Unverified Commit fb45044b authored by davidcunado-arm's avatar davidcunado-arm Committed by GitHub
Browse files

Merge pull request #1312 from davidcunado-arm/dc/update_docs

Docs: Update various for v1.5 release
parents c3e34a9e 855ac025
PSCI Library Integration guide for ARMv8-A AArch32 systems
PSCI Library Integration guide for Armv8-A AArch32 systems
==========================================================
......@@ -309,4 +309,4 @@ domain nodes do not need to be identified.
--------------
*Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.*
*Copyright (c) 2017-2018, Arm Limited and Contributors. All rights reserved.*
ARM Trusted Firmware Reset Design
=================================
Trusted Firmware-A reset design
===============================
.. section-numbering::
......@@ -8,9 +8,9 @@ ARM Trusted Firmware Reset Design
.. contents::
This document describes the high-level design of the framework to handle CPU
resets in ARM Trusted Firmware. It also describes how the platform integrator
can tailor this code to the system configuration to some extent, resulting in a
simplified and more optimised boot flow.
resets in Trusted Firmware-A (TF-A). It also describes how the platform
integrator can tailor this code to the system configuration to some extent,
resulting in a simplified and more optimised boot flow.
This document should be used in conjunction with the `Firmware Design`_, which
provides greater implementation details around the reset code, specifically
......@@ -19,8 +19,8 @@ for the cold boot path.
General reset code flow
-----------------------
The ARM Trusted Firmware (TF) reset code is implemented in BL1 by default. The
following high-level diagram illustrates this:
The TF-A reset code is implemented in BL1 by default. The following high-level
diagram illustrates this:
|Default reset code flow|
......@@ -29,15 +29,15 @@ configuration, some of these steps might be unnecessary. The following sections
guide the platform integrator by indicating which build options exclude which
steps, depending on the capability of the platform.
Note: If BL31 is used as the Trusted Firmware entry point instead of BL1, the
diagram above is still relevant, as all these operations will occur in BL31 in
Note: If BL31 is used as the TF-A entry point instead of BL1, the diagram
above is still relevant, as all these operations will occur in BL31 in
this case. Please refer to section 6 "Using BL31 entrypoint as the reset
address" for more information.
Programmable CPU reset address
------------------------------
By default, the TF assumes that the CPU reset address is not programmable.
By default, TF-A assumes that the CPU reset address is not programmable.
Therefore, all CPUs start at the same address (typically address 0) whenever
they reset. Further logic is then required to identify whether it is a cold or
warm boot to direct CPUs to the right execution path.
......@@ -49,8 +49,8 @@ detection can be skipped, resulting in the following boot flow:
|Reset code flow with programmable reset address|
To enable this boot flow, compile the TF with ``PROGRAMMABLE_RESET_ADDRESS=1``.
This option only affects the TF reset image, which is BL1 by default or BL31 if
To enable this boot flow, compile TF-A with ``PROGRAMMABLE_RESET_ADDRESS=1``.
This option only affects the TF-A reset image, which is BL1 by default or BL31 if
``RESET_TO_BL31=1``.
On both the FVP and Juno platforms, the reset vector address is not programmable
......@@ -59,7 +59,7 @@ so both ports use ``PROGRAMMABLE_RESET_ADDRESS=0``.
Cold boot on a single CPU
-------------------------
By default, the TF assumes that several CPUs may be released out of reset.
By default, TF-A assumes that several CPUs may be released out of reset.
Therefore, the cold boot code has to arbitrate access to hardware resources
shared amongst CPUs. This is done by nominating one of the CPUs as the primary,
which is responsible for initialising shared hardware and coordinating the boot
......@@ -71,8 +71,8 @@ applies. This results in the following boot flow:
|Reset code flow with single CPU released out of reset|
To enable this boot flow, compile the TF with ``COLD_BOOT_SINGLE_CPU=1``. This
option only affects the TF reset image, which is BL1 by default or BL31 if
To enable this boot flow, compile TF-A with ``COLD_BOOT_SINGLE_CPU=1``. This
option only affects the TF-A reset image, which is BL1 by default or BL31 if
``RESET_TO_BL31=1``.
On both the FVP and Juno platforms, although only one core is powered up by
......@@ -89,8 +89,8 @@ This results in the following boot flow:
|Reset code flow with programmable reset address and single CPU released out of reset|
To enable this boot flow, compile the TF with both ``COLD_BOOT_SINGLE_CPU=1``
and ``PROGRAMMABLE_RESET_ADDRESS=1``. These options only affect the TF reset
To enable this boot flow, compile TF-A with both ``COLD_BOOT_SINGLE_CPU=1``
and ``PROGRAMMABLE_RESET_ADDRESS=1``. These options only affect the TF-A reset
image, which is BL1 by default or BL31 if ``RESET_TO_BL31=1``.
Using BL31 entrypoint as the reset address
......@@ -102,7 +102,7 @@ on the SoC, rather than by BL1 and BL2 running on the primary application
processor. For this type of SoC it is desirable for the application processor
to always reset to BL31 which eliminates the need for BL1 and BL2.
TF provides a build-time option ``RESET_TO_BL31`` that includes some additional
TF-A provides a build-time option ``RESET_TO_BL31`` that includes some additional
logic in the BL31 entry point to support this use case.
In this configuration, the platform's Trusted Boot Firmware must ensure that
......@@ -112,10 +112,10 @@ Additionally, platform software is responsible for loading the other BL3x images
required and providing entry point information for them to BL31. Loading these
images might be done by the Trusted Boot Firmware or by platform code in BL31.
Although the ARM FVP platform does not support programming the reset base
Although the Arm FVP platform does not support programming the reset base
address dynamically at run-time, it is possible to set the initial value of the
``RVBAR_EL3`` register at start-up. This feature is provided on the Base FVP only.
It allows the ARM FVP port to support the ``RESET_TO_BL31`` configuration, in
It allows the Arm FVP port to support the ``RESET_TO_BL31`` configuration, in
which case the ``bl31.bin`` image must be loaded to its run address in Trusted
SRAM and all CPU reset vectors be changed from the default ``0x0`` to this run
address. See the `User Guide`_ for details of running the FVP models in this way.
......@@ -155,7 +155,7 @@ This might be done by the Trusted Boot Firmware or by platform code in BL31.
--------------
*Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.*
*Copyright (c) 2015-2018, Arm Limited and Contributors. All rights reserved.*
.. _Firmware Design: firmware-design.rst
.. _User Guide: user-guide.rst
......
EL3 Runtime Service Writers Guide for ARM Trusted Firmware
==========================================================
Trusted Firmware-A EL3 runtime service writer's guide
=====================================================
.. section-numbering::
......@@ -13,7 +13,7 @@ Introduction
------------
This document describes how to add a runtime service to the EL3 Runtime
Firmware component of ARM Trusted Firmware (BL31).
Firmware component of Trusted Firmware-A (TF-A), BL31.
Software executing in the normal world and in the trusted world at exception
levels lower than EL3 will request runtime services using the Secure Monitor
......@@ -27,7 +27,7 @@ example a subset of the Function IDs are designated as "OEM Calls" (see `SMCCC`_
for full details). The EL3 runtime services framework in BL31 enables the
independent implementation of services for each group, which are then compiled
into the BL31 image. This simplifies the integration of common software from
ARM to support `PSCI`_, Secure Monitor for a Trusted OS and SoC specific
Arm to support `PSCI`_, Secure Monitor for a Trusted OS and SoC specific
software. The common runtime services framework ensures that SMC Functions are
dispatched to their respective service implementation - the `Firmware Design`_
provides details of how this is achieved.
......@@ -53,7 +53,7 @@ legacy 32-bit software that predates the `SMCCC`_.
::
Type OEN Service
Fast 0 ARM Architecture calls
Fast 0 Arm Architecture calls
Fast 1 CPU Service calls
Fast 2 SiP Service calls
Fast 3 OEM Service calls
......@@ -62,7 +62,7 @@ legacy 32-bit software that predates the `SMCCC`_.
Fast 48-49 Trusted Application calls
Fast 50-63 Trusted OS calls
Yielding 0- 1 Reserved for existing ARMv7 calls
Yielding 0- 1 Reserved for existing Armv7-A calls
Yielding 2-63 Trusted OS Standard Calls
*Table 1: Service types and their corresponding Owning Entity Numbers*
......@@ -72,7 +72,7 @@ range as they need - it is not necessary to coordinate with other entities of
the same type. For example, two SoC providers can use the same Function ID
within the SiP Service calls OEN range to mean different things - as these
calls should be specific to the SoC. The Standard Runtime Calls OEN is used for
services defined by ARM standards, such as `PSCI`_.
services defined by Arm standards, such as `PSCI`_.
The SMC Function ID also indicates whether the call has followed the SMC32
calling convention, where all parameters are 32-bit, or the SMC64 calling
......@@ -87,7 +87,7 @@ handler will be responsible for all SMC Functions within a given service type.
Getting started
---------------
ARM Trusted Firmware has a `services`_ directory in the source tree under which
TF-A has a `services`_ directory in the source tree under which
each owning entity can place the implementation of its runtime service. The
`PSCI`_ implementation is located here in the `lib/psci`_ directory.
......@@ -250,8 +250,7 @@ The handler is responsible for:
UID and Revision Details for each service documented in section 6 of the
`SMCCC`_.
The ARM Trusted Firmware expects owning entities to follow this
recommendation.
TF-A expects owning entities to follow this recommendation.
#. Returning the result to the caller. The `SMCCC`_ allows for up to 256 bits
of return value in SMC64 using X0-X3 and 128 bits in SMC32 using W0-W3. The
......@@ -286,8 +285,8 @@ service which perform independent functions.
In this situation it may be valuable to introduce a second level framework to
enable independent implementation of sub-services. Such a framework might look
very similar to the current runtime services framework, but using a different
part of the SMC Function ID to identify the sub-service. Trusted Firmware does
not provide such a framework at present.
part of the SMC Function ID to identify the sub-service. TF-A does not provide
such a framework at present.
Secure-EL1 Payload Dispatcher service (SPD)
-------------------------------------------
......@@ -304,7 +303,7 @@ provide this information....
--------------
*Copyright (c) 2014-2015, ARM Limited and Contributors. All rights reserved.*
*Copyright (c) 2014-2018, Arm Limited and Contributors. All rights reserved.*
.. _SMCCC: http://infocenter.arm.com/help/topic/com.arm.doc.den0028a/index.html
.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
......
......@@ -8,13 +8,13 @@ Software Delegated Exception Interface
.. contents::
:depth: 2
This document provides an overview of the SDEI dispatcher implementation in ARM
Trusted Firmware.
This document provides an overview of the SDEI dispatcher implementation in
Trusted Firmware-A (TF-A).
Introduction
------------
`Software Delegated Exception Interface`_ (SDEI) is an ARM specification for
`Software Delegated Exception Interface`_ (SDEI) is an Arm specification for
Non-secure world to register handlers with firmware to receive notifications
about system events. Firmware will first receive the system events by way of
asynchronous exceptions and, in response, arranges for the registered handler to
......@@ -52,8 +52,8 @@ SDEI events can be explicitly dispatched in response to other asynchronous
exceptions. See `Explicit dispatch of events`_.
The remainder of this document only discusses the design and implementation of
SDEI dispatcher in ARM Trusted Firmware, and assumes that the reader is familiar
with the SDEI specification, the interfaces, and their requirements.
SDEI dispatcher in TF-A, and assumes that the reader is familiar with the SDEI
specification, the interfaces, and their requirements.
.. [#std-event] Except event 0, which is defined by the SDEI specification as a
standard event.
......@@ -314,7 +314,7 @@ Note on writing SDEI event handlers
-----------------------------------
*This section pertains to SDEI event handlers in general, not just when using
ARM Trusted Firmware SDEI dispatcher.*
the TF-A SDEI dispatcher.*
The SDEI specification requires that event handlers preserve the contents of all
registers except ``x0`` to ``x17``. This has significance if event handler is
......@@ -364,7 +364,7 @@ implemented in assembly, following a similar pattern as below:
----
*Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.*
*Copyright (c) 2017-2018, Arm Limited and Contributors. All rights reserved.*
.. _SDEI specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf
.. _SDEI porting requirements: porting-guide.rst#sdei-porting-requirements
......@@ -18,8 +18,8 @@ used by Non-secure world applications to access these services. A Trusted OS
fulfils the requirements of a security service as described above.
Management services are typically implemented at the highest level of privilege
in the system (i.e. EL3 in Arm Trusted Firmware). The service requirements are
fulfilled by the execution environment provided by Arm Trusted Firmware.
in the system, i.e. EL3 in Trusted Firmware-A (TF-A). The service requirements are
fulfilled by the execution environment provided by TF-A.
The following diagram illustrates the corresponding software stack:
......@@ -41,10 +41,10 @@ Introduction
A **Secure Partition** is a software execution environment instantiated in
S-EL0 that can be used to implement simple management and security services.
Since S-EL0 is an unprivileged Exception Level, a Secure Partition relies on
privileged firmware (i.e. Arm Trusted Firmware) to be granted access to system
and processor resources. Essentially, it is a software sandbox in the Secure
world that runs under the control of privileged software, provides one or more
services and accesses the following system resources:
privileged firmware (i.e. TF-A) to be granted access to system and processor
resources. Essentially, it is a software sandbox in the Secure world that runs
under the control of privileged software, provides one or more services and
accesses the following system resources:
- Memory and device regions in the system address map.
......@@ -52,25 +52,24 @@ services and accesses the following system resources:
- A range of synchronous exceptions (e.g. SMC function identifiers).
Note that currently the Arm Trusted Firmware only supports handling one Secure
Partition.
Note that currently TF-A only supports handling one Secure Partition.
A Secure Partition enables Arm Trusted Firmware to implement only the essential
secure services in EL3 and instantiate the rest in a partition in S-EL0.
A Secure Partition enables TF-A to implement only the essential secure
services in EL3 and instantiate the rest in a partition in S-EL0.
Furthermore, multiple Secure Partitions can be used to isolate unrelated
services from each other.
The following diagram illustrates the place of a Secure Partition in a typical
ARMv8-A software stack. A single or multiple Secure Partitions provide secure
Armv8-A software stack. A single or multiple Secure Partitions provide secure
services to software components in the Non-secure world and other Secure
Partitions.
|Image 2|
The Arm Trusted Firmware build system is responsible for including the Secure
Partition image in the FIP. During boot, BL2 includes support to authenticate
and load the Secure Partition image. A BL31 component called **Secure Partition
Manager (SPM)** is responsible for managing the partition. This is semantically
The TF-A build system is responsible for including the Secure Partition image
in the FIP. During boot, BL2 includes support to authenticate and load the
Secure Partition image. A BL31 component called **Secure Partition Manager
(SPM)** is responsible for managing the partition. This is semantically
similar to a hypervisor managing a virtual machine.
The SPM is responsible for the following actions during boot:
......@@ -105,8 +104,8 @@ made in the current implementation of this software architecture. Subsequent
revisions of the implementation will include a richer set of features that
enable a more flexible architecture.
Building Arm Trusted Firmware with Secure Partition support
-----------------------------------------------------------
Building TF-A with Secure Partition support
-------------------------------------------
SPM is supported on the Arm FVP exclusively at the moment. The current
implementation supports inclusion of only a single Secure Partition in which a
......@@ -125,7 +124,7 @@ the UEFI specification (see the PI v1.6 Volume 4: Management Mode Core
Interface). This will be referred to as the *Standalone MM Secure Partition* in
the rest of this document.
To enable SPM support in the TF, the source code must be compiled with the build
To enable SPM support in TF-A, the source code must be compiled with the build
flag ``ENABLE_SPM=1``. On Arm platforms the build option ``ARM_BL31_IN_DRAM``
can be used to select the location of BL31, both SRAM and DRAM are supported.
Also, the location of the binary that contains the BL32 image
......@@ -134,7 +133,7 @@ Also, the location of the binary that contains the BL32 image
First, build the Standalone MM Secure Partition. To build it, refer to the
`instructions in the EDK2 repository`_.
Then build TF with SPM support and include the Standalone MM Secure Partition
Then build TF-A with SPM support and include the Standalone MM Secure Partition
image in the FIP:
::
......@@ -145,10 +144,10 @@ image in the FIP:
Describing Secure Partition resources
-------------------------------------
Arm Trusted Firmware exports a porting interface that enables a platform to
specify the system resources required by the Secure Partition. Some instructions
are given below. However, this interface is under development and it may change
as new features are implemented.
TF-A exports a porting interface that enables a platform to specify the system
resources required by the Secure Partition. Some instructions are given below.
However, this interface is under development and it may change as new features
are implemented.
- A Secure Partition is considered a BL32 image, so the same defines that apply
to BL32 images apply to a Secure Partition: ``BL32_BASE`` and ``BL32_LIMIT``.
......@@ -176,9 +175,9 @@ For an example of all the changes in context, you may refer to commit
Accessing Secure Partition services
-----------------------------------
The `SMC Calling Convention`_ (*ARM DEN 0028B*) describes SMCs as a conduit for
The `SMC Calling Convention`_ (*Arm DEN 0028B*) describes SMCs as a conduit for
accessing services implemented in the Secure world. The ``MM_COMMUNICATE``
interface defined in the `Management Mode Interface Specification`_ (*ARM DEN
interface defined in the `Management Mode Interface Specification`_ (*Arm DEN
0060A*) is used to invoke a Secure Partition service as a Fast Call.
The mechanism used to identify a service within the partition depends on the
......@@ -208,11 +207,11 @@ e.g. ACPI table or device tree. It is possible for the Non-secure world to
exchange data with a partition only if it has been populated in this shared
memory area. The shared memory area is implemented as per the guidelines
specified in Section 3.2.3 of the `Management Mode Interface Specification`_
(*ARM DEN 0060A*).
(*Arm DEN 0060A*).
The format of data structures used to encapsulate data in the shared memory is
agreed between the Non-secure world and the Secure Partition. For example, in
the `Management Mode Interface specification`_ (*ARM DEN 0060A*), Section 4
the `Management Mode Interface specification`_ (*Arm DEN 0060A*), Section 4
describes that the communication buffer shared between the Non-secure world and
the Management Mode (MM) in the Secure world must be of the type
``EFI_MM_COMMUNICATE_HEADER``. This data structure is defined in *Volume 4:
......@@ -246,7 +245,7 @@ interfaces are not accessible from the Non-secure world.
Conduit
^^^^^^^
The `SMC Calling Convention`_ (*ARM DEN 0028B*) specification describes the SMC
The `SMC Calling Convention`_ (*Arm DEN 0028B*) specification describes the SMC
and HVC conduits for accessing firmware services and their availability
depending on the implemented Exception levels. In S-EL0, the Supervisor Call
exception (SVC) is the only architectural mechanism available for unprivileged
......@@ -254,16 +253,16 @@ software to make a request for an operation implemented in privileged software.
Hence, the SVC conduit must be used by the Secure Partition to access interfaces
implemented by the SPM.
A SVC causes an exception to be taken to S-EL1. Arm Trusted Firmware assumes
ownership of S-EL1 and installs a simple exception vector table in S-EL1 that
relays a SVC request from a Secure Partition as a SMC request to the SPM in EL3.
Upon servicing the SMC request, Arm Trusted Firmware returns control directly to
S-EL0 through an ERET instruction.
A SVC causes an exception to be taken to S-EL1. TF-A assumes ownership of S-EL1
and installs a simple exception vector table in S-EL1 that relays a SVC request
from a Secure Partition as a SMC request to the SPM in EL3. Upon servicing the
SMC request, Arm Trusted Firmware returns control directly to S-EL0 through an
ERET instruction.
Calling conventions
^^^^^^^^^^^^^^^^^^^
The `SMC Calling Convention`_ (*ARM DEN 0028B*) specification describes the
The `SMC Calling Convention`_ (*Arm DEN 0028B*) specification describes the
32-bit and 64-bit calling conventions for the SMC and HVC conduits. The SVC
conduit introduces the concept of SVC32 and SVC64 calling conventions. The SVC32
and SVC64 calling conventions are equivalent to the 32-bit (SMC32) and the
......@@ -285,8 +284,8 @@ Communication initiated by Secure Partition
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A request is initiated from the Secure Partition by executing a SVC instruction.
An ERET instruction is used by Arm Trusted Firmware to return to S-EL0 with the
result of the request.
An ERET instruction is used by TF-A to return to S-EL0 with the result of the
request.
For instance, a request to perform privileged operations on behalf of a
partition (e.g. management of memory attributes in the translation tables for
......@@ -296,7 +295,7 @@ Interfaces
^^^^^^^^^^
The current implementation reserves function IDs for Fast Calls in the Standard
Secure Service calls range (see `SMC Calling Convention`_ (*ARM DEN 0028B*)
Secure Service calls range (see `SMC Calling Convention`_ (*Arm DEN 0028B*)
specification) for each API exported by the SPM. This section defines the
function prototypes for each function ID. The function IDs specify whether one
or both of the SVC32 and SVC64 calling conventions can be used to invoke the
......@@ -461,7 +460,7 @@ This transition into S-EL0 is special since it is not in response to a previous
request through a SVC instruction. This is the first entry into S-EL0. The
general purpose register usage at the time of entry will be as specified in the
"Return State" column of Table 3-1 in Section 3.1 "Register use in AArch64 SMC
calls" of the `SMC Calling Convention`_ (*ARM DEN 0028B*) specification. In
calls" of the `SMC Calling Convention`_ (*Arm DEN 0028B*) specification. In
addition, certain other restrictions will be applied as described below.
1. ``SP_EL0``
......@@ -601,7 +600,7 @@ address map from a Secure Partition. This is done by mapping these regions in
the Secure EL1&0 Translation regime with appropriate memory attributes.
Attributes refer to memory type, permission, cacheability and shareability
attributes used in the Translation tables. The definitions of these attributes
and their usage can be found in the `ARMv8 ARM`_ (*ARM DDI 0487*).
and their usage can be found in the `Armv8-A ARM`_ (*Arm DDI 0487*).
All memory required by the Secure Partition is allocated upfront in the SPM,
even before handing over to the Secure Partition for the first time. The initial
......@@ -813,9 +812,9 @@ Error Codes
--------------
*Copyright (c) 2017, Arm Limited and Contributors. All rights reserved.*
*Copyright (c) 2017-2018, Arm Limited and Contributors. All rights reserved.*
.. _ARMv8 ARM: https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
.. _Armv8-A ARM: https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
.. _instructions in the EDK2 repository: https://github.com/tianocore/edk2-staging/blob/AArch64StandaloneMm/HowtoBuild.MD
.. _Management Mode Interface Specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0060a/DEN0060A_ARM_MM_Interface_Specification.pdf
.. _SDEI Specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf
......
......@@ -8,7 +8,7 @@ To build and execute OP-TEE follow the instructions at
--------------
*Copyright (c) 2014-2017, ARM Limited and Contributors. All rights reserved.*
*Copyright (c) 2014-2018, Arm Limited and Contributors. All rights reserved.*
.. _OP-TEE OS: https://github.com/OP-TEE/build
.. _OP-TEE build.git: https://github.com/OP-TEE/build
Trusted Little Kernel (TLK) Dispatcher
======================================
TLK dispatcher adds support for NVIDIA's Trusted Little Kernel (TLK) to work
with the Trusted Firmware. TLK-D can be compiled by including it in the
platform's makefile. TLK is primarily meant to work with Tegra SoCs, so until
Trusted Firmware starts supporting Tegra, the dispatcher code can only be
TLK dispatcher (TLK-D) adds support for NVIDIA's Trusted Little Kernel (TLK)
to work with Trusted Firmware-A (TF-A). TLK-D can be compiled by including it
in the platform's makefile. TLK is primarily meant to work with Tegra SoCs,
so while TF-A only supports TLK on Tegra, the dispatcher code can only be
compiled for other platforms.
In order to compile TLK-D, we need a BL32 image to be present. Since, TLKD
......@@ -20,7 +20,7 @@ Trusted Little Kernel (TLK)
TLK is a Trusted OS running as Secure EL1. It is a Free Open Source Software
(FOSS) release of the NVIDIA® Trusted Little Kernel (TLK) technology, which
extends technology made available with the development of the Little Kernel (LK).
You can download the LK modular embedded preemptive kernel for use on ARM,
You can download the LK modular embedded preemptive kernel for use on Arm,
x86, and AVR32 systems from https://github.com/travisg/lk
NVIDIA implemented its Trusted Little Kernel (TLK) technology, designed as a
......@@ -72,5 +72,5 @@ Example:
::
bl32_ep_info->args.arg0 = TZDRAM size available for BL32
bl32_ep_info->args.arg1 = unused (used only on ARMv7)
bl32_ep_info->args.arg1 = unused (used only on Armv7-A)
bl32_ep_info->args.arg2 = pointer to boot args
......@@ -28,5 +28,5 @@ should then be set to the size of that block.
Supported platforms
===================
Out of all the platforms supported by the ARM Trusted Firmware, Trusty is
Out of all the platforms supported by Trusted Firmware-A, Trusty is only
verified and supported by NVIDIA's Tegra SoCs.
......@@ -12,16 +12,16 @@ the platform by authenticating all firmware images up to and including the
normal world bootloader. It does this by establishing a Chain of Trust using
Public-Key-Cryptography Standards (PKCS).
This document describes the design of ARM Trusted Firmware TBB, which is an
implementation of the Trusted Board Boot Requirements (TBBR) specification,
ARM DEN0006C-1. It should be used in conjunction with the `Firmware Update`_
This document describes the design of Trusted Firmware-A (TF-A) TBB, which is
an implementation of the Trusted Board Boot Requirements (TBBR) specification,
Arm DEN0006C-1. It should be used in conjunction with the `Firmware Update`_
design document, which implements a specific aspect of the TBBR.
Chain of Trust
--------------
A Chain of Trust (CoT) starts with a set of implicitly trusted components. On
the ARM development platforms, these components are:
the Arm development platforms, these components are:
- A SHA-256 hash of the Root of Trust Public Key (ROTPK). It is stored in the
trusted root-key storage registers.
......@@ -39,7 +39,7 @@ Certificate Authority (CA) because the CoT is not established by verifying the
validity of a certificate's issuer but by the content of the certificate
extensions. To sign the certificates, the PKCS#1 SHA-256 with RSA Encryption
signature scheme is used with a RSA key length of 2048 bits. Future version of
Trusted Firmware will support additional cryptographic algorithms.
TF-A will support additional cryptographic algorithms.
The certificates are categorised as "Key" and "Content" certificates. Key
certificates are used to verify public keys which have been used to sign content
......@@ -148,7 +148,7 @@ if any of the steps fail.
registers. If they match, the BL2 hash is read from the certificate.
Note: the matching operation is platform specific and is currently
unimplemented on the ARM development platforms.
unimplemented on the Arm development platforms.
- BL1 loads the BL2 image. Its hash is calculated and compared with the hash
read from the certificate. Control is transferred to the BL2 image if all
......@@ -196,7 +196,7 @@ enabled through use of specific build flags as described in the `User Guide`_.
On the host machine, a tool generates the certificates, which are included in
the FIP along with the boot loader images. These certificates are loaded in
Trusted SRAM using the IO storage framework. They are then verified by an
Authentication module included in the Trusted Firmware.
Authentication module included in TF-A.
The mechanism used for generating the FIP and the Authentication module are
described in the following sections.
......@@ -204,9 +204,9 @@ described in the following sections.
Authentication Framework
------------------------
The authentication framework included in the Trusted Firmware provides support
to implement the desired trusted boot sequence. ARM platforms use this framework
to implement the boot requirements specified in the TBBR-client document.
The authentication framework included in TF-A provides support to implement
the desired trusted boot sequence. Arm platforms use this framework to
implement the boot requirements specified in the TBBR-client document.
More information about the authentication framework can be found in the
`Auth Framework`_ document.
......@@ -215,8 +215,8 @@ Certificate Generation Tool
---------------------------
The ``cert_create`` tool is built and runs on the host machine as part of the
Trusted Firmware build process when ``GENERATE_COT=1``. It takes the boot loader
images and keys as inputs (keys must be in PEM format) and generates the
TF-A build process when ``GENERATE_COT=1``. It takes the boot loader images
and keys as inputs (keys must be in PEM format) and generates the
certificates (in DER format) required to establish the CoT. New keys can be
generated by the tool in case they are not provided. The certificates are then
passed as inputs to the ``fiptool`` utility for creating the FIP.
......@@ -230,7 +230,7 @@ for building and using the tool can be found in the `User Guide`_.
--------------
*Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.*
*Copyright (c) 2015-2018, Arm Limited and Contributors. All rights reserved.*
.. _Firmware Update: firmware-update.rst
.. _X.509 v3: http://www.ietf.org/rfc/rfc5280.txt
......
ARM Trusted Firmware User Guide
===============================
Trusted Firmware-A User Guide
=============================
.. section-numbering::
......@@ -7,9 +7,9 @@ ARM Trusted Firmware User Guide
.. contents::
This document describes how to build ARM Trusted Firmware (TF) and run it with a
This document describes how to build Trusted Firmware-A (TF-A) and run it with a
tested set of other software components using defined configurations on the Juno
ARM development platform and ARM Fixed Virtual Platform (FVP) models. It is
Arm development platform and Arm Fixed Virtual Platform (FVP) models. It is
possible to use other software components, configurations and platforms but that
is outside the scope of this document.
......@@ -48,14 +48,13 @@ Cygwin, and Msys (MinGW) shells, using version 5.3.1 of the GNU toolchain.
Tools
-----
Install the required packages to build Trusted Firmware with the following
command:
Install the required packages to build TF-A with the following command:
::
sudo apt-get install build-essential gcc make git libssl-dev
ARM TF has been tested with `Linaro Release 17.10`_.
TF-A has been tested with `Linaro Release 17.10`_.
Download and install the AArch32 or AArch64 little-endian GCC cross compiler.
The `Linaro Release Notes`_ documents which version of the compiler to use for a
......@@ -63,7 +62,7 @@ given Linaro Release. Also, these `Linaro instructions`_ provide further
guidance and a script, which can be used to download Linaro deliverables
automatically.
Optionally, Trusted Firmware can be built using clang or ARM Compiler 6.
Optionally, TF-A can be built using clang or Arm Compiler 6.
See instructions below on how to switch the default compiler.
In addition, the following optional packages and tools may be needed:
......@@ -71,26 +70,26 @@ In addition, the following optional packages and tools may be needed:
- ``device-tree-compiler`` package if you need to rebuild the Flattened Device
Tree (FDT) source files (``.dts`` files) provided with this software.
- For debugging, ARM `Development Studio 5 (DS-5)`_.
- For debugging, Arm `Development Studio 5 (DS-5)`_.
- To create and modify the diagram files included in the documentation, `Dia`_.
This tool can be found in most Linux distributions. Inkscape is needed to
generate the actual *.png files.
Getting the Trusted Firmware source code
----------------------------------------
Getting the TF-A source code
----------------------------
Download the Trusted Firmware source code from Github:
Download the TF-A source code from Github:
::
git clone https://github.com/ARM-software/arm-trusted-firmware.git
Building the Trusted Firmware
-----------------------------
Building TF-A
-------------
- Before building Trusted Firmware, the environment variable ``CROSS_COMPILE``
must point to the Linaro cross compiler.
- Before building TF-A, the environment variable ``CROSS_COMPILE`` must point
to the Linaro cross compiler.
For AArch64:
......@@ -104,15 +103,15 @@ Building the Trusted Firmware
export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
It is possible to build Trusted Firmware using clang or ARM Compiler 6.
To do so ``CC`` needs to point to the clang or armclang binary. Only the
compiler is switched; the assembler and linker need to be provided by
the GNU toolchain, thus ``CROSS_COMPILE`` should be set as described above.
It is possible to build TF-A using clang or Arm Compiler 6. To do so
``CC`` needs to point to the clang or armclang binary. Only the compiler
is switched; the assembler and linker need to be provided by the GNU
toolchain, thus ``CROSS_COMPILE`` should be set as described above.
ARM Compiler 6 will be selected when the base name of the path assigned
Arm Compiler 6 will be selected when the base name of the path assigned
to ``CC`` matches the string 'armclang'.
For AArch64 using ARM Compiler 6:
For AArch64 using Arm Compiler 6:
::
......@@ -130,7 +129,7 @@ Building the Trusted Firmware
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
make CC=<path-to-clang>/bin/clang PLAT=<platform> all
- Change to the root directory of the Trusted Firmware source tree and build.
- Change to the root directory of the TF-A source tree and build.
For AArch64:
......@@ -154,11 +153,11 @@ Building the Trusted Firmware
- (AArch32 only) ``AARCH32_SP`` is the AArch32 EL3 Runtime Software and it
corresponds to the BL32 image. A minimal ``AARCH32_SP``, sp\_min, is
provided by ARM Trusted Firmware to demonstrate how PSCI Library can
be integrated with an AArch32 EL3 Runtime Software. Some AArch32 EL3
Runtime Software may include other runtime services, for example
Trusted OS services. A guide to integrate PSCI library with AArch32
EL3 Runtime Software can be found `here`_.
provided by TF-A to demonstrate how PSCI Library can be integrated with
an AArch32 EL3 Runtime Software. Some AArch32 EL3 Runtime Software may
include other runtime services, for example Trusted OS services. A guide
to integrate PSCI library with AArch32 EL3 Runtime Software can be found
`here`_.
- (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32
image, is not compiled in by default. Refer to the
......@@ -198,11 +197,11 @@ Building the Trusted Firmware
Summary of build options
~~~~~~~~~~~~~~~~~~~~~~~~
ARM Trusted Firmware build system supports the following build options. Unless
mentioned otherwise, these options are expected to be specified at the build
command line and are not to be modified in any component makefiles. Note that
the build system doesn't track dependency for build options. Therefore, if any
of the build options are changed from a previous build, a clean build must be
The TF-A build system supports the following build options. Unless mentioned
otherwise, these options are expected to be specified at the build command
line and are not to be modified in any component makefiles. Note that the
build system doesn't track dependency for build options. Therefore, if any of
the build options are changed from a previous build, a clean build must be
performed.
Common build options
......@@ -213,52 +212,51 @@ Common build options
directory containing the SP source, relative to the ``bl32/``; the directory
is expected to contain a makefile called ``<aarch32_sp-value>.mk``.
- ``ARCH`` : Choose the target build architecture for ARM Trusted Firmware.
It can take either ``aarch64`` or ``aarch32`` as values. By default, it is
defined to ``aarch64``.
- ``ARCH`` : Choose the target build architecture for TF-A. It can take either
``aarch64`` or ``aarch32`` as values. By default, it is defined to
``aarch64``.
- ``ARM_ARCH_MAJOR``: The major version of ARM Architecture to target when
compiling ARM Trusted Firmware. Its value must be numeric, and defaults to
8 . See also, *ARMv8 Architecture Extensions* and
*ARMv7 Architecture Extensions* in `Firmware Design`_.
- ``ARM_ARCH_MAJOR``: The major version of Arm Architecture to target when
compiling TF-A. Its value must be numeric, and defaults to 8 . See also,
*Armv8 Architecture Extensions* and *Armv7 Architecture Extensions* in
`Firmware Design`_.
- ``ARM_ARCH_MINOR``: The minor version of ARM Architecture to target when
compiling ARM Trusted Firmware. Its value must be a numeric, and defaults
to 0. See also, *ARMv8 Architecture Extensions* in `Firmware Design`_.
- ``ARM_ARCH_MINOR``: The minor version of Arm Architecture to target when
compiling TF-A. Its value must be a numeric, and defaults to 0. See also,
*Armv8 Architecture Extensions* in `Firmware Design`_.
- ``ARM_GIC_ARCH``: Choice of ARM GIC architecture version used by the ARM
- ``ARM_GIC_ARCH``: Choice of Arm GIC architecture version used by the Arm
Legacy GIC driver for implementing the platform GIC API. This API is used
by the interrupt management framework. Default is 2 (that is, version 2.0).
This build option is deprecated.
- ``ARM_PLAT_MT``: This flag determines whether the ARM platform layer has to
- ``ARM_PLAT_MT``: This flag determines whether the Arm platform layer has to
cater for the multi-threading ``MT`` bit when accessing MPIDR. When this flag
is set, the functions which deal with MPIDR assume that the ``MT`` bit in
MPIDR is set and access the bit-fields in MPIDR accordingly. Default value of
this flag is 0. Note that this option is not used on FVP platforms.
- ``BL2``: This is an optional build option which specifies the path to BL2
image for the ``fip`` target. In this case, the BL2 in the ARM Trusted
Firmware will not be built.
image for the ``fip`` target. In this case, the BL2 in the TF-A will not be
built.
- ``BL2U``: This is an optional build option which specifies the path to
BL2U image. In this case, the BL2U in the ARM Trusted Firmware will not
be built.
BL2U image. In this case, the BL2U in TF-A will not be built.
- ``BL2_AT_EL3``: This is an optional build option that enables the use of
BL2 at EL3 execution level.
- ``BL31``: This is an optional build option which specifies the path to
BL31 image for the ``fip`` target. In this case, the BL31 in the ARM
Trusted Firmware will not be built.
BL31 image for the ``fip`` target. In this case, the BL31 in TF-A will not
be built.
- ``BL31_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
file that contains the BL31 private key in PEM format. If ``SAVE_KEYS=1``,
this file name will be used to save the key.
- ``BL32``: This is an optional build option which specifies the path to
BL32 image for the ``fip`` target. In this case, the BL32 in the ARM
Trusted Firmware will not be built.
BL32 image for the ``fip`` target. In this case, the BL32 in TF-A will not
be built.
- ``BL32_EXTRA1``: This is an optional build option which specifies the path to
Trusted OS Extra1 image for the ``fip`` target.
......@@ -271,7 +269,7 @@ Common build options
this file name will be used to save the key.
- ``BL33``: Path to BL33 image in the host file system. This is mandatory for
``fip`` target in case the BL2 from ARM Trusted Firmware is used.
``fip`` target in case TF-A BL2 is used.
- ``BL33_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
file that contains the BL33 private key in PEM format. If ``SAVE_KEYS=1``,
......@@ -282,8 +280,8 @@ Common build options
where applicable). Defaults to a string that contains the time and date of
the compilation.
- ``BUILD_STRING``: Input string for VERSION\_STRING, which allows the TF build
to be uniquely identified. Defaults to the current git commit id.
- ``BUILD_STRING``: Input string for VERSION\_STRING, which allows the TF-A
build to be uniquely identified. Defaults to the current git commit id.
- ``CFLAGS``: Extra user options appended on the compiler's command line in
addition to the options set by the build system.
......@@ -347,10 +345,10 @@ Common build options
software.
- ``ENABLE_RUNTIME_INSTRUMENTATION``: Boolean option to enable runtime
instrumentation which injects timestamp collection points into
Trusted Firmware to allow runtime performance to be measured.
Currently, only PSCI is instrumented. Enabling this option enables
the ``ENABLE_PMF`` build option as well. Default is 0.
instrumentation which injects timestamp collection points into TF-A to
allow runtime performance to be measured. Currently, only PSCI is
instrumented. Enabling this option enables the ``ENABLE_PMF`` build option
as well. Default is 0.
- ``ENABLE_SPE_FOR_LOWER_ELS`` : Boolean option to enable Statistical Profiling
extensions. This is an optional architectural feature for AArch64.
......@@ -427,15 +425,15 @@ Common build options
- ``HANDLE_EA_EL3_FIRST``: When defined External Aborts and SError Interrupts
will be always trapped in EL3 i.e. in BL31 at runtime.
- ``HW_ASSISTED_COHERENCY``: On most ARM systems to-date, platform-specific
- ``HW_ASSISTED_COHERENCY``: On most Arm systems to-date, platform-specific
software operations are required for CPUs to enter and exit coherency.
However, there exists newer systems where CPUs' entry to and exit from
coherency is managed in hardware. Such systems require software to only
initiate the operations, and the rest is managed in hardware, minimizing
active software management. In such systems, this boolean option enables ARM
Trusted Firmware to carry out build and run-time optimizations during boot
and power management operations. This option defaults to 0 and if it is
enabled, then it implies ``WARMBOOT_ENABLE_DCACHE_EARLY`` is also enabled.
active software management. In such systems, this boolean option enables
TF-A to carry out build and run-time optimizations during boot and power
management operations. This option defaults to 0 and if it is enabled,
then it implies ``WARMBOOT_ENABLE_DCACHE_EARLY`` is also enabled.
- ``JUNO_AARCH32_EL3_RUNTIME``: This build flag enables you to execute EL3
runtime software in AArch32 mode, which is required to run AArch32 on Juno.
......@@ -497,10 +495,10 @@ Common build options
any register that is not part of the SBSA generic UART specification.
Default value is 0 (a full PL011 compliant UART is present).
- ``PLAT``: Choose a platform to build ARM Trusted Firmware for. The chosen
platform name must be subdirectory of any depth under ``plat/``, and must
contain a platform makefile named ``platform.mk``. For example to build ARM
Trusted Firmware for ARM Juno board select PLAT=juno.
- ``PLAT``: Choose a platform to build TF-A for. The chosen platform name
must be subdirectory of any depth under ``plat/``, and must contain a
platform makefile named ``platform.mk``. For example, to build TF-A for the
Arm Juno board, select PLAT=juno.
- ``PRELOADED_BL33_BASE``: This option enables booting a preloaded BL33 image
instead of the normal boot flow. When defined, it must specify the entry
......@@ -524,7 +522,7 @@ Common build options
means by default the original power-state format is used by the PSCI
implementation. This flag should be specified by the platform makefile
and it governs the return value of PSCI\_FEATURES API for CPU\_SUSPEND
smc function id. When this option is enabled on ARM platforms, the
smc function id. When this option is enabled on Arm platforms, the
option ``ARM_RECOM_STATE_ID_ENC`` needs to be set to 1 as well.
- ``RESET_TO_BL31``: Enable BL31 entrypoint as the CPU reset vector instead
......@@ -532,11 +530,10 @@ Common build options
entrypoint) or 1 (CPU reset to BL31 entrypoint).
The default value is 0.
- ``RESET_TO_SP_MIN``: SP\_MIN is the minimal AArch32 Secure Payload provided in
ARM Trusted Firmware. This flag configures SP\_MIN entrypoint as the CPU
reset vector instead of the BL1 entrypoint. It can take the value 0 (CPU
reset to BL1 entrypoint) or 1 (CPU reset to SP\_MIN entrypoint). The default
value is 0.
- ``RESET_TO_SP_MIN``: SP\_MIN is the minimal AArch32 Secure Payload provided
in TF-A. This flag configures SP\_MIN entrypoint as the CPU reset vector
instead of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
entrypoint) or 1 (CPU reset to SP\_MIN entrypoint). The default value is 0.
- ``ROT_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
file that contains the ROT private key in PEM format. If ``SAVE_KEYS=1``, this
......@@ -570,11 +567,11 @@ Common build options
pages" section in `Firmware Design`_. This flag is disabled by default and
affects all BL images.
- ``SPD``: Choose a Secure Payload Dispatcher component to be built into the
Trusted Firmware. This build option is only valid if ``ARCH=aarch64``. The
value should be the path to the directory containing the SPD source,
relative to ``services/spd/``; the directory is expected to
contain a makefile called ``<spd-value>.mk``.
- ``SPD``: Choose a Secure Payload Dispatcher component to be built into TF-A.
This build option is only valid if ``ARCH=aarch64``. The value should be
the path to the directory containing the SPD source, relative to
``services/spd/``; the directory is expected to contain a makefile called
``<spd-value>.mk``.
- ``SPIN_ON_BL1_EXIT``: This option introduces an infinite loop in BL1. It can
take either 0 (no loop) or 1 (add a loop). 0 is the default. This loop stops
......@@ -622,16 +619,16 @@ Common build options
- ``USE_COHERENT_MEM``: This flag determines whether to include the coherent
memory region in the BL memory map or not (see "Use of Coherent memory in
Trusted Firmware" section in `Firmware Design`_). It can take the value 1
TF-A" section in `Firmware Design`_). It can take the value 1
(Coherent memory region is included) or 0 (Coherent memory region is
excluded). Default is 1.
- ``V``: Verbose build. If assigned anything other than 0, the build commands
are printed. Default is 0.
- ``VERSION_STRING``: String used in the log output for each TF image. Defaults
to a string formed by concatenating the version number, build type and build
string.
- ``VERSION_STRING``: String used in the log output for each TF-A image.
Defaults to a string formed by concatenating the version number, build type
and build string.
- ``WARMBOOT_ENABLE_DCACHE_EARLY`` : Boolean option to enable D-cache early on
the CPU after warm boot. This is applicable for platforms which do not
......@@ -639,7 +636,7 @@ Common build options
cluster platforms). If this option is enabled, then warm boot path
enables D-caches immediately after enabling MMU. This option defaults to 0.
ARM development platform specific build options
Arm development platform specific build options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- ``ARM_BL31_IN_DRAM``: Boolean option to select loading of BL31 in TZC secured
......@@ -652,7 +649,7 @@ ARM development platform specific build options
of the memory reserved for each image. This affects the maximum size of each
BL image as well as the number of allocated memory regions and translation
tables. By default this flag is 0, which means it uses the default
unoptimised values for these macros. ARM development platforms that wish to
unoptimised values for these macros. Arm development platforms that wish to
optimise memory usage need to set this flag to 1 and must override the
related macros.
......@@ -663,7 +660,7 @@ ARM development platform specific build options
Default is true (access to the frame is allowed).
- ``ARM_DISABLE_TRUSTED_WDOG``: boolean option to disable the Trusted Watchdog.
By default, ARM platforms use a watchdog to trigger a system reset in case
By default, Arm platforms use a watchdog to trigger a system reset in case
an error is encountered during the boot process (for example, when an image
could not be loaded or authenticated). The watchdog is enabled in the early
platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
......@@ -680,7 +677,7 @@ ARM development platform specific build options
- ``ARM_ROTPK_LOCATION``: used when ``TRUSTED_BOARD_BOOT=1``. It specifies the
location of the ROTPK hash returned by the function ``plat_get_rotpk_info()``
for ARM platforms. Depending on the selected option, the proper private key
for Arm platforms. Depending on the selected option, the proper private key
must be specified using the ``ROT_KEY`` option when building the Trusted
Firmware. This private key will be used by the certificate generation tool
to sign the BL2 and Trusted Key certificates. Available options for
......@@ -707,27 +704,26 @@ ARM development platform specific build options
- ``dram`` : Secure region in DRAM (default option when TBB is enabled,
configured by the TrustZone controller)
- ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile the Trusted Firmware
with version 1 of the translation tables library instead of version 2. It is
set to 0 by default, which selects version 2.
- ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile TF-A with version 1
of the translation tables library instead of version 2. It is set to 0 by
default, which selects version 2.
- ``ARM_CRYPTOCELL_INTEG`` : bool option to enable Trusted Firmware to invoke
ARM® TrustZone® CryptoCell functionality for Trusted Board Boot on capable
ARM platforms. If this option is specified, then the path to the CryptoCell
- ``ARM_CRYPTOCELL_INTEG`` : bool option to enable TF-A to invoke Arm®
TrustZone® CryptoCell functionality for Trusted Board Boot on capable Arm
platforms. If this option is specified, then the path to the CryptoCell
SBROM library must be specified via ``CCSBROM_LIB_PATH`` flag.
For a better understanding of these options, the ARM development platform memory
For a better understanding of these options, the Arm development platform memory
map is explained in the `Firmware Design`_.
ARM CSS platform specific build options
Arm CSS platform specific build options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- ``CSS_DETECT_PRE_1_7_0_SCP``: Boolean flag to detect SCP version
incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
compatible change to the MTL protocol, used for AP/SCP communication.
Trusted Firmware no longer supports earlier SCP versions. If this option is
set to 1 then Trusted Firmware will detect if an earlier version is in use.
Default is 1.
TF-A no longer supports earlier SCP versions. If this option is set to 1
then TF-A will detect if an earlier version is in use. Default is 1.
- ``CSS_LOAD_SCP_IMAGES``: Boolean flag, which when set, adds SCP\_BL2 and
SCP\_BL2U to the FIP and FWU\_FIP respectively, and enables them to be loaded
......@@ -738,13 +734,12 @@ ARM CSS platform specific build options
management operations and for SCP RAM Firmware transfer. If this option
is set to 1, then SCMI/SDS drivers will be used. Default is 0.
ARM FVP platform specific build options
Arm FVP platform specific build options
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to
build the topology tree within Trusted Firmware. By default the
Trusted Firmware is configured for dual cluster topology and this option
can be used to override the default value.
build the topology tree within TF-A. By default TF-A is configured for dual
cluster topology and this option can be used to override the default value.
- ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The
default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as
......@@ -768,9 +763,8 @@ ARM FVP platform specific build options
- ``FVP_GICV2`` : The GICv2 only driver is selected
- ``FVP_GICV3`` : The GICv3 only driver is selected (default option)
- ``FVP_GICV3_LEGACY``: The Legacy GICv3 driver is selected (deprecated)
Note: If Trusted Firmware is compiled with this option on FVPs with
GICv3 hardware, then it configures the hardware to run in GICv2
emulation mode
Note: If TF-A is compiled with this option on FVPs with GICv3 hardware,
then it configures the hardware to run in GICv2 emulation mode
- ``FVP_USE_SP804_TIMER`` : Use the SP804 timer instead of the Generic Timer
for functions that wait for an arbitrary time length (udelay and mdelay).
......@@ -808,7 +802,7 @@ When debugging logic problems it might also be useful to disable all compiler
optimizations by using ``-O0``.
NOTE: Using ``-O0`` could cause output images to be larger and base addresses
might need to be recalculated (see the **Memory layout on ARM development
might need to be recalculated (see the **Memory layout on Arm development
platforms** section in the `Firmware Design`_).
Extra debug options can be passed to the build system by setting ``CFLAGS`` or
......@@ -823,8 +817,8 @@ Note that using ``-Wl,`` style compilation driver options in ``CFLAGS`` will be
ignored as the linker is called directly.
It is also possible to introduce an infinite loop to help in debugging the
post-BL2 phase of the Trusted Firmware. This can be done by rebuilding BL1 with
the ``SPIN_ON_BL1_EXIT=1`` build flag. Refer to the `Summary of build options`_
post-BL2 phase of TF-A. This can be done by rebuilding BL1 with the
``SPIN_ON_BL1_EXIT=1`` build flag. Refer to the `Summary of build options`_
section. In this case, the developer may take control of the target using a
debugger when indicated by the console output. When using DS-5, the following
commands can be used:
......@@ -852,8 +846,8 @@ called the TSPD. Therefore, if you intend to use the TSP, the BL31 image
must be recompiled as well. For more information on SPs and SPDs, see the
`Secure-EL1 Payloads and Dispatchers`_ section in the `Firmware Design`_.
First clean the Trusted Firmware build directory to get rid of any previous
BL31 binary. Then to build the TSP image use:
First clean the TF-A build directory to get rid of any previous BL31 binary.
Then to build the TSP image use:
::
......@@ -895,17 +889,17 @@ is set to ``origin/master``.
Building and using the FIP tool
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Firmware Image Package (FIP) is a packaging format used by the Trusted Firmware
project to package firmware images in a single binary. The number and type of
images that should be packed in a FIP is platform specific and may include TF
images and other firmware images required by the platform. For example, most
platforms require a BL33 image which corresponds to the normal world bootloader
(e.g. UEFI or U-Boot).
Firmware Image Package (FIP) is a packaging format used by TF-A to package
firmware images in a single binary. The number and type of images that should
be packed in a FIP is platform specific and may include TF-A images and other
firmware images required by the platform. For example, most platforms require
a BL33 image which corresponds to the normal world bootloader (e.g. UEFI or
U-Boot).
The TF build system provides the make target ``fip`` to create a FIP file for the
specified platform using the FIP creation tool included in the TF project.
Examples below show how to build a FIP file for FVP, packaging TF images and a
BL33 image.
The TF-A build system provides the make target ``fip`` to create a FIP file
for the specified platform using the FIP creation tool included in the TF-A
project. Examples below show how to build a FIP file for FVP, packaging TF-A
and BL33 images.
For AArch64:
......@@ -1026,9 +1020,10 @@ images with support for these features:
#. Fulfill the dependencies of the ``mbedtls`` cryptographic and image parser
modules by checking out a recent version of the `mbed TLS Repository`_. It
is important to use a version that is compatible with TF and fixes any
is important to use a version that is compatible with TF-A and fixes any
known security vulnerabilities. See `mbed TLS Security Center`_ for more
information. The latest version of TF is tested with tag ``mbedtls-2.6.0``.
information. The latest version of TF-A is tested with tag
``mbedtls-2.6.0``.
The ``drivers/auth/mbedtls/mbedtls_*.mk`` files contain the list of mbed TLS
source files the modules depend upon.
......@@ -1036,17 +1031,17 @@ images with support for these features:
options required to build the mbed TLS sources.
Note that the mbed TLS library is licensed under the Apache version 2.0
license. Using mbed TLS source code will affect the licensing of
Trusted Firmware binaries that are built using this library.
license. Using mbed TLS source code will affect the licensing of TF-A
binaries that are built using this library.
#. To build the FIP image, ensure the following command line variables are set
while invoking ``make`` to build Trusted Firmware:
while invoking ``make`` to build TF-A:
- ``MBEDTLS_DIR=<path of the directory containing mbed TLS sources>``
- ``TRUSTED_BOARD_BOOT=1``
- ``GENERATE_COT=1``
In the case of ARM platforms, the location of the ROTPK hash must also be
In the case of Arm platforms, the location of the ROTPK hash must also be
specified at build time. Two locations are currently supported (see
``ARM_ROTPK_LOCATION`` build option):
......@@ -1060,11 +1055,11 @@ images with support for these features:
available.
- ``ARM_ROTPK_LOCATION=devel_rsa``: use the ROTPK hash that is hardcoded
in the ARM platform port. The private/public RSA key pair may be
in the Arm platform port. The private/public RSA key pair may be
found in ``plat/arm/board/common/rotpk``.
- ``ARM_ROTPK_LOCATION=devel_ecdsa``: use the ROTPK hash that is hardcoded
in the ARM platform port. The private/public ECDSA key pair may be
in the Arm platform port. The private/public ECDSA key pair may be
found in ``plat/arm/board/common/rotpk``.
Example of command line using RSA development keys:
......@@ -1086,7 +1081,7 @@ images with support for these features:
#. The optional FWU\_FIP contains any additional images to be loaded from
Non-Volatile storage during the `Firmware Update`_ process. To build the
FWU\_FIP, any FWU images required by the platform must be specified on the
command line. On ARM development platforms like Juno, these are:
command line. On Arm development platforms like Juno, these are:
- NS\_BL2U. The AP non-secure Firmware Updater image.
- SCP\_BL2U. The SCP Firmware Update Configuration image.
......@@ -1121,9 +1116,10 @@ images with support for these features:
Building the Certificate Generation Tool
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``cert_create`` tool is built as part of the TF build process when the ``fip``
make target is specified and TBB is enabled (as described in the previous
section), but it can also be built separately with the following command:
The ``cert_create`` tool is built as part of the TF-A build process when the
``fip`` make target is specified and TBB is enabled (as described in the
previous section), but it can also be built separately with the following
command:
::
......@@ -1188,7 +1184,7 @@ corrupted binaries.
Note for AArch32, the instructions below assume that nt-fw.bin is a custom
Normal world boot loader that supports AArch32.
#. Build TF images and create a new FIP for FVP
#. Build TF-A images and create a new FIP for FVP
::
......@@ -1198,7 +1194,7 @@ corrupted binaries.
# AArch32
make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=nt-fw.bin all fip
#. Build TF images and create a new FIP for Juno
#. Build TF-A images and create a new FIP for Juno
For AArch64:
......@@ -1322,16 +1318,16 @@ scratch, this is a complex task on some platforms, depending on the level of
configuration required to put the system in the expected state.
Rather than booting a baremetal application, a possible compromise is to boot
``EL3 payloads`` through the Trusted Firmware instead. This is implemented as an
alternative boot flow, where a modified BL2 boots an EL3 payload, instead of
loading the other BL images and passing control to BL31. It reduces the
complexity of developing EL3 baremetal code by:
``EL3 payloads`` through TF-A instead. This is implemented as an alternative
boot flow, where a modified BL2 boots an EL3 payload, instead of loading the
other BL images and passing control to BL31. It reduces the complexity of
developing EL3 baremetal code by:
- putting the system into a known architectural state;
- taking care of platform secure world initialization;
- loading the SCP\_BL2 image if required by the platform.
When booting an EL3 payload on ARM standard platforms, the configuration of the
When booting an EL3 payload on Arm standard platforms, the configuration of the
TrustZone controller is simplified such that only region 0 is enabled and is
configured to permit secure access only. This gives full access to the whole
DRAM to the EL3 payload.
......@@ -1350,11 +1346,11 @@ Booting an EL3 payload
~~~~~~~~~~~~~~~~~~~~~~
The EL3 payload image is a standalone image and is not part of the FIP. It is
not loaded by the Trusted Firmware. Therefore, there are 2 possible scenarios:
not loaded by TF-A. Therefore, there are 2 possible scenarios:
- The EL3 payload may reside in non-volatile memory (NVM) and execute in
place. In this case, booting it is just a matter of specifying the right
address in NVM through ``EL3_PAYLOAD_BASE`` when building the TF.
address in NVM through ``EL3_PAYLOAD_BASE`` when building TF-A.
- The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at
run-time.
......@@ -1423,7 +1419,7 @@ used:
--data="/path/to/el3-payload"@address [Foundation FVP]
The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
used when building the Trusted Firmware.
used when building TF-A.
Booting an EL3 payload on Juno
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
......@@ -1441,15 +1437,14 @@ Preloaded BL33 alternative boot flow
------------------------------------
Some platforms have the ability to preload BL33 into memory instead of relying
on Trusted Firmware to load it. This may simplify packaging of the normal world
code and improve performance in a development environment. When secure world
cold boot is complete, Trusted Firmware simply jumps to a BL33 base address
provided at build time.
on TF-A to load it. This may simplify packaging of the normal world code and
improve performance in a development environment. When secure world cold boot
is complete, TF-A simply jumps to a BL33 base address provided at build time.
For this option to be used, the ``PRELOADED_BL33_BASE`` build option has to be
used when compiling the Trusted Firmware. For example, the following command
will create a FIP without a BL33 and prepare to jump to a BL33 image loaded at
address 0x80000000:
used when compiling TF-A. For example, the following command will create a FIP
without a BL33 and prepare to jump to a BL33 image loaded at address
0x80000000:
::
......@@ -1459,8 +1454,8 @@ Boot of a preloaded bootwrapped kernel image on Base FVP
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following example uses the AArch64 boot wrapper. This simplifies normal
world booting while also making use of TF features. It can be obtained from its
repository with:
world booting while also making use of TF-A features. It can be obtained from
its repository with:
::
......@@ -1494,13 +1489,14 @@ to load the ELF file over JTAG on Juno.
Running the software on FVP
---------------------------
The latest version of the AArch64 build of ARM Trusted Firmware has been tested
on the following ARM FVPs (64-bit host machine only).
The latest version of the AArch64 build of TF-A has been tested on the following
Arm FVPs without shifted affinities, and that do not support threaded CPU cores
(64-bit host machine only).
NOTE: Unless otherwise stated, the model version is Version 11.2 Build 11.2.33.
- ``Foundation_Platform``
- ``FVP_Base_AEMv8A-AEMv8A`` (Version 9.0, Build 0.8.9005)
- ``FVP_Base_AEMv8A-AEMv8A`` (and also Version 9.0, Build 0.8.9005)
- ``FVP_Base_Cortex-A35x4``
- ``FVP_Base_Cortex-A53x4``
- ``FVP_Base_Cortex-A57x4-A53x4``
......@@ -1510,12 +1506,25 @@ NOTE: Unless otherwise stated, the model version is Version 11.2 Build 11.2.33.
- ``FVP_Base_Cortex-A73x4-A53x4``
- ``FVP_Base_Cortex-A73x4``
The latest version of the AArch32 build of ARM Trusted Firmware has been tested
on the following ARM FVPs (64-bit host machine only).
Additionally, the AArch64 build was tested on the following Arm FVPs with
shifted affinities, supporting threaded CPU cores (64-bit host machine only).
- ``FVP_Base_Cortex-A55x4-A75x4`` (Version 0.0, build 0.0.4395)
- ``FVP_Base_Cortex-A55x4`` (Version 0.0, build 0.0.4395)
- ``FVP_Base_Cortex-A75x4`` (Version 0.0, build 0.0.4395)
- ``FVP_Base_RevC-2xAEMv8A``
- ``FVP_Base_AEMv8A-AEMv8A`` (Version 9.0, Build 0.8.9005)
The latest version of the AArch32 build of TF-A has been tested on the following
Arm FVPs without shifted affinities, and that do not support threaded CPU cores
(64-bit host machine only).
- ``FVP_Base_AEMv8A-AEMv8A``
- ``FVP_Base_Cortex-A32x4``
NOTE: The ``FVP_Base_RevC-2xAEMv8A`` FVP only supports shifted affinities, which
is not compatible with legacy GIC configurations. Therefore this FVP does not
support these legacy GIC configurations.
NOTE: The build numbers quoted above are those reported by launching the FVP
with the ``--version`` parameter.
......@@ -1529,7 +1538,7 @@ NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an ``unhandled argument`` error in this case.
NOTE: FVPs can be launched with ``--cadi-server`` option such that a
CADI-compliant debugger (for example, ARM DS-5) can connect to and control its
CADI-compliant debugger (for example, Arm DS-5) can connect to and control its
execution.
NOTE: Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202
......@@ -1538,46 +1547,59 @@ models. The models can be launched with ``-Q 100`` option if they are required
to match the run time characteristics of the older versions.
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from `ARM's website`_.
downloaded for free from `Arm's website`_.
The Cortex-A models listed above are also available to download from
`ARM's website`_.
`Arm's website`_.
Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the ARM
Trusted Firmware and normal world software behavior is provided below.
parameter options. A brief description of the important ones that affect TF-A
and normal world software behavior is provided below.
Obtaining the Flattened Device Trees
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Depending on the FVP configuration and Linux configuration used, different
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
the Trusted Firmware source directory under ``fdts/``. The Foundation FVP has a
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
and MMC support, and has only one CPU cluster.
the TF-A source directory under ``fdts/``. The Foundation FVP has a subset of
the Base FVP components. For example, the Foundation FVP lacks CLCD and MMC
support, and has only one CPU cluster.
Note: It is not recommended to use the FDTs built along the kernel because not
all FDTs are available from there.
- ``fvp-base-gicv2-psci.dtb``
For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
Base memory map configuration.
For use with models such as the Cortex-A57-A53 Base FVPs without shifted
affinities and with Base memory map configuration.
- ``fvp-base-gicv2-psci-aarch32.dtb``
For use with AEMv8 and Cortex-A32 Base FVPs running Linux in AArch32 state
with Base memory map configuration.
For use with models such as the Cortex-A32 Base FVPs without shifted
affinities and running Linux in AArch32 state with Base memory map
configuration.
- ``fvp-base-gicv3-psci.dtb``
(Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base
memory map configuration and Linux GICv3 support.
For use with models such as the Cortex-A57-A53 Base FVPs without shifted
affinities and with Base memory map configuration and Linux GICv3 support.
- ``fvp-base-gicv3-psci-1t.dtb``
For use with models such as the AEMv8-RevC Base FVP with shifted affinities,
single threaded CPUs, Base memory map configuration and Linux GICv3 support.
- ``fvp-base-gicv3-psci-dynamiq.dtb``
For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities,
single cluster, single threaded CPUs, Base memory map configuration and Linux
GICv3 support.
- ``fvp-base-gicv3-psci-aarch32.dtb``
For use with AEMv8 and Cortex-A32 Base FVPs running Linux in AArch32 state
with Base memory map configuration and Linux GICv3 support.
For use with models such as the Cortex-A32 Base FVPs without shifted
affinities and running Linux in AArch32 state with Base memory map
configuration and Linux GICv3 support.
- ``fvp-foundation-gicv2-psci.dtb``
......@@ -1592,7 +1614,7 @@ Running on the Foundation FVP with reset to BL1 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``Foundation_Platform`` parameters should be used to boot Linux with
4 CPUs using the AArch64 build of ARM Trusted Firmware.
4 CPUs using the AArch64 build of TF-A.
::
......@@ -1616,23 +1638,23 @@ Notes:
- The default use-case for the Foundation FVP is to use the ``--gicv3`` option
and enable the GICv3 device in the model. Note that without this option,
the Foundation FVP defaults to legacy (Versatile Express) memory map which
is not supported by ARM Trusted Firmware.
- In order for the Arm Trusted Firmware to run correctly on the Foundation
Model the architecture versions must match. The Foundation FVP defaults to
the highest v8.x version it supports but the default build for Arm Trusted
Firmware is for v8.0. To avoid issues either start the Foundation Model to
use v8.0 architecture using the ``--arm-v8.0`` option or build Arm Trusted
Firmware with an appropriate value for ``ARM_ARCH_MINOR``.
is not supported by TF-A.
- In order for TF-A to run correctly on the Foundation FVP, the architecture
versions must match. The Foundation FVP defaults to the highest v8.x
version it supports but the default build for TF-A is for v8.0. To avoid
issues either start the Foundation FVP to use v8.0 architecture using the
``--arm-v8.0`` option, or build TF-A with an appropriate value for
``ARM_ARCH_MINOR``.
Running on the AEMv8 Base FVP with reset to BL1 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch64 build of TF-A.
::
<path-to>/FVP_Base_AEMv8A-AEMv8A \
<path-to>/FVP_Base_RevC-2xAEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
......@@ -1649,7 +1671,7 @@ Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch32 build of ARM Trusted Firmware.
with 8 CPUs using the AArch32 build of TF-A.
::
......@@ -1678,7 +1700,7 @@ Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
boot Linux with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
boot Linux with 8 CPUs using the AArch64 build of TF-A.
::
......@@ -1697,7 +1719,7 @@ Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
boot Linux with 4 CPUs using the AArch32 build of ARM Trusted Firmware.
boot Linux with 4 CPUs using the AArch32 build of TF-A.
::
......@@ -1715,12 +1737,12 @@ boot Linux with 4 CPUs using the AArch32 build of ARM Trusted Firmware.
Running on the AEMv8 Base FVP with reset to BL31 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch64 build of TF-A.
::
<path-to>/FVP_Base_AEMv8A-AEMv8A \
<path-to>/FVP_Base_RevC-2xAEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
......@@ -1763,7 +1785,7 @@ Running on the AEMv8 Base FVP (AArch32) with reset to SP\_MIN entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch32 build of ARM Trusted Firmware.
with 8 CPUs using the AArch32 build of TF-A.
::
......@@ -1803,7 +1825,7 @@ Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
boot Linux with 8 CPUs using the AArch64 build of ARM Trusted Firmware.
boot Linux with 8 CPUs using the AArch64 build of TF-A.
::
......@@ -1831,7 +1853,7 @@ Running on the Cortex-A32 Base FVP (AArch32) with reset to SP\_MIN entrypoint
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
boot Linux with 4 CPUs using the AArch32 build of ARM Trusted Firmware.
boot Linux with 4 CPUs using the AArch32 build of TF-A.
::
......@@ -1853,8 +1875,7 @@ boot Linux with 4 CPUs using the AArch32 build of ARM Trusted Firmware.
Running the software on Juno
----------------------------
This version of the ARM Trusted Firmware has been tested on variants r0, r1 and
r2 of Juno.
This version of TF-A has been tested on variants r0, r1 and r2 of Juno.
To execute the software stack on Juno, the version of the Juno board recovery
image indicated in the `Linaro Release Notes`_ must be installed. If you have an
......@@ -1862,18 +1883,18 @@ earlier version installed or are unsure which version is installed, please
re-install the recovery image by following the
`Instructions for using Linaro's deliverables on Juno`_.
Preparing Trusted Firmware images
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Preparing TF-A images
~~~~~~~~~~~~~~~~~~~~~
After building Trusted Firmware, the files ``bl1.bin`` and ``fip.bin`` need copying
to the ``SOFTWARE/`` directory of the Juno SD card.
After building TF-A, the files ``bl1.bin`` and ``fip.bin`` need copying to the
``SOFTWARE/`` directory of the Juno SD card.
Other Juno software information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Please visit the `ARM Platforms Portal`_ to get support and obtain any other Juno
Please visit the `Arm Platforms Portal`_ to get support and obtain any other Juno
software information. Please also refer to the `Juno Getting Started Guide`_ to
get more detailed information about the Juno ARM development platform and how to
get more detailed information about the Juno Arm development platform and how to
configure it.
Testing SYSTEM SUSPEND on Juno
......@@ -1893,7 +1914,7 @@ wakeup interrupt from RTC.
--------------
*Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.*
*Copyright (c) 2013-2018, Arm Limited and Contributors. All rights reserved.*
.. _Linaro: `Linaro Release Notes`_
.. _Linaro Release: `Linaro Release Notes`_
......@@ -1901,7 +1922,7 @@ wakeup interrupt from RTC.
.. _Linaro Release 17.10: https://community.arm.com/dev-platforms/w/docs/226/old-linaro-release-notes#1710
.. _Linaro instructions: https://community.arm.com/dev-platforms/w/docs/304/linaro-software-deliverables
.. _Instructions for using Linaro's deliverables on Juno: https://community.arm.com/dev-platforms/w/docs/303/juno
.. _ARM Platforms Portal: https://community.arm.com/dev-platforms/
.. _Arm Platforms Portal: https://community.arm.com/dev-platforms/
.. _Development Studio 5 (DS-5): http://www.arm.com/products/tools/software-tools/ds-5/index.php
.. _Dia: https://wiki.gnome.org/Apps/Dia/Download
.. _here: psci-lib-integration-guide.rst
......@@ -1911,7 +1932,7 @@ wakeup interrupt from RTC.
.. _Firmware Design: firmware-design.rst
.. _mbed TLS Repository: https://github.com/ARMmbed/mbedtls.git
.. _mbed TLS Security Center: https://tls.mbed.org/security
.. _ARM's website: `FVP models`_
.. _Arm's website: `FVP models`_
.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms
.. _Juno Getting Started Guide: http://infocenter.arm.com/help/topic/com.arm.doc.dui0928e/DUI0928E_juno_arm_development_platform_gsg.pdf
.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
......@@ -9,7 +9,7 @@ Translation Tables Library Design
This document describes the design of the translation tables library (version 2)
used by the ARM Trusted Firmware. This library provides APIs to create page
used by Trusted Firmware-A (TF-A). This library provides APIs to create page
tables based on a description of the memory layout, as well as setting up system
registers related to the Memory Management Unit (MMU) and performing the
required Translation Lookaside Buffer (TLB) maintenance operations.
......@@ -329,7 +329,7 @@ The memory mapping algorithm
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The mapping function is implemented as a recursive algorithm. It is however
bound by the level of depth of the translation tables (the ARMv8-A architecture
bound by the level of depth of the translation tables (the Armv8-A architecture
allows up to 4 lookup levels).
By default [#granularity-ref]_, the algorithm will attempt to minimize the
......@@ -376,7 +376,7 @@ changes are visible to subsequent execution, including speculative execution,
that uses the changed translation table entries.
A counter-example is the initialization of translation tables. In this case,
explicit TLB maintenance is not required. The ARMv8-A architecture guarantees
explicit TLB maintenance is not required. The Armv8-A architecture guarantees
that all TLBs are disabled from reset and their contents have no effect on
address translation at reset [#tlb-reset-ref]_. Therefore, the TLBs invalidation
is deferred to the ``enable_mmu*()`` family of functions, just before the MMU is
......@@ -391,9 +391,9 @@ descriptor. Given that the TLBs are not architecturally permitted to hold any
invalid translation table entry [#tlb-no-invalid-entry]_, this means that this
mapping cannot be cached in the TLBs.
.. [#tlb-reset-ref] See section D4.8 `Translation Lookaside Buffers (TLBs)`, subsection `TLB behavior at reset` in ARMv8-A, rev B.a.
.. [#tlb-reset-ref] See section D4.8 `Translation Lookaside Buffers (TLBs)`, subsection `TLB behavior at reset` in Armv8-A, rev B.a.
.. [#tlb-no-invalid-entry] See section D4.9.1 `General TLB maintenance requirements` in ARMv8-A, rev B.a.
.. [#tlb-no-invalid-entry] See section D4.9.1 `General TLB maintenance requirements` in Armv8-A, rev B.a.
Architectural module
~~~~~~~~~~~~~~~~~~~~
......@@ -405,7 +405,7 @@ translation context to work on.
--------------
*Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.*
*Copyright (c) 2017-2018, Arm Limited and Contributors. All rights reserved.*
.. _lib/xlat\_tables\_v2: ../lib/xlat_tables_v2
.. _lib/xlat\_tables: ../lib/xlat_tables
......
Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
Copyright (c) 2013-2018, Arm Limited and Contributors. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
......@@ -10,7 +10,7 @@ are permitted provided that the following conditions are met:
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used to
- Neither the name of Arm nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.
......
ARM Trusted Firmware Maintainers
================================
Trusted Firmware-A maintainers
==============================
ARM Trusted Firmware is an ARM maintained project. All contributions are
Trusted Firmware-A (TF-A) is an Arm maintained project. All contributions are
ultimately merged by the maintainers listed below. Technical ownership of some
parts of the codebase is delegated to the sub-maintainers listed below. An
acknowledgement from these sub-maintainers may be required before the
......@@ -123,8 +123,8 @@ Files:
- docs/plat/xilinx-zynqmp.rst
- plat/xilinx/\*
ARMv7 architecture sub-maintainer
---------------------------------
Armv7-A architecture sub-maintainer
-----------------------------------
Etienne Carriere (etienne.carriere@linaro.org, `etienne-lms`_)
......
ARM Trusted Firmware - version 1.4
==================================
Trusted Firmware-A - version 1.4
================================
ARM Trusted Firmware provides a reference implementation of secure world
software for `ARMv8-A`_, including a `Secure Monitor`_ executing at
Exception Level 3 (EL3). It implements various ARM interface standards, such as:
Trusted Firmware-A (TF-A) provides a reference implementation of secure world
software for `Armv8-A`_, including a `Secure Monitor`_ executing at Exception
Level 3 (EL3). It implements various Arm interface standards, such as:
- The `Power State Coordination Interface (PSCI)`_
- Trusted Board Boot Requirements (TBBR, ARM DEN0006C-1)
- Trusted Board Boot Requirements (TBBR, Arm DEN0006C-1)
- `SMC Calling Convention`_
- `System Control and Management Interface`_
As far as possible the code is designed for reuse or porting to other ARMv8-A
As far as possible the code is designed for reuse or porting to other Armv8-A
model and hardware platforms.
ARM will continue development in collaboration with interested parties to
provide a full reference implementation of Secure Monitor code and ARM standards
to the benefit of all developers working with ARMv8-A TrustZone technology.
Arm will continue development in collaboration with interested parties to
provide a full reference implementation of Secure Monitor code and Arm standards
to the benefit of all developers working with Armv8-A TrustZone technology.
License
-------
......@@ -45,7 +45,7 @@ world boot and runtime firmware, in either the AArch32 or AArch64 execution
state.
Users are encouraged to do their own security validation, including penetration
testing, on any secure world code derived from ARM Trusted Firmware.
testing, on any secure world code derived from TF-A.
Functionality
~~~~~~~~~~~~~
......@@ -54,15 +54,15 @@ Functionality
registers and interrupts for the platform.
- Library support for CPU specific reset and power down sequences. This
includes support for errata workarounds and the latest ARM DynamIQ CPUs.
includes support for errata workarounds and the latest Arm DynamIQ CPUs.
- Drivers to enable standard initialization of ARM System IP, for example
- Drivers to enable standard initialization of Arm System IP, for example
Generic Interrupt Controller (GIC), Cache Coherent Interconnect (CCI),
Cache Coherent Network (CCN), Network Interconnect (NIC) and TrustZone
Controller (TZC).
- A generic `SCMI`_ driver to interface with conforming power controllers, for
example the ARM System Control Processor (SCP).
example the Arm System Control Processor (SCP).
- SMC (Secure Monitor Call) handling, conforming to the `SMC Calling
Convention`_ using an EL3 runtime services framework.
......@@ -93,14 +93,14 @@ Functionality
recovery mode), and packaging of the various firmware images into a
Firmware Image Package (FIP).
- Pre-integration of TBB with the ARM TrustZone CryptoCell product, to take
- Pre-integration of TBB with the Arm TrustZone CryptoCell product, to take
advantage of its hardware Root of Trust and crypto acceleration services.
- Support for alternative boot flows, for example to support platforms where
the EL3 Runtime Software is loaded using other firmware or a separate
secure system processor.
- Support for the GCC, LLVM and ARM Compiler 6 toolchains.
- Support for the GCC, LLVM and Arm Compiler 6 toolchains.
For a full description of functionality and implementation details, please
see the `Firmware Design`_ and supporting documentation. The `Change Log`_
......@@ -110,9 +110,9 @@ Platforms
~~~~~~~~~
Various AArch32 and AArch64 builds of this release has been tested on variants
r0, r1 and r2 of the `Juno ARM Development Platform`_.
r0, r1 and r2 of the `Juno Arm Development Platform`_.
Various AArch64 builds of this release have been tested on the following ARM
Various AArch64 builds of this release have been tested on the following Arm
`FVP`_\ s (64-bit host machine only):
NOTE: Unless otherwise stated, the FVP Version is 11.0, Build 11.0.34.
......@@ -129,14 +129,14 @@ NOTE: Unless otherwise stated, the FVP Version is 11.0, Build 11.0.34.
- ``FVP_Base_Cortex-A73x4``
- ``FVP_CSS_SGM-775`` (Version 11.0, Build 11.0.36)
Various AArch32 builds of this release has been tested on the following ARM
Various AArch32 builds of this release has been tested on the following Arm
`FVP`_\ s (64-bit host machine only):
- ``FVP_Base_AEMv8A-AEMv8A`` (Version 8.5, Build 0.8.8502)
- ``FVP_Base_Cortex-A32x4``
The Foundation FVP can be downloaded free of charge. The Base FVPs can be
licensed from ARM. See the `ARM FVP website`_.
licensed from Arm. See the `Arm FVP website`_.
All the above platforms have been tested with `Linaro Release 17.04`_.
......@@ -167,15 +167,15 @@ Log`_ and the `GitHub issue tracker`_.
Getting Started
---------------
Get the Trusted Firmware source code from `GitHub`_.
Get the TF-A source code from `GitHub`_.
See the `User Guide`_ for instructions on how to install, build and use
the Trusted Firmware with the ARM `FVP`_\ s.
the TF-A with the Arm `FVP`_\ s.
See the `Firmware Design`_ for information on how the Trusted Firmware works.
See the `Firmware Design`_ for information on how the TF-A works.
See the `Porting Guide`_ as well for information about how to use this
software on another ARMv8-A platform.
software on another Armv8-A platform.
See the `Contributing Guidelines`_ for information on how to contribute to this
project and the `Acknowledgments`_ file for a list of contributors to the
......@@ -184,26 +184,26 @@ project.
Feedback and support
~~~~~~~~~~~~~~~~~~~~
ARM welcomes any feedback on Trusted Firmware. If you think you have found a
security vulnerability, please report this using the process defined in the
Trusted Firmware `Security Centre`_. For all other feedback, please use the
Arm welcomes any feedback on TF-A. If you think you have found a security
vulnerability, please report this using the process defined in the TF-A
`Security Centre`_. For all other feedback, please use the
`GitHub issue tracker`_.
ARM licensees may contact ARM directly via their partner managers.
Arm licensees may contact Arm directly via their partner managers.
--------------
*Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.*
*Copyright (c) 2013-2018, Arm Limited and Contributors. All rights reserved.*
.. _ARMv8-A: http://www.arm.com/products/processors/armv8-architecture.php
.. _Armv8-A: http://www.arm.com/products/processors/armv8-architecture.php
.. _Secure Monitor: http://www.arm.com/products/processors/technologies/trustzone/tee-smc.php
.. _Power State Coordination Interface (PSCI): PSCI_
.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
.. _SMC Calling Convention: http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf
.. _System Control and Management Interface: SCMI_
.. _SCMI: http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/DEN0056A_System_Control_and_Management_Interface.pdf
.. _Juno ARM Development Platform: http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
.. _ARM FVP website: FVP_
.. _Juno Arm Development Platform: http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
.. _Arm FVP website: FVP_
.. _FVP: https://developer.arm.com/products/system-design/fixed-virtual-platforms
.. _Linaro Release 17.04: https://community.arm.com/dev-platforms/b/documents/posts/linaro-release-notes-deprecated#LinaroRelease17.04
.. _OP-TEE Secure OS: https://github.com/OP-TEE/optee_os
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment