Unverified Commit fca0a51f authored by Antonio Niño Díaz's avatar Antonio Niño Díaz Committed by GitHub
Browse files

Merge pull request #1707 from antonio-nino-diaz-arm/an/spm

SPM: Initial prototype based on SPCI and SPRT
parents 19122fca 2ada829d
/*
* Copyright (c) 2018, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef SPRT_QUEUE_H
#define SPRT_QUEUE_H
#include <stdint.h>
/* Struct that defines a queue. Not to be used directly. */
struct __attribute__((__packed__)) sprt_queue {
uint32_t entry_num; /* Number of entries */
uint32_t entry_size; /* Size of an entry */
uint32_t idx_write; /* Index of first empty entry */
uint32_t idx_read; /* Index of first entry to read */
uint8_t data[0]; /* Start of data */
};
#define SPRT_QUEUE_HEADER_SIZE (sizeof(struct sprt_queue))
/*
* Initializes a memory region to be used as a queue of the given number of
* entries with the specified size.
*/
void sprt_queue_init(void *queue_base, uint32_t entry_num, uint32_t entry_size);
/* Returns 1 if the queue is empty, 0 otherwise */
int sprt_queue_is_empty(void *queue_base);
/* Returns 1 if the queue is full, 0 otherwise */
int sprt_queue_is_full(void *queue_base);
/*
* Pushes a new entry intro the queue. Returns 0 on success, -ENOMEM if the
* queue is full.
*/
int sprt_queue_push(void *queue_base, const void *entry);
/*
* Pops an entry from the queue. Returns 0 on success, -ENOENT if the queue is
* empty.
*/
int sprt_queue_pop(void *queue_base, void *entry);
#endif /* SPRT_QUEUE_H */
......@@ -1101,6 +1101,36 @@ int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx, uintptr_t base_va,
return 0;
}
void xlat_setup_dynamic_ctx(xlat_ctx_t *ctx, unsigned long long pa_max,
uintptr_t va_max, struct mmap_region *mmap,
unsigned int mmap_num, uint64_t **tables,
unsigned int tables_num, uint64_t *base_table,
int xlat_regime, int *mapped_regions)
{
ctx->xlat_regime = xlat_regime;
ctx->pa_max_address = pa_max;
ctx->va_max_address = va_max;
ctx->mmap = mmap;
ctx->mmap_num = mmap_num;
memset(ctx->mmap, 0, sizeof(struct mmap_region) * mmap_num);
ctx->tables = (void *) tables;
ctx->tables_num = tables_num;
uintptr_t va_space_size = va_max + 1;
ctx->base_level = GET_XLAT_TABLE_LEVEL_BASE(va_space_size);
ctx->base_table = base_table;
ctx->base_table_entries = GET_NUM_BASE_LEVEL_ENTRIES(va_space_size);
ctx->tables_mapped_regions = mapped_regions;
ctx->max_pa = 0;
ctx->max_va = 0;
ctx->initialized = 0;
}
#endif /* PLAT_XLAT_TABLES_DYNAMIC */
void __init init_xlat_tables_ctx(xlat_ctx_t *ctx)
......
......@@ -162,6 +162,9 @@ SPD := none
# For including the Secure Partition Manager
ENABLE_SPM := 0
# Use the deprecated SPM based on MM
SPM_DEPRECATED := 1
# Flag to introduce an infinite loop in BL1 just before it exits into the next
# image. This is meant to help debugging the post-BL2 phase.
SPIN_ON_BL1_EXIT := 0
......
......@@ -96,9 +96,12 @@ const mmap_region_t plat_arm_mmap[] = {
ARM_MAP_BL1_RW,
#endif
#endif /* TRUSTED_BOARD_BOOT */
#if ENABLE_SPM
#if ENABLE_SPM && SPM_DEPRECATED
ARM_SP_IMAGE_MMAP,
#endif
#if ENABLE_SPM && !SPM_DEPRECATED
PLAT_MAP_SP_PACKAGE_MEM_RW,
#endif
#if ARM_BL31_IN_DRAM
ARM_MAP_BL31_SEC_DRAM,
#endif
......@@ -124,13 +127,16 @@ const mmap_region_t plat_arm_mmap[] = {
MAP_DEVICE0,
MAP_DEVICE1,
ARM_V2M_MAP_MEM_PROTECT,
#if ENABLE_SPM
#if ENABLE_SPM && SPM_DEPRECATED
ARM_SPM_BUF_EL3_MMAP,
#endif
#if ENABLE_SPM && !SPM_DEPRECATED
PLAT_MAP_SP_PACKAGE_MEM_RO,
#endif
{0}
};
#if ENABLE_SPM && defined(IMAGE_BL31)
#if ENABLE_SPM && defined(IMAGE_BL31) && SPM_DEPRECATED
const mmap_region_t plat_arm_secure_partition_mmap[] = {
V2M_MAP_IOFPGA_EL0, /* for the UART */
MAP_REGION_FLAT(DEVICE0_BASE, \
......@@ -184,7 +190,7 @@ static unsigned int get_interconnect_master(void)
}
#endif
#if ENABLE_SPM && defined(IMAGE_BL31)
#if ENABLE_SPM && defined(IMAGE_BL31) && SPM_DEPRECATED
/*
* Boot information passed to a secure partition during initialisation. Linear
* indices in MP information will be filled at runtime.
......@@ -232,7 +238,6 @@ const struct secure_partition_boot_info *plat_get_secure_partition_boot_info(
{
return &plat_arm_secure_partition_boot_info;
}
#endif
/*******************************************************************************
......
......@@ -13,7 +13,7 @@
# define PLAT_XLAT_TABLES_DYNAMIC 1
# endif
#else
# if defined(IMAGE_BL31) && RESET_TO_BL31
# if defined(IMAGE_BL31) && (RESET_TO_BL31 || (ENABLE_SPM && !SPM_DEPRECATED))
# define PLAT_XLAT_TABLES_DYNAMIC 1
# endif
#endif /* AARCH32 */
......@@ -72,8 +72,8 @@
#if defined(IMAGE_BL31)
# if ENABLE_SPM
# define PLAT_ARM_MMAP_ENTRIES 9
# define MAX_XLAT_TABLES 7
# define PLAT_SP_IMAGE_MMAP_REGIONS 7
# define MAX_XLAT_TABLES 9
# define PLAT_SP_IMAGE_MMAP_REGIONS 30
# define PLAT_SP_IMAGE_MAX_XLAT_TABLES 10
# else
# define PLAT_ARM_MMAP_ENTRIES 8
......@@ -123,7 +123,11 @@
* calculated using the current BL31 PROGBITS debug size plus the sizes of
* BL2 and BL1-RW
*/
#if ENABLE_SPM && !SPM_DEPRECATED
#define PLAT_ARM_MAX_BL31_SIZE UL(0x60000)
#else
#define PLAT_ARM_MAX_BL31_SIZE UL(0x3B000)
#endif
#ifdef AARCH32
/*
......@@ -153,7 +157,7 @@
# define PLATFORM_STACK_SIZE UL(0x400)
#elif defined(IMAGE_BL31)
# if ENABLE_SPM
# define PLATFORM_STACK_SIZE UL(0x500)
# define PLATFORM_STACK_SIZE UL(0x600)
# elif PLAT_XLAT_TABLES_DYNAMIC
# define PLATFORM_STACK_SIZE UL(0x800)
# else
......
......@@ -244,6 +244,16 @@ BL31_SOURCES += lib/extensions/ras/std_err_record.c \
lib/extensions/ras/ras_common.c
endif
# SPM uses libfdt in Arm platforms
ifeq (${SPM_DEPRECATED},0)
ifeq (${ENABLE_SPM},1)
BL31_SOURCES += common/fdt_wrappers.c \
plat/common/plat_spm_rd.c \
plat/common/plat_spm_sp.c \
${LIBFDT_SRCS}
endif
endif
ifneq (${TRUSTED_BOARD_BOOT},0)
# Include common TBB sources
......
/*
* Copyright (c) 2018, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <debug.h>
#include <fdt_wrappers.h>
#include <libfdt.h>
#include <platform_def.h>
#include <sp_res_desc.h>
#include <string.h>
#include <object_pool.h>
/*******************************************************************************
* Resource pool
******************************************************************************/
static struct sp_rd_sect_mem_region rd_mem_regions[PLAT_SPM_MEM_REGIONS_MAX];
static OBJECT_POOL_ARRAY(rd_mem_regions_pool, rd_mem_regions);
static struct sp_rd_sect_notification rd_notifs[PLAT_SPM_NOTIFICATIONS_MAX];
static OBJECT_POOL_ARRAY(rd_notifs_pool, rd_notifs);
static struct sp_rd_sect_service rd_services[PLAT_SPM_SERVICES_MAX];
static OBJECT_POOL_ARRAY(rd_services_pool, rd_services);
/*******************************************************************************
* Attribute section handler
******************************************************************************/
static void rd_parse_attribute(struct sp_rd_sect_attribute *attr,
const void *fdt, int node)
{
int rc = 0;
/* The minimum size that can be read from the DTB is 32-bit. */
uint32_t version, sp_type, runtime_el, exec_type;
uint32_t panic_policy, xlat_granule;
rc |= fdtw_read_cells(fdt, node, "version", 1, &version);
if (version != 1) {
ERROR("Unsupported resource description version: 0x%x\n",
version);
panic();
}
rc |= fdtw_read_cells(fdt, node, "sp_type", 1, &sp_type);
rc |= fdtw_read_cells(fdt, node, "pe_mpidr", 1, &attr->pe_mpidr);
rc |= fdtw_read_cells(fdt, node, "runtime_el", 1, &runtime_el);
rc |= fdtw_read_cells(fdt, node, "exec_type", 1, &exec_type);
rc |= fdtw_read_cells(fdt, node, "panic_policy", 1, &panic_policy);
rc |= fdtw_read_cells(fdt, node, "xlat_granule", 1, &xlat_granule);
rc |= fdtw_read_cells(fdt, node, "binary_size", 1, &attr->binary_size);
rc |= fdtw_read_cells(fdt, node, "load_address", 2, &attr->load_address);
rc |= fdtw_read_cells(fdt, node, "entrypoint", 2, &attr->entrypoint);
attr->version = version;
attr->sp_type = sp_type;
attr->runtime_el = runtime_el;
attr->exec_type = exec_type;
attr->panic_policy = panic_policy;
attr->xlat_granule = xlat_granule;
VERBOSE(" Attribute Section:\n");
VERBOSE(" version: 0x%x\n", version);
VERBOSE(" sp_type: 0x%x\n", sp_type);
VERBOSE(" pe_mpidr: 0x%x\n", attr->pe_mpidr);
VERBOSE(" runtime_el: 0x%x\n", runtime_el);
VERBOSE(" exec_type: 0x%x\n", exec_type);
VERBOSE(" panic_policy: 0x%x\n", panic_policy);
VERBOSE(" xlat_granule: 0x%x\n", xlat_granule);
VERBOSE(" binary_size: 0x%x\n", attr->binary_size);
VERBOSE(" load_address: 0x%llx\n", attr->load_address);
VERBOSE(" entrypoint: 0x%llx\n", attr->entrypoint);
if (rc) {
ERROR("Failed to read attribute node elements.\n");
panic();
}
}
/*******************************************************************************
* Memory regions section handlers
******************************************************************************/
static void rd_parse_memory_region(struct sp_rd_sect_mem_region *rdmem,
const void *fdt, int node)
{
int rc = 0;
char name[RD_MEM_REGION_NAME_LEN];
rc |= fdtw_read_string(fdt, node, "str", (char *)&name, sizeof(name));
rc |= fdtw_read_cells(fdt, node, "attr", 1, &rdmem->attr);
rc |= fdtw_read_cells(fdt, node, "base", 2, &rdmem->base);
rc |= fdtw_read_cells(fdt, node, "size", 2, &rdmem->size);
size_t len = strlcpy(rdmem->name, name, RD_MEM_REGION_NAME_LEN);
if (len >= RD_MEM_REGION_NAME_LEN) {
WARN("Memory region name truncated: '%s'\n", name);
}
VERBOSE(" Memory Region:\n");
VERBOSE(" name: '%s'\n", rdmem->name);
VERBOSE(" attr: 0x%x\n", rdmem->attr);
VERBOSE(" base: 0x%llx\n", rdmem->base);
VERBOSE(" size: 0x%llx\n", rdmem->size);
if (rc) {
ERROR("Failed to read mem_region node elements.\n");
panic();
}
}
static void rd_parse_memory_regions(struct sp_res_desc *rd, const void *fdt,
int node)
{
int child;
struct sp_rd_sect_mem_region *rdmem, *old_rdmem;
fdt_for_each_subnode(child, fdt, node) {
rdmem = pool_alloc(&rd_mem_regions_pool);
/* Add element to the start of the list */
old_rdmem = rd->mem_region;
rd->mem_region = rdmem;
rdmem->next = old_rdmem;
rd_parse_memory_region(rdmem, fdt, child);
}
if ((child < 0) && (child != -FDT_ERR_NOTFOUND)) {
ERROR("%d: fdt_for_each_subnode(): %d\n", __LINE__, node);
panic();
}
}
/*******************************************************************************
* Notifications section handlers
******************************************************************************/
static void rd_parse_notification(struct sp_rd_sect_notification *rdnot,
const void *fdt, int node)
{
int rc = 0;
rc |= fdtw_read_cells(fdt, node, "attr", 1, &rdnot->attr);
rc |= fdtw_read_cells(fdt, node, "pe", 1, &rdnot->pe);
VERBOSE(" Notification:\n");
VERBOSE(" attr: 0x%x\n", rdnot->attr);
VERBOSE(" pe: 0x%x\n", rdnot->pe);
if (rc) {
ERROR("Failed to read notification node elements.\n");
panic();
}
}
static void rd_parse_notifications(struct sp_res_desc *rd, const void *fdt, int node)
{
int child;
struct sp_rd_sect_notification *rdnot, *old_rdnot;
fdt_for_each_subnode(child, fdt, node) {
rdnot = pool_alloc(&rd_notifs_pool);
/* Add element to the start of the list */
old_rdnot = rd->notification;
rd->notification = rdnot;
rdnot->next = old_rdnot;
rd_parse_notification(rdnot, fdt, child);
}
if ((child < 0) && (child != -FDT_ERR_NOTFOUND)) {
ERROR("%d: fdt_for_each_subnode(): %d\n", __LINE__, child);
panic();
}
}
/*******************************************************************************
* Services section handlers
******************************************************************************/
static void rd_parse_service(struct sp_rd_sect_service *rdsvc, const void *fdt,
int node)
{
int rc = 0;
/* The minimum size that can be read from the DTB is 32-bit. */
uint32_t accessibility, request_type, connection_quota;
rc |= fdtw_read_array(fdt, node, "uuid", 4, &rdsvc->uuid);
rc |= fdtw_read_cells(fdt, node, "accessibility", 1, &accessibility);
rc |= fdtw_read_cells(fdt, node, "request_type", 1, &request_type);
rc |= fdtw_read_cells(fdt, node, "connection_quota", 1, &connection_quota);
rc |= fdtw_read_cells(fdt, node, "sec_mem_size", 1, &rdsvc->secure_mem_size);
rc |= fdtw_read_cells(fdt, node, "interrupt_num", 1, &rdsvc->interrupt_num);
rdsvc->accessibility = accessibility;
rdsvc->request_type = request_type;
rdsvc->connection_quota = connection_quota;
VERBOSE(" Service:\n");
VERBOSE(" uuid: 0x%08x 0x%08x 0x%08x 0x%08x\n", rdsvc->uuid[0],
rdsvc->uuid[1], rdsvc->uuid[2], rdsvc->uuid[3]);
VERBOSE(" accessibility: 0x%x\n", accessibility);
VERBOSE(" request_type: 0x%x\n", request_type);
VERBOSE(" connection_quota: 0x%x\n", connection_quota);
VERBOSE(" secure_memory_size: 0x%x\n", rdsvc->secure_mem_size);
VERBOSE(" interrupt_num: 0x%x\n", rdsvc->interrupt_num);
if (rc) {
ERROR("Failed to read attribute node elements.\n");
panic();
}
}
static void rd_parse_services(struct sp_res_desc *rd, const void *fdt, int node)
{
int child;
struct sp_rd_sect_service *rdsvc, *old_rdsvc;
fdt_for_each_subnode(child, fdt, node) {
rdsvc = pool_alloc(&rd_services_pool);
/* Add element to the start of the list */
old_rdsvc = rd->service;
rd->service = rdsvc;
rdsvc->next = old_rdsvc;
rd_parse_service(rdsvc, fdt, child);
}
if ((child < 0) && (child != -FDT_ERR_NOTFOUND)) {
ERROR("%d: fdt_for_each_subnode(): %d\n", __LINE__, node);
panic();
}
}
/*******************************************************************************
* Root node handler
******************************************************************************/
static void rd_parse_root(struct sp_res_desc *rd, const void *fdt, int root)
{
int node;
char *str;
str = "attribute";
node = fdt_subnode_offset_namelen(fdt, root, str, strlen(str));
if (node < 0) {
ERROR("Root node doesn't contain subnode '%s'\n", str);
panic();
} else {
rd_parse_attribute(&rd->attribute, fdt, node);
}
str = "memory_regions";
node = fdt_subnode_offset_namelen(fdt, root, str, strlen(str));
if (node < 0) {
ERROR("Root node doesn't contain subnode '%s'\n", str);
panic();
} else {
rd_parse_memory_regions(rd, fdt, node);
}
str = "notifications";
node = fdt_subnode_offset_namelen(fdt, root, str, strlen(str));
if (node < 0) {
WARN("Root node doesn't contain subnode '%s'\n", str);
} else {
rd_parse_notifications(rd, fdt, node);
}
str = "services";
node = fdt_subnode_offset_namelen(fdt, root, str, strlen(str));
if (node < 0) {
WARN("Root node doesn't contain subnode '%s'\n", str);
} else {
rd_parse_services(rd, fdt, node);
}
}
/*******************************************************************************
* Platform handler to load resource descriptor blobs into the active Secure
* Partition context.
******************************************************************************/
int plat_spm_sp_rd_load(struct sp_res_desc *rd, const void *ptr, size_t size)
{
int rc;
int root_node;
assert(rd != NULL);
assert(ptr != NULL);
INFO("Reading RD blob at address %p\n", ptr);
rc = fdt_check_header(ptr);
if (rc != 0) {
ERROR("Wrong format for resource descriptor blob (%d).\n", rc);
return -1;
}
root_node = fdt_node_offset_by_compatible(ptr, -1, "arm,sp_rd");
if (root_node < 0) {
ERROR("Unrecognized resource descriptor blob (%d)\n", rc);
return -1;
}
rd_parse_root(rd, ptr, root_node);
return 0;
}
/*
* Copyright (c) 2018, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <debug.h>
#include <platform_def.h>
#include <sptool.h>
static unsigned int sp_next;
/*******************************************************************************
* Platform handler get the address of a Secure Partition and its resource
* description blob. It iterates through all SPs detected by the platform. If
* there is information for another SP, it returns 0. If there are no more SPs,
* it returns -1.
******************************************************************************/
int plat_spm_sp_get_next_address(void **sp_base, size_t *sp_size,
void **rd_base, size_t *rd_size)
{
assert((sp_base != NULL) && (sp_size != NULL));
assert((rd_base != NULL) && (rd_base != NULL));
const uint64_t *pkg_base = (uint64_t *)PLAT_SP_PACKAGE_BASE;
struct sp_pkg_header *pkg_header = (struct sp_pkg_header *)pkg_base;
if (sp_next == 0) {
if (pkg_header->version != 0x1) {
ERROR("SP package has an unsupported version 0x%llx\n",
pkg_header->version);
panic();
}
}
if (sp_next >= pkg_header->number_of_sp) {
/* No more partitions in the package */
return -1;
}
const struct sp_pkg_entry *entry_list =
(const struct sp_pkg_entry *)((uintptr_t)pkg_base
+ sizeof(struct sp_pkg_header));
const struct sp_pkg_entry *entry = &(entry_list[sp_next]);
uint64_t sp_offset = entry->sp_offset;
uint64_t rd_offset = entry->rd_offset;
uintptr_t pkg_sp_base = ((uintptr_t)PLAT_SP_PACKAGE_BASE + sp_offset);
uintptr_t pkg_rd_base = ((uintptr_t)PLAT_SP_PACKAGE_BASE + rd_offset);
uint64_t pkg_sp_size = entry->sp_size;
uint64_t pkg_rd_size = entry->rd_size;
uintptr_t pkg_end = (uintptr_t)PLAT_SP_PACKAGE_BASE
+ (uintptr_t)PLAT_SP_PACKAGE_SIZE - 1U;
/*
* Check for overflows. The package header isn't trusted, so assert()
* can't be used here.
*/
uintptr_t pkg_sp_end = pkg_sp_base + pkg_sp_size - 1U;
uintptr_t pkg_rd_end = pkg_rd_base + pkg_rd_size - 1U;
if ((pkg_sp_end > pkg_end) || (pkg_sp_end < pkg_sp_base)) {
ERROR("Invalid Secure Partition size (0x%llx)\n", pkg_sp_size);
panic();
}
if ((pkg_rd_end > pkg_end) || (pkg_rd_end < pkg_rd_base)) {
ERROR("Invalid Resource Description blob size (0x%llx)\n",
pkg_rd_size);
panic();
}
/* Return location of the binaries. */
*sp_base = (void *)pkg_sp_base;
*sp_size = pkg_sp_size;
*rd_base = (void *)pkg_rd_base;
*rd_size = pkg_rd_size;
sp_next++;
return 0;
}
This is a prototype loosely based on the SPCI Alpha and SPRT pre-alpha
specifications. Any interface / platform API introduced for this is subject to
change as it evolves.
This diff is collapsed.
......@@ -11,13 +11,23 @@ ifneq (${ARCH},aarch64)
$(error "Error: SPM is only supported on aarch64.")
endif
include lib/sprt/sprt_host.mk
SPM_SOURCES := $(addprefix services/std_svc/spm/, \
${ARCH}/spm_helpers.S \
${ARCH}/spm_shim_exceptions.S \
spci.c \
spm_buffers.c \
spm_main.c \
sp_setup.c \
sp_xlat.c)
spm_setup.c \
spm_xlat.c \
sprt.c) \
${SPRT_LIB_SOURCES}
INCLUDES += ${SPRT_LIB_INCLUDES}
# Force SMC Calling Convention 2 when using SPM
SMCCC_MAJOR_VERSION := 2
# Let the top-level Makefile know that we intend to include a BL32 image
NEED_BL32 := yes
/*
* Copyright (c) 2018, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <platform_def.h>
#include <spinlock.h>
#include <utils_def.h>
/*******************************************************************************
* Secure Service response global array. All the responses to the requests done
* to the Secure Partition are stored here. They are removed from the array as
* soon as their value is read.
******************************************************************************/
struct sprt_response {
int is_valid;
uint32_t token;
uint16_t client_id, handle;
u_register_t x1, x2, x3;
};
static struct sprt_response responses[PLAT_SPM_RESPONSES_MAX];
static spinlock_t responses_lock;
/* Add response to the global response buffer. Returns 0 on success else -1. */
int spm_response_add(uint16_t client_id, uint16_t handle, uint32_t token,
u_register_t x1, u_register_t x2, u_register_t x3)
{
spin_lock(&responses_lock);
/* Make sure that there isn't any other response with the same token. */
for (unsigned int i = 0U; i < ARRAY_SIZE(responses); i++) {
struct sprt_response *resp = &(responses[i]);
if ((resp->is_valid == 1) && (resp->token == token)) {
return -1;
}
}
for (int i = 0; i < ARRAY_SIZE(responses); i++) {
struct sprt_response *resp = &(responses[i]);
if (resp->is_valid == 0) {
resp->token = token;
resp->client_id = client_id;
resp->handle = handle;
resp->x1 = x1;
resp->x2 = x2;
resp->x3 = x3;
dmbish();
resp->is_valid = 1;
spin_unlock(&responses_lock);
return 0;
}
}
spin_unlock(&responses_lock);
return -1;
}
/*
* Returns a response from the requests array and removes it from it. Returns 0
* on success, -1 if it wasn't found.
*/
int spm_response_get(uint16_t client_id, uint16_t handle, uint32_t token,
u_register_t *x1, u_register_t *x2, u_register_t *x3)
{
spin_lock(&responses_lock);
for (unsigned int i = 0U; i < ARRAY_SIZE(responses); i++) {
struct sprt_response *resp = &(responses[i]);
/* Ignore invalid entries */
if (resp->is_valid == 0) {
continue;
}
/* Make sure that all the information matches the stored one */
if ((resp->token != token) || (resp->client_id != client_id) ||
(resp->handle != handle)) {
continue;
}
*x1 = resp->x1;
*x2 = resp->x2;
*x3 = resp->x3;
dmbish();
resp->is_valid = 0;
spin_unlock(&responses_lock);
return 0;
}
spin_unlock(&responses_lock);
return -1;
}
......@@ -11,14 +11,14 @@
#include <debug.h>
#include <ehf.h>
#include <errno.h>
#include <mm_svc.h>
#include <interrupt_mgmt.h>
#include <platform.h>
#include <runtime_svc.h>
#include <secure_partition.h>
#include <smccc.h>
#include <smccc_helpers.h>
#include <spinlock.h>
#include <spm_svc.h>
#include <string.h>
#include <sprt_svc.h>
#include <utils.h>
#include <xlat_tables_v2.h>
......@@ -27,7 +27,89 @@
/*******************************************************************************
* Secure Partition context information.
******************************************************************************/
static sp_context_t sp_ctx;
sp_context_t sp_ctx_array[PLAT_SPM_MAX_PARTITIONS];
/* Last Secure Partition last used by the CPU */
sp_context_t *cpu_sp_ctx[PLATFORM_CORE_COUNT];
void spm_cpu_set_sp_ctx(unsigned int linear_id, sp_context_t *sp_ctx)
{
assert(linear_id < PLATFORM_CORE_COUNT);
cpu_sp_ctx[linear_id] = sp_ctx;
}
sp_context_t *spm_cpu_get_sp_ctx(unsigned int linear_id)
{
assert(linear_id < PLATFORM_CORE_COUNT);
return cpu_sp_ctx[linear_id];
}
/*******************************************************************************
* Functions to keep track of how many requests a Secure Partition has received
* and hasn't finished.
******************************************************************************/
void spm_sp_request_increase(sp_context_t *sp_ctx)
{
spin_lock(&(sp_ctx->request_count_lock));
sp_ctx->request_count++;
spin_unlock(&(sp_ctx->request_count_lock));
}
void spm_sp_request_decrease(sp_context_t *sp_ctx)
{
spin_lock(&(sp_ctx->request_count_lock));
sp_ctx->request_count--;
spin_unlock(&(sp_ctx->request_count_lock));
}
/* Returns 0 if it was originally 0, -1 otherwise. */
int spm_sp_request_increase_if_zero(sp_context_t *sp_ctx)
{
int ret = -1;
spin_lock(&(sp_ctx->request_count_lock));
if (sp_ctx->request_count == 0U) {
sp_ctx->request_count++;
ret = 0U;
}
spin_unlock(&(sp_ctx->request_count_lock));
return ret;
}
/*******************************************************************************
* This function returns a pointer to the context of the Secure Partition that
* handles the service specified by an UUID. It returns NULL if the UUID wasn't
* found.
******************************************************************************/
sp_context_t *spm_sp_get_by_uuid(const uint32_t (*svc_uuid)[4])
{
unsigned int i;
for (i = 0U; i < PLAT_SPM_MAX_PARTITIONS; i++) {
sp_context_t *sp_ctx = &sp_ctx_array[i];
if (sp_ctx->is_present == 0) {
continue;
}
struct sp_rd_sect_service *rdsvc;
for (rdsvc = sp_ctx->rd.service; rdsvc != NULL;
rdsvc = rdsvc->next) {
uint32_t *rd_uuid = (uint32_t *)(rdsvc->uuid);
if (memcmp(rd_uuid, svc_uuid, sizeof(rd_uuid)) == 0) {
return sp_ctx;
}
}
}
return NULL;
}
/*******************************************************************************
* Set state of a Secure Partition context.
......@@ -85,13 +167,15 @@ int sp_state_try_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to)
* This function takes an SP context pointer and performs a synchronous entry
* into it.
******************************************************************************/
static uint64_t spm_sp_synchronous_entry(sp_context_t *sp_ctx)
uint64_t spm_sp_synchronous_entry(sp_context_t *sp_ctx, int can_preempt)
{
uint64_t rc;
unsigned int linear_id = plat_my_core_pos();
assert(sp_ctx != NULL);
/* Assign the context of the SP to this CPU */
spm_cpu_set_sp_ctx(linear_id, sp_ctx);
cm_set_context(&(sp_ctx->cpu_ctx), SECURE);
/* Restore the context assigned above */
......@@ -102,6 +186,12 @@ static uint64_t spm_sp_synchronous_entry(sp_context_t *sp_ctx)
tlbivmalle1();
dsbish();
if (can_preempt == 1) {
enable_intr_rm_local(INTR_TYPE_NS, SECURE);
} else {
disable_intr_rm_local(INTR_TYPE_NS, SECURE);
}
/* Enter Secure Partition */
rc = spm_secure_partition_enter(&sp_ctx->c_rt_ctx);
......@@ -115,9 +205,11 @@ static uint64_t spm_sp_synchronous_entry(sp_context_t *sp_ctx)
* This function returns to the place where spm_sp_synchronous_entry() was
* called originally.
******************************************************************************/
__dead2 static void spm_sp_synchronous_exit(uint64_t rc)
__dead2 void spm_sp_synchronous_exit(uint64_t rc)
{
sp_context_t *ctx = &sp_ctx;
/* Get context of the SP in use by this CPU. */
unsigned int linear_id = plat_my_core_pos();
sp_context_t *ctx = spm_cpu_get_sp_ctx(linear_id);
/*
* The SPM must have initiated the original request through a
......@@ -129,26 +221,50 @@ __dead2 static void spm_sp_synchronous_exit(uint64_t rc)
panic();
}
/*******************************************************************************
* This function is the handler registered for Non secure interrupts by the SPM.
* It validates the interrupt and upon success arranges entry into the normal
* world for handling the interrupt.
******************************************************************************/
static uint64_t spm_ns_interrupt_handler(uint32_t id, uint32_t flags,
void *handle, void *cookie)
{
/* Check the security state when the exception was generated */
assert(get_interrupt_src_ss(flags) == SECURE);
spm_sp_synchronous_exit(SPM_SECURE_PARTITION_PREEMPTED);
}
/*******************************************************************************
* Jump to each Secure Partition for the first time.
******************************************************************************/
static int32_t spm_init(void)
{
uint64_t rc;
uint64_t rc = 0;
sp_context_t *ctx;
INFO("Secure Partition init...\n");
for (unsigned int i = 0U; i < PLAT_SPM_MAX_PARTITIONS; i++) {
ctx = &sp_ctx_array[i];
if (ctx->is_present == 0) {
continue;
}
ctx = &sp_ctx;
INFO("Secure Partition %u init...\n", i);
ctx->state = SP_STATE_RESET;
rc = spm_sp_synchronous_entry(ctx);
assert(rc == 0);
rc = spm_sp_synchronous_entry(ctx, 0);
if (rc != SPRT_YIELD_AARCH64) {
ERROR("Unexpected return value 0x%llx\n", rc);
panic();
}
ctx->state = SP_STATE_IDLE;
INFO("Secure Partition initialized.\n");
INFO("Secure Partition %u initialized.\n", i);
}
return rc;
}
......@@ -158,196 +274,84 @@ static int32_t spm_init(void)
******************************************************************************/
int32_t spm_setup(void)
{
int rc;
sp_context_t *ctx;
void *sp_base, *rd_base;
size_t sp_size, rd_size;
uint64_t flags = 0U;
/* Disable MMU at EL1 (initialized by BL2) */
disable_mmu_icache_el1();
/* Initialize context of the SP */
INFO("Secure Partition context setup start...\n");
ctx = &sp_ctx;
/* Assign translation tables context. */
ctx->xlat_ctx_handle = spm_get_sp_xlat_context();
spm_sp_setup(ctx);
/* Register init function for deferred init. */
bl31_register_bl32_init(&spm_init);
INFO("Secure Partition setup done.\n");
return 0;
}
/*******************************************************************************
* Function to perform a call to a Secure Partition.
******************************************************************************/
uint64_t spm_sp_call(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3)
{
uint64_t rc;
sp_context_t *sp_ptr = &sp_ctx;
/* Wait until the Secure Partition is idle and set it to busy. */
sp_state_wait_switch(sp_ptr, SP_STATE_IDLE, SP_STATE_BUSY);
/* Set values for registers on SP entry */
cpu_context_t *cpu_ctx = &(sp_ptr->cpu_ctx);
write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X0, smc_fid);
write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X1, x1);
write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X2, x2);
write_ctx_reg(get_gpregs_ctx(cpu_ctx), CTX_GPREG_X3, x3);
/* Jump to the Secure Partition. */
rc = spm_sp_synchronous_entry(sp_ptr);
/* Flag Secure Partition as idle. */
assert(sp_ptr->state == SP_STATE_BUSY);
sp_state_set(sp_ptr, SP_STATE_IDLE);
return rc;
}
/*******************************************************************************
* MM_COMMUNICATE handler
******************************************************************************/
static uint64_t mm_communicate(uint32_t smc_fid, uint64_t mm_cookie,
uint64_t comm_buffer_address,
uint64_t comm_size_address, void *handle)
{
uint64_t rc;
/* Cookie. Reserved for future use. It must be zero. */
if (mm_cookie != 0U) {
ERROR("MM_COMMUNICATE: cookie is not zero\n");
SMC_RET1(handle, SPM_INVALID_PARAMETER);
}
if (comm_buffer_address == 0U) {
ERROR("MM_COMMUNICATE: comm_buffer_address is zero\n");
SMC_RET1(handle, SPM_INVALID_PARAMETER);
}
if (comm_size_address != 0U) {
VERBOSE("MM_COMMUNICATE: comm_size_address is not 0 as recommended.\n");
}
/*
* The current secure partition design mandates
* - at any point, only a single core can be
* executing in the secure partiton.
* - a core cannot be preempted by an interrupt
* while executing in secure partition.
* Raise the running priority of the core to the
* interrupt level configured for secure partition
* so as to block any interrupt from preempting this
* core.
* Non-blocking services can be interrupted by Non-secure interrupts.
* Register an interrupt handler for NS interrupts when generated while
* the CPU is in secure state. They are routed to EL3.
*/
ehf_activate_priority(PLAT_SP_PRI);
/* Save the Normal world context */
cm_el1_sysregs_context_save(NON_SECURE);
rc = spm_sp_call(smc_fid, comm_buffer_address, comm_size_address,
plat_my_core_pos());
set_interrupt_rm_flag(flags, SECURE);
/* Restore non-secure state */
cm_el1_sysregs_context_restore(NON_SECURE);
cm_set_next_eret_context(NON_SECURE);
uint64_t rc_int = register_interrupt_type_handler(INTR_TYPE_NS,
spm_ns_interrupt_handler, flags);
if (rc_int) {
ERROR("SPM: Failed to register NS interrupt handler with rc = %llx\n",
rc_int);
panic();
}
/*
* Exited from secure partition. This core can take
* interrupts now.
* Setup all Secure Partitions.
*/
ehf_deactivate_priority(PLAT_SP_PRI);
unsigned int i = 0U;
SMC_RET1(handle, rc);
}
while (1) {
rc = plat_spm_sp_get_next_address(&sp_base, &sp_size,
&rd_base, &rd_size);
if (rc < 0) {
/* Reached the end of the package. */
break;
}
/*******************************************************************************
* Secure Partition Manager SMC handler.
******************************************************************************/
uint64_t spm_smc_handler(uint32_t smc_fid,
uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *cookie,
void *handle,
uint64_t flags)
{
unsigned int ns;
if (i >= PLAT_SPM_MAX_PARTITIONS) {
ERROR("Too many partitions in the package.\n");
panic();
}
/* Determine which security state this SMC originated from */
ns = is_caller_non_secure(flags);
ctx = &sp_ctx_array[i];
if (ns == SMC_FROM_SECURE) {
assert(ctx->is_present == 0);
/* Handle SMCs from Secure world. */
/* Initialize context of the SP */
INFO("Secure Partition %u context setup start...\n", i);
assert(handle == cm_get_context(SECURE));
/* Assign translation tables context. */
ctx->xlat_ctx_handle = spm_sp_xlat_context_alloc();
/* Make next ERET jump to S-EL0 instead of S-EL1. */
cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1());
/* Save location of the image in physical memory */
ctx->image_base = (uintptr_t)sp_base;
ctx->image_size = sp_size;
switch (smc_fid) {
rc = plat_spm_sp_rd_load(&ctx->rd, rd_base, rd_size);
if (rc < 0) {
ERROR("Error while loading RD blob.\n");
panic();
}
case SPM_VERSION_AARCH32:
SMC_RET1(handle, SPM_VERSION_COMPILED);
spm_sp_setup(ctx);
case SP_EVENT_COMPLETE_AARCH64:
spm_sp_synchronous_exit(x1);
ctx->is_present = 1;
case SP_MEMORY_ATTRIBUTES_GET_AARCH64:
INFO("Received SP_MEMORY_ATTRIBUTES_GET_AARCH64 SMC\n");
INFO("Secure Partition %u setup done.\n", i);
if (sp_ctx.state != SP_STATE_RESET) {
WARN("SP_MEMORY_ATTRIBUTES_GET_AARCH64 is available at boot time only\n");
SMC_RET1(handle, SPM_NOT_SUPPORTED);
i++;
}
SMC_RET1(handle,
spm_memory_attributes_get_smc_handler(
&sp_ctx, x1));
case SP_MEMORY_ATTRIBUTES_SET_AARCH64:
INFO("Received SP_MEMORY_ATTRIBUTES_SET_AARCH64 SMC\n");
if (sp_ctx.state != SP_STATE_RESET) {
WARN("SP_MEMORY_ATTRIBUTES_SET_AARCH64 is available at boot time only\n");
SMC_RET1(handle, SPM_NOT_SUPPORTED);
}
SMC_RET1(handle,
spm_memory_attributes_set_smc_handler(
&sp_ctx, x1, x2, x3));
default:
break;
if (i == 0U) {
ERROR("No present partitions in the package.\n");
panic();
}
} else {
/* Handle SMCs from Non-secure world. */
assert(handle == cm_get_context(NON_SECURE));
switch (smc_fid) {
case MM_VERSION_AARCH32:
SMC_RET1(handle, MM_VERSION_COMPILED);
case MM_COMMUNICATE_AARCH32:
case MM_COMMUNICATE_AARCH64:
return mm_communicate(smc_fid, x1, x2, x3, handle);
case SP_MEMORY_ATTRIBUTES_GET_AARCH64:
case SP_MEMORY_ATTRIBUTES_SET_AARCH64:
/* SMC interfaces reserved for secure callers. */
SMC_RET1(handle, SPM_NOT_SUPPORTED);
default:
break;
}
}
/* Register init function for deferred init. */
bl31_register_bl32_init(&spm_init);
SMC_RET1(handle, SMC_UNK);
return 0;
}
......@@ -29,9 +29,13 @@
#define SP_C_RT_CTX_SIZE 0x60
#define SP_C_RT_CTX_ENTRIES (SP_C_RT_CTX_SIZE >> DWORD_SHIFT)
/* Value returned by spm_sp_synchronous_entry() when a partition is preempted */
#define SPM_SECURE_PARTITION_PREEMPTED U(0x1234)
#ifndef __ASSEMBLY__
#include <spinlock.h>
#include <sp_res_desc.h>
#include <stdint.h>
#include <xlat_tables_v2.h>
......@@ -42,28 +46,68 @@ typedef enum sp_state {
} sp_state_t;
typedef struct sp_context {
/* 1 if the partition is present, 0 otherwise */
int is_present;
/* Location of the image in physical memory */
unsigned long long image_base;
size_t image_size;
uint64_t c_rt_ctx;
cpu_context_t cpu_ctx;
struct sp_res_desc rd;
/* Translation tables context */
xlat_ctx_t *xlat_ctx_handle;
spinlock_t xlat_ctx_lock;
sp_state_t state;
spinlock_t state_lock;
unsigned int request_count;
spinlock_t request_count_lock;
/* Base and size of the shared SPM<->SP buffer */
uintptr_t spm_sp_buffer_base;
size_t spm_sp_buffer_size;
spinlock_t spm_sp_buffer_lock;
} sp_context_t;
/* Functions used to enter/exit a Secure Partition synchronously */
uint64_t spm_sp_synchronous_entry(sp_context_t *sp_ctx, int can_preempt);
__dead2 void spm_sp_synchronous_exit(uint64_t rc);
/* Assembly helpers */
uint64_t spm_secure_partition_enter(uint64_t *c_rt_ctx);
void __dead2 spm_secure_partition_exit(uint64_t c_rt_ctx, uint64_t ret);
/* Secure Partition setup */
void spm_sp_setup(sp_context_t *sp_ctx);
xlat_ctx_t *spm_get_sp_xlat_context(void);
/* Secure Partition state management helpers */
void sp_state_set(sp_context_t *sp_ptr, sp_state_t state);
void sp_state_wait_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to);
int sp_state_try_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to);
/* Functions to keep track of the number of active requests per SP */
void spm_sp_request_increase(sp_context_t *sp_ctx);
void spm_sp_request_decrease(sp_context_t *sp_ctx);
int spm_sp_request_increase_if_zero(sp_context_t *sp_ctx);
/* Functions related to the translation tables management */
xlat_ctx_t *spm_sp_xlat_context_alloc(void);
void sp_map_memory_regions(sp_context_t *sp_ctx);
/* Functions to handle Secure Partition contexts */
void spm_cpu_set_sp_ctx(unsigned int linear_id, sp_context_t *sp_ctx);
sp_context_t *spm_cpu_get_sp_ctx(unsigned int linear_id);
sp_context_t *spm_sp_get_by_uuid(const uint32_t (*svc_uuid)[4]);
int32_t spm_memory_attributes_get_smc_handler(sp_context_t *sp_ctx,
uintptr_t base_va);
int spm_memory_attributes_set_smc_handler(sp_context_t *sp_ctx,
u_register_t page_address,
u_register_t pages_count,
u_register_t smc_attributes);
/* Functions to manipulate response and requests buffers */
int spm_response_add(uint16_t client_id, uint16_t handle, uint32_t token,
u_register_t x1, u_register_t x2, u_register_t x3);
int spm_response_get(uint16_t client_id, uint16_t handle, uint32_t token,
u_register_t *x1, u_register_t *x2, u_register_t *x3);
#endif /* __ASSEMBLY__ */
......
/*
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <common_def.h>
#include <context.h>
#include <context_mgmt.h>
#include <debug.h>
#include <platform_def.h>
#include <platform.h>
#include <sp_res_desc.h>
#include <sprt_host.h>
#include <string.h>
#include <xlat_tables_v2.h>
#include "spm_private.h"
#include "spm_shim_private.h"
/* Setup context of the Secure Partition */
void spm_sp_setup(sp_context_t *sp_ctx)
{
cpu_context_t *ctx = &(sp_ctx->cpu_ctx);
/*
* Initialize CPU context
* ----------------------
*/
entry_point_info_t ep_info = {0};
SET_PARAM_HEAD(&ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE);
/* Setup entrypoint and SPSR */
ep_info.pc = sp_ctx->rd.attribute.entrypoint;
ep_info.spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS);
/*
* X0: Unused (MBZ).
* X1: Unused (MBZ).
* X2: cookie value (Implementation Defined)
* X3: cookie value (Implementation Defined)
* X4 to X7 = 0
*/
ep_info.args.arg0 = 0;
ep_info.args.arg1 = 0;
ep_info.args.arg2 = PLAT_SPM_COOKIE_0;
ep_info.args.arg3 = PLAT_SPM_COOKIE_1;
cm_setup_context(ctx, &ep_info);
/*
* Setup translation tables
* ------------------------
*/
sp_map_memory_regions(sp_ctx);
/*
* MMU-related registers
* ---------------------
*/
xlat_ctx_t *xlat_ctx = sp_ctx->xlat_ctx_handle;
uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
setup_mmu_cfg((uint64_t *)&mmu_cfg_params, 0, xlat_ctx->base_table,
xlat_ctx->pa_max_address, xlat_ctx->va_max_address,
EL1_EL0_REGIME);
write_ctx_reg(get_sysregs_ctx(ctx), CTX_MAIR_EL1,
mmu_cfg_params[MMU_CFG_MAIR]);
write_ctx_reg(get_sysregs_ctx(ctx), CTX_TCR_EL1,
mmu_cfg_params[MMU_CFG_TCR]);
write_ctx_reg(get_sysregs_ctx(ctx), CTX_TTBR0_EL1,
mmu_cfg_params[MMU_CFG_TTBR0]);
/* Setup SCTLR_EL1 */
u_register_t sctlr_el1 = read_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1);
sctlr_el1 |=
/*SCTLR_EL1_RES1 |*/
/* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */
SCTLR_UCI_BIT |
/* RW regions at xlat regime EL1&0 are forced to be XN. */
SCTLR_WXN_BIT |
/* Don't trap to EL1 execution of WFI or WFE at EL0. */
SCTLR_NTWI_BIT | SCTLR_NTWE_BIT |
/* Don't trap to EL1 accesses to CTR_EL0 from EL0. */
SCTLR_UCT_BIT |
/* Don't trap to EL1 execution of DZ ZVA at EL0. */
SCTLR_DZE_BIT |
/* Enable SP Alignment check for EL0 */
SCTLR_SA0_BIT |
/* Allow cacheable data and instr. accesses to normal memory. */
SCTLR_C_BIT | SCTLR_I_BIT |
/* Alignment fault checking enabled when at EL1 and EL0. */
SCTLR_A_BIT |
/* Enable MMU. */
SCTLR_M_BIT
;
sctlr_el1 &= ~(
/* Explicit data accesses at EL0 are little-endian. */
SCTLR_E0E_BIT |
/* Accesses to DAIF from EL0 are trapped to EL1. */
SCTLR_UMA_BIT
);
write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_el1);
/*
* Setup other system registers
* ----------------------------
*/
/* Shim Exception Vector Base Address */
write_ctx_reg(get_sysregs_ctx(ctx), CTX_VBAR_EL1,
SPM_SHIM_EXCEPTIONS_PTR);
/*
* FPEN: Allow the Secure Partition to access FP/SIMD registers.
* Note that SPM will not do any saving/restoring of these registers on
* behalf of the SP. This falls under the SP's responsibility.
* TTA: Enable access to trace registers.
* ZEN (v8.2): Trap SVE instructions and access to SVE registers.
*/
write_ctx_reg(get_sysregs_ctx(ctx), CTX_CPACR_EL1,
CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_NONE));
/*
* Prepare shared buffers
* ----------------------
*/
/* Initialize SPRT queues */
sprt_initialize_queues((void *)sp_ctx->spm_sp_buffer_base,
sp_ctx->spm_sp_buffer_size);
}
/*
* Copyright (c) 2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <errno.h>
#include <object_pool.h>
#include <platform_def.h>
#include <platform.h>
#include <sp_res_desc.h>
#include <string.h>
#include <utils.h>
#include <utils_def.h>
#include <xlat_tables_v2.h>
#include "spm_private.h"
#include "spm_shim_private.h"
/*******************************************************************************
* Instantiation of translation table context
******************************************************************************/
/* Place translation tables by default along with the ones used by BL31. */
#ifndef PLAT_SP_IMAGE_XLAT_SECTION_NAME
#define PLAT_SP_IMAGE_XLAT_SECTION_NAME "xlat_table"
#endif
/*
* Allocate elements of the translation contexts for the Secure Partitions.
*/
/* Allocate an array of mmap_region per partition. */
static struct mmap_region sp_mmap_regions[PLAT_SP_IMAGE_MMAP_REGIONS + 1]
[PLAT_SPM_MAX_PARTITIONS];
static OBJECT_POOL(sp_mmap_regions_pool, sp_mmap_regions,
sizeof(mmap_region_t) * (PLAT_SP_IMAGE_MMAP_REGIONS + 1),
PLAT_SPM_MAX_PARTITIONS);
/* Allocate individual translation tables. */
static uint64_t sp_xlat_tables[XLAT_TABLE_ENTRIES]
[(PLAT_SP_IMAGE_MAX_XLAT_TABLES + 1) * PLAT_SPM_MAX_PARTITIONS]
__aligned(XLAT_TABLE_SIZE) __section(PLAT_SP_IMAGE_XLAT_SECTION_NAME);
static OBJECT_POOL(sp_xlat_tables_pool, sp_xlat_tables,
XLAT_TABLE_ENTRIES * sizeof(uint64_t),
(PLAT_SP_IMAGE_MAX_XLAT_TABLES + 1) * PLAT_SPM_MAX_PARTITIONS);
/* Allocate base translation tables. */
static uint64_t sp_xlat_base_tables
[GET_NUM_BASE_LEVEL_ENTRIES(PLAT_VIRT_ADDR_SPACE_SIZE)]
[PLAT_SPM_MAX_PARTITIONS]
__aligned(GET_NUM_BASE_LEVEL_ENTRIES(PLAT_VIRT_ADDR_SPACE_SIZE)
* sizeof(uint64_t))
__section(PLAT_SP_IMAGE_XLAT_SECTION_NAME);
static OBJECT_POOL(sp_xlat_base_tables_pool, sp_xlat_base_tables,
GET_NUM_BASE_LEVEL_ENTRIES(PLAT_VIRT_ADDR_SPACE_SIZE) * sizeof(uint64_t),
PLAT_SPM_MAX_PARTITIONS);
/* Allocate arrays. */
static int sp_xlat_mapped_regions[PLAT_SP_IMAGE_MAX_XLAT_TABLES]
[PLAT_SPM_MAX_PARTITIONS];
static OBJECT_POOL(sp_xlat_mapped_regions_pool, sp_xlat_mapped_regions,
sizeof(int) * PLAT_SP_IMAGE_MAX_XLAT_TABLES, PLAT_SPM_MAX_PARTITIONS);
/* Allocate individual contexts. */
static xlat_ctx_t sp_xlat_ctx[PLAT_SPM_MAX_PARTITIONS];
static OBJECT_POOL(sp_xlat_ctx_pool, sp_xlat_ctx, sizeof(xlat_ctx_t),
PLAT_SPM_MAX_PARTITIONS);
/* Get handle of Secure Partition translation context */
xlat_ctx_t *spm_sp_xlat_context_alloc(void)
{
xlat_ctx_t *ctx = pool_alloc(&sp_xlat_ctx_pool);
struct mmap_region *mmap = pool_alloc(&sp_mmap_regions_pool);
uint64_t *base_table = pool_alloc(&sp_xlat_base_tables_pool);
uint64_t **tables = pool_alloc_n(&sp_xlat_tables_pool,
PLAT_SP_IMAGE_MAX_XLAT_TABLES);
int *mapped_regions = pool_alloc(&sp_xlat_mapped_regions_pool);
xlat_setup_dynamic_ctx(ctx, PLAT_PHY_ADDR_SPACE_SIZE - 1,
PLAT_VIRT_ADDR_SPACE_SIZE - 1, mmap,
PLAT_SP_IMAGE_MMAP_REGIONS, tables,
PLAT_SP_IMAGE_MAX_XLAT_TABLES, base_table,
EL1_EL0_REGIME, mapped_regions);
return ctx;
};
/*******************************************************************************
* Functions to allocate memory for regions.
******************************************************************************/
/*
* The region with base PLAT_SPM_HEAP_BASE and size PLAT_SPM_HEAP_SIZE is
* reserved for SPM to use as heap to allocate memory regions of Secure
* Partitions. This is only done at boot.
*/
static OBJECT_POOL(spm_heap_mem, (void *)PLAT_SPM_HEAP_BASE, 1U,
PLAT_SPM_HEAP_SIZE);
static uintptr_t spm_alloc_heap(size_t size)
{
return (uintptr_t)pool_alloc_n(&spm_heap_mem, size);
}
/*******************************************************************************
* Functions to map memory regions described in the resource description.
******************************************************************************/
static unsigned int rdmem_attr_to_mmap_attr(uint32_t attr)
{
unsigned int index = attr & RD_MEM_MASK;
const unsigned int mmap_attr_arr[8] = {
MT_DEVICE | MT_RW | MT_SECURE, /* RD_MEM_DEVICE */
MT_CODE | MT_SECURE, /* RD_MEM_NORMAL_CODE */
MT_MEMORY | MT_RW | MT_SECURE, /* RD_MEM_NORMAL_DATA */
MT_MEMORY | MT_RW | MT_SECURE, /* RD_MEM_NORMAL_BSS */
MT_RO_DATA | MT_SECURE, /* RD_MEM_NORMAL_RODATA */
MT_MEMORY | MT_RW | MT_SECURE, /* RD_MEM_NORMAL_SPM_SP_SHARED_MEM */
MT_MEMORY | MT_RW | MT_SECURE, /* RD_MEM_NORMAL_CLIENT_SHARED_MEM */
MT_MEMORY | MT_RW | MT_SECURE /* RD_MEM_NORMAL_MISCELLANEOUS */
};
if (index >= ARRAY_SIZE(mmap_attr_arr)) {
ERROR("Unsupported RD memory attributes 0x%x\n", attr);
panic();
}
return mmap_attr_arr[index];
}
/*
* The data provided in the resource description structure is not directly
* compatible with a mmap_region structure. This function handles the conversion
* and maps it.
*/
static void map_rdmem(sp_context_t *sp_ctx, struct sp_rd_sect_mem_region *rdmem)
{
int rc;
mmap_region_t mmap;
/* Location of the SP image */
uintptr_t sp_size = sp_ctx->image_size;
uintptr_t sp_base_va = sp_ctx->rd.attribute.load_address;
unsigned long long sp_base_pa = sp_ctx->image_base;
/* Location of the memory region to map */
size_t rd_size = rdmem->size;
uintptr_t rd_base_va = rdmem->base;
unsigned long long rd_base_pa;
unsigned int memtype = rdmem->attr & RD_MEM_MASK;
VERBOSE("Adding memory region '%s'\n", rdmem->name);
mmap.granularity = REGION_DEFAULT_GRANULARITY;
/* Check if the RD region is inside of the SP image or not */
int is_outside = (rd_base_va + rd_size <= sp_base_va) ||
(sp_base_va + sp_size <= rd_base_va);
/* Set to 1 if it is needed to zero this region */
int zero_region = 0;
switch (memtype) {
case RD_MEM_DEVICE:
/* Device regions are mapped 1:1 */
rd_base_pa = rd_base_va;
break;
case RD_MEM_NORMAL_CODE:
case RD_MEM_NORMAL_RODATA:
{
if (is_outside == 1) {
ERROR("Code and rodata sections must be fully contained in the image.");
panic();
}
/* Get offset into the image */
rd_base_pa = sp_base_pa + rd_base_va - sp_base_va;
break;
}
case RD_MEM_NORMAL_DATA:
{
if (is_outside == 1) {
ERROR("Data sections must be fully contained in the image.");
panic();
}
rd_base_pa = spm_alloc_heap(rd_size);
/* Get offset into the image */
void *img_pa = (void *)(sp_base_pa + rd_base_va - sp_base_va);
VERBOSE(" Copying data from %p to 0x%llx\n", img_pa, rd_base_pa);
/* Map destination */
rc = mmap_add_dynamic_region(rd_base_pa, rd_base_pa,
rd_size, MT_MEMORY | MT_RW | MT_SECURE);
if (rc != 0) {
ERROR("Unable to map data region at EL3: %d\n", rc);
panic();
}
/* Copy original data to destination */
memcpy((void *)rd_base_pa, img_pa, rd_size);
/* Unmap destination region */
rc = mmap_remove_dynamic_region(rd_base_pa, rd_size);
if (rc != 0) {
ERROR("Unable to remove data region at EL3: %d\n", rc);
panic();
}
break;
}
case RD_MEM_NORMAL_MISCELLANEOUS:
/* Allow SPM to change the attributes of the region. */
mmap.granularity = PAGE_SIZE;
rd_base_pa = spm_alloc_heap(rd_size);
zero_region = 1;
break;
case RD_MEM_NORMAL_SPM_SP_SHARED_MEM:
if ((sp_ctx->spm_sp_buffer_base != 0) ||
(sp_ctx->spm_sp_buffer_size != 0)) {
ERROR("A partition must have only one SPM<->SP buffer.\n");
panic();
}
rd_base_pa = spm_alloc_heap(rd_size);
zero_region = 1;
/* Save location of this buffer, it is needed by SPM */
sp_ctx->spm_sp_buffer_base = rd_base_pa;
sp_ctx->spm_sp_buffer_size = rd_size;
break;
case RD_MEM_NORMAL_CLIENT_SHARED_MEM:
/* Fallthrough */
case RD_MEM_NORMAL_BSS:
rd_base_pa = spm_alloc_heap(rd_size);
zero_region = 1;
break;
default:
panic();
}
mmap.base_pa = rd_base_pa;
mmap.base_va = rd_base_va;
mmap.size = rd_size;
/* Only S-EL0 mappings supported for now */
mmap.attr = rdmem_attr_to_mmap_attr(rdmem->attr) | MT_USER;
VERBOSE(" VA: 0x%lx PA: 0x%llx (0x%lx, attr: 0x%x)\n",
mmap.base_va, mmap.base_pa, mmap.size, mmap.attr);
/* Map region in the context of the Secure Partition */
mmap_add_region_ctx(sp_ctx->xlat_ctx_handle, &mmap);
if (zero_region == 1) {
VERBOSE(" Zeroing region...\n");
rc = mmap_add_dynamic_region(mmap.base_pa, mmap.base_pa,
mmap.size, MT_MEMORY | MT_RW | MT_SECURE);
if (rc != 0) {
ERROR("Unable to map memory at EL3 to zero: %d\n",
rc);
panic();
}
zeromem((void *)mmap.base_pa, mmap.size);
/*
* Unmap destination region unless it is the SPM<->SP buffer,
* which must be used by SPM.
*/
if (memtype != RD_MEM_NORMAL_SPM_SP_SHARED_MEM) {
rc = mmap_remove_dynamic_region(rd_base_pa, rd_size);
if (rc != 0) {
ERROR("Unable to remove region at EL3: %d\n", rc);
panic();
}
}
}
}
void sp_map_memory_regions(sp_context_t *sp_ctx)
{
/* This region contains the exception vectors used at S-EL1. */
const mmap_region_t sel1_exception_vectors =
MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START,
SPM_SHIM_EXCEPTIONS_SIZE,
MT_CODE | MT_SECURE | MT_PRIVILEGED);
mmap_add_region_ctx(sp_ctx->xlat_ctx_handle,
&sel1_exception_vectors);
struct sp_rd_sect_mem_region *rdmem;
for (rdmem = sp_ctx->rd.mem_region; rdmem != NULL; rdmem = rdmem->next) {
map_rdmem(sp_ctx, rdmem);
}
init_xlat_tables_ctx(sp_ctx->xlat_ctx_handle);
}
/*
* Copyright (c) 2018, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <context_mgmt.h>
#include <debug.h>
#include <errno.h>
#include <limits.h>
#include <platform.h>
#include <smccc.h>
#include <smccc_helpers.h>
#include <sprt_svc.h>
#include <utils.h>
#include "spm_private.h"
/*******************************************************************************
* Functions to manipulate memory regions
******************************************************************************/
/*
* Attributes are encoded using a different format in the SMC interface than in
* the Trusted Firmware, where the mmap_attr_t enum type is used. This function
* converts an attributes value from the SMC format to the mmap_attr_t format by
* setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and MT_EXECUTE/MT_EXECUTE_NEVER.
* The other fields are left as 0 because they are ignored by the function
* xlat_change_mem_attributes_ctx().
*/
static unsigned int smc_attr_to_mmap_attr(unsigned int attributes)
{
unsigned int perm = attributes & SPRT_MEMORY_PERM_ATTR_MASK;
if (perm == SPRT_MEMORY_PERM_ATTR_RW) {
return MT_RW | MT_EXECUTE_NEVER | MT_USER;
} else if (perm == SPRT_MEMORY_PERM_ATTR_RO) {
return MT_RO | MT_EXECUTE_NEVER | MT_USER;
} else if (perm == SPRT_MEMORY_PERM_ATTR_RO_EXEC) {
return MT_RO | MT_USER;
} else {
return UINT_MAX;
}
}
/*
* This function converts attributes from the Trusted Firmware format into the
* SMC interface format.
*/
static unsigned int mmap_attr_to_smc_attr(unsigned int attr)
{
unsigned int perm;
/* No access from EL0. */
if ((attr & MT_USER) == 0U)
return UINT_MAX;
if ((attr & MT_RW) != 0) {
assert(MT_TYPE(attr) != MT_DEVICE);
perm = SPRT_MEMORY_PERM_ATTR_RW;
} else {
if ((attr & MT_EXECUTE_NEVER) != 0U) {
perm = SPRT_MEMORY_PERM_ATTR_RO;
} else {
perm = SPRT_MEMORY_PERM_ATTR_RO_EXEC;
}
}
return perm << SPRT_MEMORY_PERM_ATTR_SHIFT;
}
static int32_t sprt_memory_perm_attr_get(sp_context_t *sp_ctx, uintptr_t base_va)
{
uint32_t attributes;
spin_lock(&(sp_ctx->xlat_ctx_lock));
int ret = xlat_get_mem_attributes_ctx(sp_ctx->xlat_ctx_handle,
base_va, &attributes);
spin_unlock(&(sp_ctx->xlat_ctx_lock));
/* Convert error codes of xlat_get_mem_attributes_ctx() into SPM. */
assert((ret == 0) || (ret == -EINVAL));
if (ret != 0)
return SPRT_INVALID_PARAMETER;
unsigned int perm = mmap_attr_to_smc_attr(attributes);
if (perm == UINT_MAX)
return SPRT_INVALID_PARAMETER;
return SPRT_SUCCESS | perm;
}
static int32_t sprt_memory_perm_attr_set(sp_context_t *sp_ctx,
u_register_t page_address, u_register_t pages_count,
u_register_t smc_attributes)
{
int ret;
uintptr_t base_va = (uintptr_t) page_address;
size_t size = pages_count * PAGE_SIZE;
VERBOSE(" Start address : 0x%lx\n", base_va);
VERBOSE(" Number of pages: %i (%zi bytes)\n", (int) pages_count, size);
VERBOSE(" Attributes : 0x%lx\n", smc_attributes);
uint32_t mmap_attr = smc_attr_to_mmap_attr(smc_attributes);
if (mmap_attr == UINT_MAX) {
WARN("%s: Invalid memory attributes: 0x%lx\n", __func__,
smc_attributes);
return SPRT_INVALID_PARAMETER;
}
/*
* Perform some checks before actually trying to change the memory
* attributes.
*/
spin_lock(&(sp_ctx->xlat_ctx_lock));
uint32_t attributes;
ret = xlat_get_mem_attributes_ctx(sp_ctx->xlat_ctx_handle,
base_va, &attributes);
if (ret != 0) {
spin_unlock(&(sp_ctx->xlat_ctx_lock));
return SPRT_INVALID_PARAMETER;
}
if ((attributes & MT_USER) == 0U) {
/* Prohibit changing attributes of S-EL1 regions */
spin_unlock(&(sp_ctx->xlat_ctx_lock));
return SPRT_INVALID_PARAMETER;
}
ret = xlat_change_mem_attributes_ctx(sp_ctx->xlat_ctx_handle,
base_va, size, mmap_attr);
spin_unlock(&(sp_ctx->xlat_ctx_lock));
/* Convert error codes of xlat_change_mem_attributes_ctx() into SPM. */
assert((ret == 0) || (ret == -EINVAL));
return (ret == 0) ? SPRT_SUCCESS : SPRT_INVALID_PARAMETER;
}
/*******************************************************************************
* This function handles all SMCs in the range reserved for SPRT.
******************************************************************************/
uint64_t sprt_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2,
uint64_t x3, uint64_t x4, void *cookie, void *handle,
uint64_t flags)
{
/* SPRT only supported from the Secure world */
if (is_caller_non_secure(flags) == SMC_FROM_NON_SECURE) {
SMC_RET1(handle, SMC_UNK);
}
assert(handle == cm_get_context(SECURE));
/*
* Only S-EL0 partitions are supported for now. Make the next ERET into
* the partition jump directly to S-EL0 instead of S-EL1.
*/
cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1());
switch (smc_fid) {
case SPRT_VERSION:
SMC_RET1(handle, SPRT_VERSION_COMPILED);
case SPRT_PUT_RESPONSE_AARCH64:
/*
* Registers x1-x3 aren't saved by default to the context,
* but they are needed after spm_sp_synchronous_exit() because
* they hold return values.
*/
SMC_SET_GP(handle, CTX_GPREG_X1, x1);
SMC_SET_GP(handle, CTX_GPREG_X2, x2);
SMC_SET_GP(handle, CTX_GPREG_X3, x3);
spm_sp_synchronous_exit(SPRT_PUT_RESPONSE_AARCH64);
case SPRT_YIELD_AARCH64:
spm_sp_synchronous_exit(SPRT_YIELD_AARCH64);
case SPRT_MEMORY_PERM_ATTR_GET_AARCH64:
{
/* Get context of the SP in use by this CPU. */
unsigned int linear_id = plat_my_core_pos();
sp_context_t *sp_ctx = spm_cpu_get_sp_ctx(linear_id);
SMC_RET1(handle, sprt_memory_perm_attr_get(sp_ctx, x1));
}
case SPRT_MEMORY_PERM_ATTR_SET_AARCH64:
{
/* Get context of the SP in use by this CPU. */
unsigned int linear_id = plat_my_core_pos();
sp_context_t *sp_ctx = spm_cpu_get_sp_ctx(linear_id);
SMC_RET1(handle, sprt_memory_perm_attr_set(sp_ctx, x1, x2, x3));
}
default:
break;
}
WARN("SPRT: Unsupported call 0x%08x\n", smc_fid);
SMC_RET1(handle, SPRT_NOT_SUPPORTED);
}
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <asm_macros.S>
#include "../spm_private.h"
.global spm_secure_partition_enter
.global spm_secure_partition_exit
/* ---------------------------------------------------------------------
* This function is called with SP_EL0 as stack. Here we stash our EL3
* callee-saved registers on to the stack as a part of saving the C
* runtime and enter the secure payload.
* 'x0' contains a pointer to the memory where the address of the C
* runtime context is to be saved.
* ---------------------------------------------------------------------
*/
func spm_secure_partition_enter
/* Make space for the registers that we're going to save */
mov x3, sp
str x3, [x0, #0]
sub sp, sp, #SP_C_RT_CTX_SIZE
/* Save callee-saved registers on to the stack */
stp x19, x20, [sp, #SP_C_RT_CTX_X19]
stp x21, x22, [sp, #SP_C_RT_CTX_X21]
stp x23, x24, [sp, #SP_C_RT_CTX_X23]
stp x25, x26, [sp, #SP_C_RT_CTX_X25]
stp x27, x28, [sp, #SP_C_RT_CTX_X27]
stp x29, x30, [sp, #SP_C_RT_CTX_X29]
/* ---------------------------------------------------------------------
* Everything is setup now. el3_exit() will use the secure context to
* restore to the general purpose and EL3 system registers to ERET
* into the secure payload.
* ---------------------------------------------------------------------
*/
b el3_exit
endfunc spm_secure_partition_enter
/* ---------------------------------------------------------------------
* This function is called with 'x0' pointing to a C runtime context
* saved in spm_secure_partition_enter().
* It restores the saved registers and jumps to that runtime with 'x0'
* as the new SP register. This destroys the C runtime context that had
* been built on the stack below the saved context by the caller. Later
* the second parameter 'x1' is passed as a return value to the caller.
* ---------------------------------------------------------------------
*/
func spm_secure_partition_exit
/* Restore the previous stack */
mov sp, x0
/* Restore callee-saved registers on to the stack */
ldp x19, x20, [x0, #(SP_C_RT_CTX_X19 - SP_C_RT_CTX_SIZE)]
ldp x21, x22, [x0, #(SP_C_RT_CTX_X21 - SP_C_RT_CTX_SIZE)]
ldp x23, x24, [x0, #(SP_C_RT_CTX_X23 - SP_C_RT_CTX_SIZE)]
ldp x25, x26, [x0, #(SP_C_RT_CTX_X25 - SP_C_RT_CTX_SIZE)]
ldp x27, x28, [x0, #(SP_C_RT_CTX_X27 - SP_C_RT_CTX_SIZE)]
ldp x29, x30, [x0, #(SP_C_RT_CTX_X29 - SP_C_RT_CTX_SIZE)]
/* ---------------------------------------------------------------------
* This should take us back to the instruction after the call to the
* last spm_secure_partition_enter().* Place the second parameter to x0
* so that the caller will see it as a return value from the original
* entry call.
* ---------------------------------------------------------------------
*/
mov x0, x1
ret
endfunc spm_secure_partition_exit
/*
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <asm_macros.S>
#include <bl_common.h>
#include <context.h>
/* -----------------------------------------------------------------------------
* Very simple stackless exception handlers used by the spm shim layer.
* -----------------------------------------------------------------------------
*/
.globl spm_shim_exceptions_ptr
vector_base spm_shim_exceptions_ptr, .spm_shim_exceptions
/* -----------------------------------------------------
* Current EL with SP0 : 0x0 - 0x200
* -----------------------------------------------------
*/
vector_entry SynchronousExceptionSP0, .spm_shim_exceptions
b .
end_vector_entry SynchronousExceptionSP0
vector_entry IrqSP0, .spm_shim_exceptions
b .
end_vector_entry IrqSP0
vector_entry FiqSP0, .spm_shim_exceptions
b .
end_vector_entry FiqSP0
vector_entry SErrorSP0, .spm_shim_exceptions
b .
end_vector_entry SErrorSP0
/* -----------------------------------------------------
* Current EL with SPx: 0x200 - 0x400
* -----------------------------------------------------
*/
vector_entry SynchronousExceptionSPx, .spm_shim_exceptions
b .
end_vector_entry SynchronousExceptionSPx
vector_entry IrqSPx, .spm_shim_exceptions
b .
end_vector_entry IrqSPx
vector_entry FiqSPx, .spm_shim_exceptions
b .
end_vector_entry FiqSPx
vector_entry SErrorSPx, .spm_shim_exceptions
b .
end_vector_entry SErrorSPx
/* -----------------------------------------------------
* Lower EL using AArch64 : 0x400 - 0x600. No exceptions
* are handled since secure_partition does not implement
* a lower EL
* -----------------------------------------------------
*/
vector_entry SynchronousExceptionA64, .spm_shim_exceptions
msr tpidr_el1, x30
mrs x30, esr_el1
ubfx x30, x30, #ESR_EC_SHIFT, #ESR_EC_LENGTH
cmp x30, #EC_AARCH64_SVC
b.eq do_smc
cmp x30, #EC_AARCH32_SVC
b.eq do_smc
cmp x30, #EC_AARCH64_SYS
b.eq handle_sys_trap
/* Fail in all the other cases */
b panic
/* ---------------------------------------------
* Tell SPM that we are done initialising
* ---------------------------------------------
*/
do_smc:
mrs x30, tpidr_el1
smc #0
eret
/* AArch64 system instructions trap are handled as a panic for now */
handle_sys_trap:
panic:
b panic
end_vector_entry SynchronousExceptionA64
vector_entry IrqA64, .spm_shim_exceptions
b .
end_vector_entry IrqA64
vector_entry FiqA64, .spm_shim_exceptions
b .
end_vector_entry FiqA64
vector_entry SErrorA64, .spm_shim_exceptions
b .
end_vector_entry SErrorA64
/* -----------------------------------------------------
* Lower EL using AArch32 : 0x600 - 0x800
* -----------------------------------------------------
*/
vector_entry SynchronousExceptionA32, .spm_shim_exceptions
b .
end_vector_entry SynchronousExceptionA32
vector_entry IrqA32, .spm_shim_exceptions
b .
end_vector_entry IrqA32
vector_entry FiqA32, .spm_shim_exceptions
b .
end_vector_entry FiqA32
vector_entry SErrorA32, .spm_shim_exceptions
b .
end_vector_entry SErrorA32
#
# Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
#
ifneq (${SPD},none)
$(error "Error: SPD and SPM are incompatible build options.")
endif
ifneq (${ARCH},aarch64)
$(error "Error: SPM is only supported on aarch64.")
endif
SPM_SOURCES := $(addprefix services/std_svc/spm_deprecated/, \
${ARCH}/spm_helpers.S \
${ARCH}/spm_shim_exceptions.S \
spm_main.c \
spm_setup.c \
spm_xlat.c)
# Let the top-level Makefile know that we intend to include a BL32 image
NEED_BL32 := yes
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment