x04010000 \
-C cluster0.cpu2.RVBAR=0x04010000 \
-C cluster0.cpu3.RVBAR=0x04010000 \
-C cluster1.cpu0.RVBAR=0x04010000 \
-C cluster1.cpu1.RVBAR=0x04010000 \
-C cluster1.cpu2.RVBAR=0x04010000 \
-C cluster1.cpu3.RVBAR=0x04010000 \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Notes:
- If Position Independent Executable (PIE) support is enabled for BL31
in this config, it can be loaded at any valid address for execution.
- Since a FIP is not loaded when using BL31 as reset entrypoint, the
``--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>``
parameter is needed to load the individual bootloader images in memory.
BL32 image is only needed if BL31 has been built to expect a Secure-EL1
Payload. For the same reason, the FDT needs to be compiled from the DT source
and loaded via the ``--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000``
parameter.
- The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires a
specific DTS for all the CPUs to be loaded.
- The ``-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>`` parameter, where
X and Y are the cluster and CPU numbers respectively, is used to set the
reset vector for each core.
- Changing the default value of ``ARM_TSP_RAM_LOCATION`` will also require
changing the value of
``--data="<path-to><bl32-binary>"@<base-address-of-bl32>`` to the new value of
``BL32_BASE``.
Running on the AEMv8 Base FVP (AArch32) with reset to SP_MIN entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch32 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.CONFIG64=0 \
-C cluster0.cpu1.CONFIG64=0 \
-C cluster0.cpu2.CONFIG64=0 \
-C cluster0.cpu3.CONFIG64=0 \
-C cluster1.cpu0.CONFIG64=0 \
-C cluster1.cpu1.CONFIG64=0 \
-C cluster1.cpu2.CONFIG64=0 \
-C cluster1.cpu3.CONFIG64=0 \
-C cluster0.cpu0.RVBAR=0x04002000 \
-C cluster0.cpu1.RVBAR=0x04002000 \
-C cluster0.cpu2.RVBAR=0x04002000 \
-C cluster0.cpu3.RVBAR=0x04002000 \
-C cluster1.cpu0.RVBAR=0x04002000 \
-C cluster1.cpu1.RVBAR=0x04002000 \
-C cluster1.cpu2.RVBAR=0x04002000 \
-C cluster1.cpu3.RVBAR=0x04002000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
.. note::
The load address of ``<bl32-binary>`` depends on the value ``BL32_BASE``.
It should match the address programmed into the RVBAR register as well.
Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
boot Linux with 8 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_Cortex-A57x4-A53x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBARADDR=0x04010000 \
-C cluster0.cpu1.RVBARADDR=0x04010000 \
-C cluster0.cpu2.RVBARADDR=0x04010000 \
-C cluster0.cpu3.RVBARADDR=0x04010000 \
-C cluster1.cpu0.RVBARADDR=0x04010000 \
-C cluster1.cpu1.RVBARADDR=0x04010000 \
-C cluster1.cpu2.RVBARADDR=0x04010000 \
-C cluster1.cpu3.RVBARADDR=0x04010000 \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running on the Cortex-A32 Base FVP (AArch32) with reset to SP_MIN entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
boot Linux with 4 CPUs using the AArch32 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_Cortex-A32x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBARADDR=0x04002000 \
-C cluster0.cpu1.RVBARADDR=0x04002000 \
-C cluster0.cpu2.RVBARADDR=0x04002000 \
-C cluster0.cpu3.RVBARADDR=0x04002000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running the software on Juno
----------------------------
This version of TF-A has been tested on variants r0, r1 and r2 of Juno.
To execute the software stack on Juno, installing the latest Arm Platforms
software deliverables is recommended. Please install the deliverables by
following the `Instructions for using Linaro's deliverables on Juno`_.
Preparing TF-A images
~~~~~~~~~~~~~~~~~~~~~
After building TF-A, the files ``bl1.bin`` and ``fip.bin`` need copying to the
``SOFTWARE/`` directory of the Juno SD card.
Other Juno software information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Please visit the `Arm Platforms Portal`_ to get support and obtain any other Juno
software information. Please also refer to the `Juno Getting Started Guide`_ to
get more detailed information about the Juno Arm development platform and how to
configure it.
Testing SYSTEM SUSPEND on Juno
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend
to RAM. For more details refer to section 5.16 of `PSCI`_. To test system suspend
on Juno, at the linux shell prompt, issue the following command:
.. code:: shell
echo +10 > /sys/class/rtc/rtc0/wakealarm
echo -n mem > /sys/power/state
The Juno board should suspend to RAM and then wakeup after 10 seconds due to
wakeup interrupt from RTC.
--------------
*Copyright (c) 2013-2019, Arm Limited and Contributors. All rights reserved.*
.. _Arm Developer page: https://developer.arm.com/open-source/gnu-toolchain/gnu-a/downloads
.. _Linaro Release: http://releases.linaro.org/members/arm/platforms
.. _Linaro Release 19.06: http://releases.linaro.org/members/arm/platforms/19.06
.. _Linaro instructions: https://git.linaro.org/landing-teams/working/arm/arm-reference-platforms.git/about
.. _Arm Platforms User guide: https://git.linaro.org/landing-teams/working/arm/arm-reference-platforms.git/about/docs/user-guide.rst
.. _Instructions for using Linaro's deliverables on Juno: https://community.arm.com/dev-platforms/w/docs/303/juno
.. _Arm Platforms Portal: https://community.arm.com/dev-platforms/
.. _Development Studio 5 (DS-5): https://developer.arm.com/products/software-development-tools/ds-5-development-studio
.. _arm-trusted-firmware-a project page: https://review.trustedfirmware.org/admin/projects/TF-A/trusted-firmware-a
.. _`Linux Coding Style`: https://www.kernel.org/doc/html/latest/process/coding-style.html
.. _Linux master tree: https://github.com/torvalds/linux/tree/master/
.. _Dia: https://wiki.gnome.org/Apps/Dia/Download
.. _mbed TLS Repository: https://github.com/ARMmbed/mbedtls.git
.. _mbed TLS Security Center: https://tls.mbed.org/security
.. _Arm's website: `FVP models`_
.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms
.. _Juno Getting Started Guide: http://infocenter.arm.com/help/topic/com.arm.doc.dui0928e/DUI0928E_juno_arm_development_platform_gsg.pdf
.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
*Copyright (c) 2019, Arm Limited. All rights reserved.*
......@@ -22,6 +22,9 @@ For building a local copy of the |TF-A| documentation you will need, at minimum:
- Python 3 (3.5 or later)
- PlantUML (1.2017.15 or later)
Optionally, the `Dia`_ application can be installed if you need to edit
existing ``.dia`` diagram files, or create new ones.
You must also install the Python modules that are specified in the
``requirements.txt`` file in the root of the ``docs`` directory. These modules
can be installed using ``pip3`` (the Python Package Installer). Passing this
......@@ -33,7 +36,7 @@ that the working directory is ``docs``:
.. code:: shell
sudo apt install python3 python3-pip plantuml
sudo apt install python3 python3-pip plantuml [dia]
pip3 install [--user] -r requirements.txt
.. note::
......@@ -75,3 +78,4 @@ Output from the build process will be placed in:
.. _Sphinx: http://www.sphinx-doc.org/en/master/
.. _pip homepage: https://pip.pypa.io/en/stable/
.. _Dia: https://wiki.gnome.org/Apps/Dia
......@@ -6,9 +6,16 @@ Getting Started
:caption: Contents
:numbered:
user-guide
prerequisites
docs-build
tools-build
initial-build
build-options
image-terminology
porting-guide
psci-lib-integration-guide
rt-svc-writers-guide
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
Performing an Initial Build
===========================
- Before building TF-A, the environment variable ``CROSS_COMPILE`` must point
to the Linaro cross compiler.
For AArch64:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
For AArch32:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-eabi-
It is possible to build TF-A using Clang or Arm Compiler 6. To do so
``CC`` needs to point to the clang or armclang binary, which will
also select the clang or armclang assembler. Be aware that the
GNU linker is used by default. In case of being needed the linker
can be overridden using the ``LD`` variable. Clang linker version 6 is
known to work with TF-A.
In both cases ``CROSS_COMPILE`` should be set as described above.
Arm Compiler 6 will be selected when the base name of the path assigned
to ``CC`` matches the string 'armclang'.
For AArch64 using Arm Compiler 6:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all
Clang will be selected when the base name of the path assigned to ``CC``
contains the string 'clang'. This is to allow both clang and clang-X.Y
to work.
For AArch64 using clang:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
make CC=<path-to-clang>/bin/clang PLAT=<platform> all
- Change to the root directory of the TF-A source tree and build.
For AArch64:
.. code:: shell
make PLAT=<platform> all
For AArch32:
.. code:: shell
make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all
Notes:
- If ``PLAT`` is not specified, ``fvp`` is assumed by default. See the
:ref:`Build Options` document for more information on available build
options.
- (AArch32 only) Currently only ``PLAT=fvp`` is supported.
- (AArch32 only) ``AARCH32_SP`` is the AArch32 EL3 Runtime Software and it
corresponds to the BL32 image. A minimal ``AARCH32_SP``, sp_min, is
provided by TF-A to demonstrate how PSCI Library can be integrated with
an AArch32 EL3 Runtime Software. Some AArch32 EL3 Runtime Software may
include other runtime services, for example Trusted OS services. A guide
to integrate PSCI library with AArch32 EL3 Runtime Software can be found
at :ref:`PSCI Library Integration guide for Armv8-A AArch32 systems`.
- (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32
image, is not compiled in by default. Refer to the
:ref:`Test Secure Payload (TSP) and Dispatcher (TSPD)` document for
details on building the TSP.
- By default this produces a release version of the build. To produce a
debug version instead, refer to the "Debugging options" section below.
- The build process creates products in a ``build`` directory tree, building
the objects and binaries for each boot loader stage in separate
sub-directories. The following boot loader binary files are created
from the corresponding ELF files:
- ``build/<platform>/<build-type>/bl1.bin``
- ``build/<platform>/<build-type>/bl2.bin``
- ``build/<platform>/<build-type>/bl31.bin`` (AArch64 only)
- ``build/<platform>/<build-type>/bl32.bin`` (mandatory for AArch32)
where ``<platform>`` is the name of the chosen platform and ``<build-type>``
is either ``debug`` or ``release``. The actual number of images might differ
depending on the platform.
- Build products for a specific build variant can be removed using:
.. code:: shell
make DEBUG=<D> PLAT=<platform> clean
... where ``<D>`` is ``0`` or ``1``, as specified when building.
The build tree can be removed completely using:
.. code:: shell
make realclean
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
......@@ -23,8 +23,6 @@ Some modifications are common to all Boot Loader (BL) stages. Section 2
discusses these in detail. The subsequent sections discuss the remaining
modifications for each BL stage in detail.
This document should be read in conjunction with the TF-A :ref:`User Guide`.
Please refer to the :ref:`Platform Compatibility Policy` for the policy
regarding compatibility and deprecation of these porting interfaces.
......@@ -2387,8 +2385,8 @@ present in the platform. Arm standard platform layer supports both
`Arm Generic Interrupt Controller version 2.0 (GICv2)`_
and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
FVP can be configured to use either GICv2 or GICv3 depending on the build flag
``FVP_USE_GIC_DRIVER`` (See FVP platform specific build options in
:ref:`User Guide` for more details).
``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
details).
See also: `Interrupt Controller Abstraction APIs`__.
......@@ -2796,10 +2794,10 @@ storage access is only required by BL1 and BL2 phases and performed inside the
It is mandatory to implement at least one storage driver. For the Arm
development platforms the Firmware Image Package (FIP) driver is provided as
the default means to load data from storage (see the "Firmware Image Package"
section in the :ref:`User Guide`). The storage layer is described in the header file
``include/drivers/io/io_storage.h``. The implementation of the common library
is in ``drivers/io/io_storage.c`` and the driver files are located in
the default means to load data from storage (see :ref:`firmware_design_fip`).
The storage layer is described in the header file
``include/drivers/io/io_storage.h``. The implementation of the common library is
in ``drivers/io/io_storage.c`` and the driver files are located in
``drivers/io/``.
.. uml:: ../resources/diagrams/plantuml/io_arm_class_diagram.puml
......
Prerequisites
=============
This document describes the software requirements for building |TF-A| for
AArch32 and AArch64 target platforms.
It may possible to build |TF-A| with combinations of software packages that are
different from those listed below, however only the software described in this
document can be officially supported.
Build Host
----------
|TF-A| can be built using either a Linux or a Windows machine as the build host.
A relatively recent Linux distribution is recommended for building |TF-A|. We
have performed tests using Ubuntu 16.04 LTS (64-bit) but other distributions
should also work fine as a base, provided that the necessary tools and libraries
can be installed.
.. _prerequisites_toolchain:
Toolchain
---------
|TF-A| can be built with any of the following *cross-compiler* toolchains that
target the Armv7-A or Armv8-A architectures:
- GCC >= 8.3-2019.03 (from the `Arm Developer website`_)
- Clang >= 4.0
- Arm Compiler >= 6.0
In addition, a native compiler is required to build the supporting tools.
.. note::
The software has also been built on Windows 7 Enterprise SP1, using CMD.EXE,
Cygwin, and Msys (MinGW) shells, using version 5.3.1 of the GNU toolchain.
.. note::
For instructions on how to select the cross compiler refer to
:ref:`Performing an Initial Build`.
.. _prerequisites_software_and_libraries:
Software and Libraries
----------------------
The following tools are required to obtain and build |TF-A|:
- An appropriate toolchain (see :ref:`prerequisites_toolchain`)
- GNU Make
- Git
The following libraries must be available to build one or more components or
supporting tools:
- OpenSSL >= 1.0.1
Required to build the cert_create tool.
The following libraries are required for Trusted Board Boot support:
- mbed TLS == 2.16.2 (tag: ``mbedtls-2.16.2``)
These tools are optional:
- Device Tree Compiler (DTC) >= 1.4.6
Needed if you want to rebuild the provided Flattened Device Tree (FDT)
source files (``.dts`` files). DTC is available for Linux through the package
repositories of most distributions.
- Arm `Development Studio 5 (DS-5)`_
The standard software package used for debugging software on Arm development
platforms and |FVP| models.
Package Installation (Linux)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you are using the recommended Ubuntu distribution then you can install the
required packages with the following command:
.. code:: shell
sudo apt install build-essential git libssl-dev
The optional packages can be installed using:
.. code:: shell
sudo apt install device-tree-compiler
Supporting Files
----------------
TF-A has been tested with pre-built binaries and file systems from `Linaro
Release 19.06`_. Alternatively, you can build the binaries from source using
instructions in :ref:`Performing an Initial Build`.
.. _prerequisites_get_source:
Getting the TF-A Source
-----------------------
Source code for |TF-A| is maintained in a Git repository hosted on
TrustedFirmware.org. To clone this repository from the server, run the following
in your shell:
.. code:: shell
git clone "https://review.trustedfirmware.org/TF-A/trusted-firmware-a" && (cd "trusted-firmware-a" && mkdir -p .git/hooks && curl -Lo `git rev-parse --git-dir`/hooks/commit-msg https://review.trustedfirmware.org/tools/hooks/commit-msg; chmod +x `git rev-parse --git-dir`/hooks/commit-msg)
This will clone the Git repository also install a *commit hook* that
automatically inserts appropriate *Change-Id:* lines at the end of your
commit messages. These change IDs are required when committing changes that you
intend to push for review via our Gerrit system.
You can read more about Git hooks in the *githooks* page of the Git documentation,
available at: https://git-scm.com/docs/githooks
Alternatively, you can clone without the commit hook using:
.. code:: shell
git clone "https://review.trustedfirmware.org/TF-A/trusted-firmware-a"
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
.. _Arm Developer website: https://developer.arm.com/open-source/gnu-toolchain/gnu-a/downloads
.. _Linaro Release Notes: https://community.arm.com/dev-platforms/w/docs/226/old-release-notes
.. _Linaro instructions: https://community.arm.com/dev-platforms/w/docs/304/arm-reference-platforms-deliverables
.. _Development Studio 5 (DS-5): https://developer.arm.com/products/software-development-tools/ds-5-development-studio
.. _Linaro Release 19.06: http://releases.linaro.org/members/arm/platforms/19.06
Building Supporting Tools
=========================
Building and using the FIP tool
-------------------------------
Firmware Image Package (FIP) is a packaging format used by TF-A to package
firmware images in a single binary. The number and type of images that should
be packed in a FIP is platform specific and may include TF-A images and other
firmware images required by the platform. For example, most platforms require
a BL33 image which corresponds to the normal world bootloader (e.g. UEFI or
U-Boot).
The TF-A build system provides the make target ``fip`` to create a FIP file
for the specified platform using the FIP creation tool included in the TF-A
project. Examples below show how to build a FIP file for FVP, packaging TF-A
and BL33 images.
For AArch64:
.. code:: shell
make PLAT=fvp BL33=<path-to>/bl33.bin fip
For AArch32:
.. code:: shell
make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=<path-to>/bl33.bin fip
The resulting FIP may be found in:
::
build/fvp/<build-type>/fip.bin
For advanced operations on FIP files, it is also possible to independently build
the tool and create or modify FIPs using this tool. To do this, follow these
steps:
It is recommended to remove old artifacts before building the tool:
.. code:: shell
make -C tools/fiptool clean
Build the tool:
.. code:: shell
make [DEBUG=1] [V=1] fiptool
The tool binary can be located in:
::
./tools/fiptool/fiptool
Invoking the tool with ``help`` will print a help message with all available
options.
Example 1: create a new Firmware package ``fip.bin`` that contains BL2 and BL31:
.. code:: shell
./tools/fiptool/fiptool create \
--tb-fw build/<platform>/<build-type>/bl2.bin \
--soc-fw build/<platform>/<build-type>/bl31.bin \
fip.bin
Example 2: view the contents of an existing Firmware package:
.. code:: shell
./tools/fiptool/fiptool info <path-to>/fip.bin
Example 3: update the entries of an existing Firmware package:
.. code:: shell
# Change the BL2 from Debug to Release version
./tools/fiptool/fiptool update \
--tb-fw build/<platform>/release/bl2.bin \
build/<platform>/debug/fip.bin
Example 4: unpack all entries from an existing Firmware package:
.. code:: shell
# Images will be unpacked to the working directory
./tools/fiptool/fiptool unpack <path-to>/fip.bin
Example 5: remove an entry from an existing Firmware package:
.. code:: shell
./tools/fiptool/fiptool remove \
--tb-fw build/<platform>/debug/fip.bin
Note that if the destination FIP file exists, the create, update and
remove operations will automatically overwrite it.
The unpack operation will fail if the images already exist at the
destination. In that case, use -f or --force to continue.
More information about FIP can be found in the :ref:`Firmware Design` document.
.. _tools_build_cert_create:
Building the Certificate Generation Tool
----------------------------------------
The ``cert_create`` tool is built as part of the TF-A build process when the
``fip`` make target is specified and TBB is enabled (as described in the
previous section), but it can also be built separately with the following
command:
.. code:: shell
make PLAT=<platform> [DEBUG=1] [V=1] certtool
For platforms that require their own IDs in certificate files, the generic
'cert_create' tool can be built with the following command. Note that the target
platform must define its IDs within a ``platform_oid.h`` header file for the
build to succeed.
.. code:: shell
make PLAT=<platform> USE_TBBR_DEFS=0 [DEBUG=1] [V=1] certtool
``DEBUG=1`` builds the tool in debug mode. ``V=1`` makes the build process more
verbose. The following command should be used to obtain help about the tool:
.. code:: shell
./tools/cert_create/cert_create -h
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
......@@ -7,3 +7,8 @@ Performance & Testing
:numbered:
psci-performance-juno
tsp
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
Test Secure Payload (TSP) and Dispatcher (TSPD)
===============================================
Building the Test Secure Payload
--------------------------------
The TSP is coupled with a companion runtime service in the BL31 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL31 image
must be recompiled as well. For more information on SPs and SPDs, see the
:ref:`firmware_design_sel1_spd` section in the :ref:`Firmware Design`.
First clean the TF-A build directory to get rid of any previous BL31 binary.
Then to build the TSP image use:
.. code:: shell
make PLAT=<platform> SPD=tspd all
An additional boot loader binary file is created in the ``build`` directory:
::
build/<platform>/<build-type>/bl32.bin
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
Arm Development Platform Build Options
======================================
Arm Platform Build Options
--------------------------
- ``ARM_BL31_IN_DRAM``: Boolean option to select loading of BL31 in TZC secured
DRAM. By default, BL31 is in the secure SRAM. Set this flag to 1 to load
BL31 in TZC secured DRAM. If TSP is present, then setting this option also
sets the TSP location to DRAM and ignores the ``ARM_TSP_RAM_LOCATION`` build
flag.
- ``ARM_CONFIG_CNTACR``: boolean option to unlock access to the ``CNTBase<N>``
frame registers by setting the ``CNTCTLBase.CNTACR<N>`` register bits. The
frame number ``<N>`` is defined by ``PLAT_ARM_NSTIMER_FRAME_ID``, which
should match the frame used by the Non-Secure image (normally the Linux
kernel). Default is true (access to the frame is allowed).
- ``ARM_DISABLE_TRUSTED_WDOG``: boolean option to disable the Trusted Watchdog.
By default, Arm platforms use a watchdog to trigger a system reset in case
an error is encountered during the boot process (for example, when an image
could not be loaded or authenticated). The watchdog is enabled in the early
platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
Trusted Watchdog may be disabled at build time for testing or development
purposes.
- ``ARM_LINUX_KERNEL_AS_BL33``: The Linux kernel expects registers x0-x3 to
have specific values at boot. This boolean option allows the Trusted Firmware
to have a Linux kernel image as BL33 by preparing the registers to these
values before jumping to BL33. This option defaults to 0 (disabled). For
AArch64 ``RESET_TO_BL31`` and for AArch32 ``RESET_TO_SP_MIN`` must be 1 when
using it. If this option is set to 1, ``ARM_PRELOADED_DTB_BASE`` must be set
to the location of a device tree blob (DTB) already loaded in memory. The
Linux Image address must be specified using the ``PRELOADED_BL33_BASE``
option.
- ``ARM_PLAT_MT``: This flag determines whether the Arm platform layer has to
cater for the multi-threading ``MT`` bit when accessing MPIDR. When this flag
is set, the functions which deal with MPIDR assume that the ``MT`` bit in
MPIDR is set and access the bit-fields in MPIDR accordingly. Default value of
this flag is 0. Note that this option is not used on FVP platforms.
- ``ARM_RECOM_STATE_ID_ENC``: The PSCI1.0 specification recommends an encoding
for the construction of composite state-ID in the power-state parameter.
The existing PSCI clients currently do not support this encoding of
State-ID yet. Hence this flag is used to configure whether to use the
recommended State-ID encoding or not. The default value of this flag is 0,
in which case the platform is configured to expect NULL in the State-ID
field of power-state parameter.
- ``ARM_ROTPK_LOCATION``: used when ``TRUSTED_BOARD_BOOT=1``. It specifies the
location of the ROTPK hash returned by the function ``plat_get_rotpk_info()``
for Arm platforms. Depending on the selected option, the proper private key
must be specified using the ``ROT_KEY`` option when building the Trusted
Firmware. This private key will be used by the certificate generation tool
to sign the BL2 and Trusted Key certificates. Available options for
``ARM_ROTPK_LOCATION`` are:
- ``regs`` : return the ROTPK hash stored in the Trusted root-key storage
registers. The private key corresponding to this ROTPK hash is not
currently available.
- ``devel_rsa`` : return a development public key hash embedded in the BL1
and BL2 binaries. This hash has been obtained from the RSA public key
``arm_rotpk_rsa.der``, located in ``plat/arm/board/common/rotpk``. To use
this option, ``arm_rotprivk_rsa.pem`` must be specified as ``ROT_KEY``
when creating the certificates.
- ``devel_ecdsa`` : return a development public key hash embedded in the BL1
and BL2 binaries. This hash has been obtained from the ECDSA public key
``arm_rotpk_ecdsa.der``, located in ``plat/arm/board/common/rotpk``. To
use this option, ``arm_rotprivk_ecdsa.pem`` must be specified as
``ROT_KEY`` when creating the certificates.
- ``ARM_TSP_RAM_LOCATION``: location of the TSP binary. Options:
- ``tsram`` : Trusted SRAM (default option when TBB is not enabled)
- ``tdram`` : Trusted DRAM (if available)
- ``dram`` : Secure region in DRAM (default option when TBB is enabled,
configured by the TrustZone controller)
- ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile TF-A with version 1
of the translation tables library instead of version 2. It is set to 0 by
default, which selects version 2.
- ``ARM_CRYPTOCELL_INTEG`` : bool option to enable TF-A to invoke Arm®
TrustZone® CryptoCell functionality for Trusted Board Boot on capable Arm
platforms. If this option is specified, then the path to the CryptoCell
SBROM library must be specified via ``CCSBROM_LIB_PATH`` flag.
For a better understanding of these options, the Arm development platform memory
map is explained in the :ref:`Firmware Design`.
.. _build_options_arm_css_platform:
Arm CSS Platform-Specific Build Options
---------------------------------------
- ``CSS_DETECT_PRE_1_7_0_SCP``: Boolean flag to detect SCP version
incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
compatible change to the MTL protocol, used for AP/SCP communication.
TF-A no longer supports earlier SCP versions. If this option is set to 1
then TF-A will detect if an earlier version is in use. Default is 1.
- ``CSS_LOAD_SCP_IMAGES``: Boolean flag, which when set, adds SCP_BL2 and
SCP_BL2U to the FIP and FWU_FIP respectively, and enables them to be loaded
during boot. Default is 1.
- ``CSS_USE_SCMI_SDS_DRIVER``: Boolean flag which selects SCMI/SDS drivers
instead of SCPI/BOM driver for communicating with the SCP during power
management operations and for SCP RAM Firmware transfer. If this option
is set to 1, then SCMI/SDS drivers will be used. Default is 0.
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
......@@ -78,3 +78,7 @@ Trusted Firmware-A made using the above make commands:
-C motherboard.flashloader1.fname=<path_to_fip.bin> \
--data cluster.cpu0=<path_to_zImage>@0x80080000 \
--data cluster.cpu0=<path_to_ramdisk>@0x84000000
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
Arm Fixed Virtual Platforms (FVP)
=================================
Fixed Virtual Platform (FVP) Support
------------------------------------
This section lists the supported Arm |FVP| platforms. Please refer to the FVP
documentation for a detailed description of the model parameter options.
The latest version of the AArch64 build of TF-A has been tested on the following
Arm FVPs without shifted affinities, and that do not support threaded CPU cores
(64-bit host machine only).
.. note::
The FVP models used are Version 11.6 Build 45, unless otherwise stated.
- ``FVP_Base_AEMv8A-AEMv8A``
- ``FVP_Base_AEMv8A-AEMv8A-AEMv8A-AEMv8A-CCN502``
- ``FVP_Base_RevC-2xAEMv8A``
- ``FVP_Base_Cortex-A32x4``
- ``FVP_Base_Cortex-A35x4``
- ``FVP_Base_Cortex-A53x4``
- ``FVP_Base_Cortex-A55x4+Cortex-A75x4``
- ``FVP_Base_Cortex-A55x4``
- ``FVP_Base_Cortex-A57x1-A53x1``
- ``FVP_Base_Cortex-A57x2-A53x4``
- ``FVP_Base_Cortex-A57x4-A53x4``
- ``FVP_Base_Cortex-A57x4``
- ``FVP_Base_Cortex-A72x4-A53x4``
- ``FVP_Base_Cortex-A72x4``
- ``FVP_Base_Cortex-A73x4-A53x4``
- ``FVP_Base_Cortex-A73x4``
- ``FVP_Base_Cortex-A75x4``
- ``FVP_Base_Cortex-A76x4``
- ``FVP_Base_Cortex-A76AEx4``
- ``FVP_Base_Cortex-A76AEx8``
- ``FVP_Base_Cortex-A77x4`` (Version 11.7 build 36)
- ``FVP_Base_Neoverse-N1x4``
- ``FVP_Base_Zeusx4``
- ``FVP_CSS_SGI-575`` (Version 11.3 build 42)
- ``FVP_CSS_SGM-775`` (Version 11.3 build 42)
- ``FVP_RD_E1Edge`` (Version 11.3 build 42)
- ``FVP_RD_N1Edge``
- ``Foundation_Platform``
The latest version of the AArch32 build of TF-A has been tested on the
following Arm FVPs without shifted affinities, and that do not support threaded
CPU cores (64-bit host machine only).
- ``FVP_Base_AEMv8A-AEMv8A``
- ``FVP_Base_Cortex-A32x4``
.. note::
The ``FVP_Base_RevC-2xAEMv8A`` FVP only supports shifted affinities, which
is not compatible with legacy GIC configurations. Therefore this FVP does not
support these legacy GIC configurations.
The *Foundation* and *Base* FVPs can be downloaded free of charge. See the `Arm
FVP website`_. The Cortex-A models listed above are also available to download
from `Arm's website`_.
.. note::
The build numbers quoted above are those reported by launching the FVP
with the ``--version`` parameter.
.. note::
Linaro provides a ramdisk image in prebuilt FVP configurations and full
file systems that can be downloaded separately. To run an FVP with a virtio
file system image an additional FVP configuration option
``-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>`` can be
used.
.. note::
The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an ``unhandled argument`` error in this case.
.. note::
FVPs can be launched with ``--cadi-server`` option such that a
CADI-compliant debugger (for example, Arm DS-5) can connect to and control
its execution.
.. warning::
Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202
the internal synchronisation timings changed compared to older versions of
the models. The models can be launched with ``-Q 100`` option if they are
required to match the run time characteristics of the older versions.
All the above platforms have been tested with `Linaro Release 19.06`_.
.. _build_options_arm_fvp_platform:
Arm FVP Platform Specific Build Options
---------------------------------------
- ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to
build the topology tree within TF-A. By default TF-A is configured for dual
cluster topology and this option can be used to override the default value.
- ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The
default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as
explained in the options below:
- ``FVP_CCI`` : The CCI driver is selected. This is the default
if 0 < ``FVP_CLUSTER_COUNT`` <= 2.
- ``FVP_CCN`` : The CCN driver is selected. This is the default
if ``FVP_CLUSTER_COUNT`` > 2.
- ``FVP_MAX_CPUS_PER_CLUSTER``: Sets the maximum number of CPUs implemented in
a single cluster. This option defaults to 4.
- ``FVP_MAX_PE_PER_CPU``: Sets the maximum number of PEs implemented on any CPU
in the system. This option defaults to 1. Note that the build option
``ARM_PLAT_MT`` doesn't have any effect on FVP platforms.
- ``FVP_USE_GIC_DRIVER`` : Selects the GIC driver to be built. Options:
- ``FVP_GIC600`` : The GIC600 implementation of GICv3 is selected
- ``FVP_GICV2`` : The GICv2 only driver is selected
- ``FVP_GICV3`` : The GICv3 only driver is selected (default option)
- ``FVP_USE_SP804_TIMER`` : Use the SP804 timer instead of the Generic Timer
for functions that wait for an arbitrary time length (udelay and mdelay).
The default value is 0.
- ``FVP_HW_CONFIG_DTS`` : Specify the path to the DTS file to be compiled
to DTB and packaged in FIP as the HW_CONFIG. See :ref:`Firmware Design` for
details on HW_CONFIG. By default, this is initialized to a sensible DTS
file in ``fdts/`` folder depending on other build options. But some cases,
like shifted affinity format for MPIDR, cannot be detected at build time
and this option is needed to specify the appropriate DTS file.
- ``FVP_HW_CONFIG`` : Specify the path to the HW_CONFIG blob to be packaged in
FIP. See :ref:`Firmware Design` for details on HW_CONFIG. This option is
similar to the ``FVP_HW_CONFIG_DTS`` option, but it directly specifies the
HW_CONFIG blob instead of the DTS file. This option is useful to override
the default HW_CONFIG selected by the build system.
Booting Firmware Update images
------------------------------
When Firmware Update (FWU) is enabled there are at least 2 new images
that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
FWU FIP.
The additional fip images must be loaded with:
::
--data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_address]
--data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_address]
The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
In the same way, the address ns_bl2u_base_address is the value of
NS_BL2U_BASE.
Booting an EL3 payload
----------------------
The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
the secondary CPUs holding pen to work properly. Unfortunately, its reset value
is undefined on the FVP platform and the FVP platform code doesn't clear it.
Therefore, one must modify the way the model is normally invoked in order to
clear the mailbox at start-up.
One way to do that is to create an 8-byte file containing all zero bytes using
the following command:
.. code:: shell
dd if=/dev/zero of=mailbox.dat bs=1 count=8
and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
using the following model parameters:
::
--data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs]
--data=mailbox.dat@0x04000000 [Foundation FVP]
To provide the model with the EL3 payload image, the following methods may be
used:
#. If the EL3 payload is able to execute in place, it may be programmed into
flash memory. On Base Cortex and AEM FVPs, the following model parameter
loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
used for the FIP):
::
-C bp.flashloader1.fname="<path-to>/<el3-payload>"
On Foundation FVP, there is no flash loader component and the EL3 payload
may be programmed anywhere in flash using method 3 below.
#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
command may be used to load the EL3 payload ELF image over JTAG:
::
load <path-to>/el3-payload.elf
#. The EL3 payload may be pre-loaded in volatile memory using the following
model parameters:
::
--data cluster0.cpu0="<path-to>/el3-payload>"@address [Base FVPs]
--data="<path-to>/<el3-payload>"@address [Foundation FVP]
The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
used when building TF-A.
Booting a preloaded kernel image (Base FVP)
-------------------------------------------
The following example uses a simplified boot flow by directly jumping from the
TF-A to the Linux kernel, which will use a ramdisk as filesystem. This can be
useful if both the kernel and the device tree blob (DTB) are already present in
memory (like in FVP).
For example, if the kernel is loaded at ``0x80080000`` and the DTB is loaded at
address ``0x82000000``, the firmware can be built like this:
.. code:: shell
CROSS_COMPILE=aarch64-linux-gnu- \
make PLAT=fvp DEBUG=1 \
RESET_TO_BL31=1 \
ARM_LINUX_KERNEL_AS_BL33=1 \
PRELOADED_BL33_BASE=0x80080000 \
ARM_PRELOADED_DTB_BASE=0x82000000 \
all fip
Now, it is needed to modify the DTB so that the kernel knows the address of the
ramdisk. The following script generates a patched DTB from the provided one,
assuming that the ramdisk is loaded at address ``0x84000000``. Note that this
script assumes that the user is using a ramdisk image prepared for U-Boot, like
the ones provided by Linaro. If using a ramdisk without this header,the ``0x40``
offset in ``INITRD_START`` has to be removed.
.. code:: bash
#!/bin/bash
# Path to the input DTB
KERNEL_DTB=<path-to>/<fdt>
# Path to the output DTB
PATCHED_KERNEL_DTB=<path-to>/<patched-fdt>
# Base address of the ramdisk
INITRD_BASE=0x84000000
# Path to the ramdisk
INITRD=<path-to>/<ramdisk.img>
# Skip uboot header (64 bytes)
INITRD_START=$(printf "0x%x" $((${INITRD_BASE} + 0x40)) )
INITRD_SIZE=$(stat -Lc %s ${INITRD})
INITRD_END=$(printf "0x%x" $((${INITRD_BASE} + ${INITRD_SIZE})) )
CHOSEN_NODE=$(echo \
"/ { \
chosen { \
linux,initrd-start = <${INITRD_START}>; \
linux,initrd-end = <${INITRD_END}>; \
}; \
};")
echo $(dtc -O dts -I dtb ${KERNEL_DTB}) ${CHOSEN_NODE} | \
dtc -O dtb -o ${PATCHED_KERNEL_DTB} -
And the FVP binary can be run with the following command:
.. code:: shell
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBAR=0x04020000 \
-C cluster0.cpu1.RVBAR=0x04020000 \
-C cluster0.cpu2.RVBAR=0x04020000 \
-C cluster0.cpu3.RVBAR=0x04020000 \
-C cluster1.cpu0.RVBAR=0x04020000 \
-C cluster1.cpu1.RVBAR=0x04020000 \
-C cluster1.cpu2.RVBAR=0x04020000 \
-C cluster1.cpu3.RVBAR=0x04020000 \
--data cluster0.cpu0="<path-to>/bl31.bin"@0x04020000 \
--data cluster0.cpu0="<path-to>/<patched-fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk.img>"@0x84000000
Obtaining the Flattened Device Trees
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Depending on the FVP configuration and Linux configuration used, different
FDT files are required. FDT source files for the Foundation and Base FVPs can
be found in the TF-A source directory under ``fdts/``. The Foundation FVP has
a subset of the Base FVP components. For example, the Foundation FVP lacks
CLCD and MMC support, and has only one CPU cluster.
.. note::
It is not recommended to use the FDTs built along the kernel because not
all FDTs are available from there.
The dynamic configuration capability is enabled in the firmware for FVPs.
This means that the firmware can authenticate and load the FDT if present in
FIP. A default FDT is packaged into FIP during the build based on
the build configuration. This can be overridden by using the ``FVP_HW_CONFIG``
or ``FVP_HW_CONFIG_DTS`` build options (refer to
:ref:`build_options_arm_fvp_platform` for details on the options).
- ``fvp-base-gicv2-psci.dts``
For use with models such as the Cortex-A57-A53 Base FVPs without shifted
affinities and with Base memory map configuration.
- ``fvp-base-gicv2-psci-aarch32.dts``
For use with models such as the Cortex-A32 Base FVPs without shifted
affinities and running Linux in AArch32 state with Base memory map
configuration.
- ``fvp-base-gicv3-psci.dts``
For use with models such as the Cortex-A57-A53 Base FVPs without shifted
affinities and with Base memory map configuration and Linux GICv3 support.
- ``fvp-base-gicv3-psci-1t.dts``
For use with models such as the AEMv8-RevC Base FVP with shifted affinities,
single threaded CPUs, Base memory map configuration and Linux GICv3 support.
- ``fvp-base-gicv3-psci-dynamiq.dts``
For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities,
single cluster, single threaded CPUs, Base memory map configuration and Linux
GICv3 support.
- ``fvp-base-gicv3-psci-aarch32.dts``
For use with models such as the Cortex-A32 Base FVPs without shifted
affinities and running Linux in AArch32 state with Base memory map
configuration and Linux GICv3 support.
- ``fvp-foundation-gicv2-psci.dts``
For use with Foundation FVP with Base memory map configuration.
- ``fvp-foundation-gicv3-psci.dts``
(Default) For use with Foundation FVP with Base memory map configuration
and Linux GICv3 support.
Running on the Foundation FVP with reset to BL1 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``Foundation_Platform`` parameters should be used to boot Linux with
4 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/Foundation_Platform \
--cores=4 \
--arm-v8.0 \
--secure-memory \
--visualization \
--gicv3 \
--data="<path-to>/<bl1-binary>"@0x0 \
--data="<path-to>/<FIP-binary>"@0x08000000 \
--data="<path-to>/<kernel-binary>"@0x80080000 \
--data="<path-to>/<ramdisk-binary>"@0x84000000
Notes:
- BL1 is loaded at the start of the Trusted ROM.
- The Firmware Image Package is loaded at the start of NOR FLASH0.
- The firmware loads the FDT packaged in FIP to the DRAM. The FDT load address
is specified via the ``hw_config_addr`` property in `TB_FW_CONFIG for FVP`_.
- The default use-case for the Foundation FVP is to use the ``--gicv3`` option
and enable the GICv3 device in the model. Note that without this option,
the Foundation FVP defaults to legacy (Versatile Express) memory map which
is not supported by TF-A.
- In order for TF-A to run correctly on the Foundation FVP, the architecture
versions must match. The Foundation FVP defaults to the highest v8.x
version it supports but the default build for TF-A is for v8.0. To avoid
issues either start the Foundation FVP to use v8.0 architecture using the
``--arm-v8.0`` option, or build TF-A with an appropriate value for
``ARM_ARCH_MINOR``.
Running on the AEMv8 Base FVP with reset to BL1 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_RevC-2xAEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
.. note::
The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires
a specific DTS for all the CPUs to be loaded.
Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch32 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.CONFIG64=0 \
-C cluster0.cpu1.CONFIG64=0 \
-C cluster0.cpu2.CONFIG64=0 \
-C cluster0.cpu3.CONFIG64=0 \
-C cluster1.cpu0.CONFIG64=0 \
-C cluster1.cpu1.CONFIG64=0 \
-C cluster1.cpu2.CONFIG64=0 \
-C cluster1.cpu3.CONFIG64=0 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
boot Linux with 8 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_Cortex-A57x4-A53x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
boot Linux with 4 CPUs using the AArch32 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_Cortex-A32x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running on the AEMv8 Base FVP with reset to BL31 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_RevC-2xAEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBAR=0x04010000 \
-C cluster0.cpu1.RVBAR=0x04010000 \
-C cluster0.cpu2.RVBAR=0x04010000 \
-C cluster0.cpu3.RVBAR=0x04010000 \
-C cluster1.cpu0.RVBAR=0x04010000 \
-C cluster1.cpu1.RVBAR=0x04010000 \
-C cluster1.cpu2.RVBAR=0x04010000 \
-C cluster1.cpu3.RVBAR=0x04010000 \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Notes:
- If Position Independent Executable (PIE) support is enabled for BL31
in this config, it can be loaded at any valid address for execution.
- Since a FIP is not loaded when using BL31 as reset entrypoint, the
``--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>``
parameter is needed to load the individual bootloader images in memory.
BL32 image is only needed if BL31 has been built to expect a Secure-EL1
Payload. For the same reason, the FDT needs to be compiled from the DT source
and loaded via the ``--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000``
parameter.
- The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires a
specific DTS for all the CPUs to be loaded.
- The ``-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>`` parameter, where
X and Y are the cluster and CPU numbers respectively, is used to set the
reset vector for each core.
- Changing the default value of ``ARM_TSP_RAM_LOCATION`` will also require
changing the value of
``--data="<path-to><bl32-binary>"@<base-address-of-bl32>`` to the new value of
``BL32_BASE``.
Running on the AEMv8 Base FVP (AArch32) with reset to SP_MIN entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch32 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.CONFIG64=0 \
-C cluster0.cpu1.CONFIG64=0 \
-C cluster0.cpu2.CONFIG64=0 \
-C cluster0.cpu3.CONFIG64=0 \
-C cluster1.cpu0.CONFIG64=0 \
-C cluster1.cpu1.CONFIG64=0 \
-C cluster1.cpu2.CONFIG64=0 \
-C cluster1.cpu3.CONFIG64=0 \
-C cluster0.cpu0.RVBAR=0x04002000 \
-C cluster0.cpu1.RVBAR=0x04002000 \
-C cluster0.cpu2.RVBAR=0x04002000 \
-C cluster0.cpu3.RVBAR=0x04002000 \
-C cluster1.cpu0.RVBAR=0x04002000 \
-C cluster1.cpu1.RVBAR=0x04002000 \
-C cluster1.cpu2.RVBAR=0x04002000 \
-C cluster1.cpu3.RVBAR=0x04002000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
.. note::
The load address of ``<bl32-binary>`` depends on the value ``BL32_BASE``.
It should match the address programmed into the RVBAR register as well.
Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
boot Linux with 8 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_Cortex-A57x4-A53x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBARADDR=0x04010000 \
-C cluster0.cpu1.RVBARADDR=0x04010000 \
-C cluster0.cpu2.RVBARADDR=0x04010000 \
-C cluster0.cpu3.RVBARADDR=0x04010000 \
-C cluster1.cpu0.RVBARADDR=0x04010000 \
-C cluster1.cpu1.RVBARADDR=0x04010000 \
-C cluster1.cpu2.RVBARADDR=0x04010000 \
-C cluster1.cpu3.RVBARADDR=0x04010000 \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running on the Cortex-A32 Base FVP (AArch32) with reset to SP_MIN entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
boot Linux with 4 CPUs using the AArch32 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_Cortex-A32x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBARADDR=0x04002000 \
-C cluster0.cpu1.RVBARADDR=0x04002000 \
-C cluster0.cpu2.RVBARADDR=0x04002000 \
-C cluster0.cpu3.RVBARADDR=0x04002000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
.. _TB_FW_CONFIG for FVP: ../plat/arm/board/fvp/fdts/fvp_tb_fw_config.dts
.. _Arm's website: `FVP models`_
.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms
.. _Linaro Release 19.06: http://releases.linaro.org/members/arm/platforms/19.06
.. _Arm FVP website: https://developer.arm.com/products/system-design/fixed-virtual-platforms
Arm Development Platforms
=========================
.. toctree::
:maxdepth: 1
:caption: Contents
juno/index
fvp/index
fvp-ve/index
arm-build-options
This chapter holds documentation related to Arm's development platforms,
including both software models (FVPs) and hardware development boards
such as Juno.
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment