- 31 Mar, 2016 3 commits
-
-
Vikram Kanigiri authored
This patch adds support to program TrustZone protection on ARM platforms that implement a DMC-500. arm_dmc_500.c has been added which implements the arm_dmc_tzc_setup() function. This function relies on constants related to TZC programming that are exported by each platform to program TrustZone protection using the DMC-500 TrustZone controller driver. This function should be called from plat_arm_security_setup() which is implemented by each platform. Change-Id: I5400bdee9e4b29155fd11296a40693d512312f29
-
Soby Mathew authored
This patch migrates ARM Standard platforms to the refactored TZC driver. Change-Id: I2a2f60b645f73e14d8f416740c4551cec87cb1fb
-
David Wang authored
This patch adds an option to the ARM common platforms to load BL31 in the TZC secured DRAM instead of the default secure SRAM. To enable this feature, set `ARM_BL31_IN_DRAM` to 1 in build options. If TSP is present, then setting this option also sets the TSP location to DRAM and ignores the `ARM_TSP_RAM_LOCATION` build flag. To use this feature, BL2 platform code must map in the DRAM used by BL31. The macro ARM_MAP_BL31_SEC_DRAM is provided for this purpose. Currently, only the FVP BL2 platform code maps in this DRAM. Change-Id: If5f7cc9deb569cfe68353a174d4caa48acd78d67
-
- 22 Feb, 2016 1 commit
-
-
Yatharth Kochar authored
This patch fixes inconsistencies in bl1_tbbr_image_descs[] and miscellaneous fixes in Firmware Update code. Following are the changes: * As part of the original FWU changes, a `copied_size` field was added to `image_info_t`. This was a subtle binary compatibility break because it changed the size of the `bl31_params_t` struct, which could cause problems if somebody used different versions of BL2 or BL31, one with the old `image_info_t` and one with the new version. This patch put the `copied_size` within the `image_desc_t`. * EXECUTABLE flag is now stored in `ep_info.h.attr` in place of `image_info.h.attr`, associating it to an entrypoint. * The `image_info.image_base` is only relevant for secure images that are copied from non-secure memory into secure memory. This patch removes initializing `image_base` for non secure images in the bl1_tbbr_image_descs[]. * A new macro `SET_STATIC_PARAM_HEAD` is added for populating bl1_tbbr_image_descs[].ep_info/image_info.h members statically. The version, image_type and image attributes are now populated using this new macro. * Added PLAT_ARM_NVM_BASE and PLAT_ARM_NVM_SIZE to avoid direct usage of V2M_FLASH0_XXX in plat/arm/common/arm_bl1_fwu.c. * Refactoring of code/macros related to SECURE and EXECUTABLE flags. NOTE: PLATFORM PORTS THAT RELY ON THE SIZE OF `image_info_t` OR USE the "EXECUTABLE" BIT WITHIN `image_info_t.h.attr` OR USE THEIR OWN `image_desc_t` ARRAY IN BL1, MAY BE BROKEN BY THIS CHANGE. THIS IS CONSIDERED UNLIKELY. Change-Id: Id4e5989af7bf0ed263d19d3751939da1169b561d
-
- 19 Feb, 2016 1 commit
-
-
Soby Mathew authored
The common topology description helper funtions and macros for ARM Standard platforms assumed a dual cluster system. This is not flexible enough to scale to multi cluster platforms. This patch does the following changes for more flexibility in defining topology: 1. The `plat_get_power_domain_tree_desc()` definition is moved from `arm_topology.c` to platform specific files, that is `fvp_topology.c` and `juno_topology.c`. Similarly the common definition of the porting macro `PLATFORM_CORE_COUNT` in `arm_def.h` is moved to platform specific `platform_def.h` header. 2. The ARM common layer porting macros which were dual cluster specific are now removed and a new macro PLAT_ARM_CLUSTER_COUNT is introduced which must be defined by each ARM standard platform. 3. A new mandatory ARM common layer porting API `plat_arm_get_cluster_core_count()` is introduced to enable the common implementation of `arm_check_mpidr()` to validate MPIDR. 4. For the FVP platforms, a new build option `FVP_NUM_CLUSTERS` has been introduced which allows the user to specify the cluster count to be used to build the topology tree within Trusted Firmare. This enables Trusted Firmware to be built for multi cluster FVP models. Change-Id: Ie7a2e38e5661fe2fdb2c8fdf5641d2b2614c2b6b
-
- 18 Feb, 2016 1 commit
-
-
Juan Castillo authored
The shared memory region on ARM platforms contains the mailboxes and, on Juno, the payload area for communication with the SCP. This shared memory may be configured as normal memory or device memory at build time by setting the platform flag 'PLAT_ARM_SHARED_RAM_CACHED' (on Juno, the value of this flag is defined by 'MHU_PAYLOAD_CACHED'). When set as normal memory, the platform port performs the corresponding cache maintenance operations. From a functional point of view, this is the equivalent of setting the shared memory as device memory, so there is no need to maintain both options. This patch removes the option to specify the shared memory as normal memory on ARM platforms. Shared memory is always treated as device memory. Cache maintenance operations are no longer needed and have been replaced by data memory barriers to guarantee that payload and MHU are accessed in the right order. Change-Id: I7f958621d6a536dd4f0fa8768385eedc4295e79f
-
- 16 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
ARM Trusted Firmware supports 2 different interconnect peripheral drivers: CCI and CCN. ARM platforms are implemented using either of the interconnect peripherals. This patch adds a layer of abstraction to help ARM platform ports to choose the right interconnect driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been implemented to initialise an interconnect and for entering/exiting a cluster from coherency. These functions are prefixed as "plat_arm_interconnect_". Weak definitions of these functions have been provided for each type of driver. 2.`plat_print_interconnect_regs` macro used for printing CCI registers is moved from a common arm_macros.S to cci_macros.S. 3. The `ARM_CONFIG_HAS_CCI` flag used in `arm_config_flags` structure is renamed to `ARM_CONFIG_HAS_INTERCONNECT`. Change-Id: I02f31184fbf79b784175892d5ce1161b65a0066c
-
- 15 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
Functions to configure the MMU in S-EL1 and EL3 on ARM platforms expect each platform to export its memory map in the `plat_arm_mmap` data structure. This approach does not scale well in case the memory map cannot be determined until runtime. To cater for this possibility, this patch introduces the plat_arm_get_mmap() API. It returns a reference to the `plat_arm_mmap` by default but can be overridden by a platform if required. Change-Id: Idae6ad8fdf40cdddcd8b992abc188455fa047c74
-
- 11 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
This patch moves the definition of some macros used only on ARM platforms from common headers to platform specific headers. It also forces all ARM standard platforms to have distinct definitions (even if they are usually the same). 1. `PLAT_ARM_TZC_BASE` and `PLAT_ARM_NSTIMER_FRAME_ID` have been moved from `css_def.h` to `platform_def.h`. 2. `MHU_BASE` used in CSS platforms is moved from common css_def.h to platform specific header `platform_def.h` on Juno and renamed as `PLAT_ARM_MHU_BASE`. 3. To cater for different sizes of BL images, new macros like `PLAT_ARM_MAX_BL31_SIZE` have been created for each BL image. All ARM platforms need to define them for each image. Change-Id: I9255448bddfad734b387922aa9e68d2117338c3f
-
- 14 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch removes the dash character from the image name, to follow the image terminology in the Trusted Firmware Wiki page: https://github.com/ARM-software/arm-trusted-firmware/wiki Changes apply to output messages, comments and documentation. non-ARM platform files have been left unmodified. Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
-
- 09 Dec, 2015 5 commits
-
-
Yatharth Kochar authored
This patch adds support for Firmware update in BL2U for ARM platforms such that TZC initialization is performed on all ARM platforms and (optionally) transfer of SCP_BL2U image on ARM CSS platforms. BL2U specific functions are added to handle early_platform and plat_arch setup. The MMU is configured to map in the BL2U code/data area and other required memory. Change-Id: I57863295a608cc06e6cbf078b7ce34cbd9733e4f
-
Yatharth Kochar authored
This patch adds Firmware Update support for ARM platforms. New files arm_bl1_fwu.c and juno_bl1_setup.c were added to provide platform specific Firmware update code. BL1 now includes mmap entry for `ARM_MAP_NS_DRAM1` to map DRAM for authenticating NS_BL2U image(For both FVP and JUNO platform). Change-Id: Ie116cd83f5dc00aa53d904c2f1beb23d58926555
-
Soby Mathew authored
This patch overrides the default weak definition of `bl31_plat_runtime_setup()` for ARM Standard platforms to specify a BL31 runtime console. ARM Standard platforms are now expected to define `PLAT_ARM_BL31_RUN_UART_BASE` and `PLAT_ARM_BL31_RUN_UART_CLK_IN_HZ` macros which is required by `arm_bl31_plat_runtime_setup()` to initialize the runtime console. The system suspend resume helper `arm_system_pwr_domain_resume()` is fixed to initialize the runtime console rather than the boot console on resumption from system suspend. Fixes ARM-software/tf-issues#220 Change-Id: I80eafe5b6adcfc7f1fdf8b99659aca1c64d96975
-
Achin Gupta authored
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three separate drivers instead of providing a single driver that can work on both versions of the GIC architecture. These drivers correspond to the following software use cases: 1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations e.g. GIC-400 2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features 3. A deprecated GICv3 driver that operates in legacy mode. This driver can operate only in the GICv2 mode in the secure world. On a GICv3 system, this driver allows normal world to run in either GICv3 mode (asymmetric mode) or in the GICv2 mode. Both modes of operation are deprecated on GICv3 systems. ARM platforms implement both versions of the GIC architecture. This patch adds a layer of abstraction to help ARM platform ports chose the right GIC driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been introduced to initialise the GIC and the driver during cold and warm boot. These functions are prefixed as "plat_arm_gic_". Weak definitions of these functions have been provided for each type of driver. 2. Each platform includes the sources that implement the right functions directly into the its makefile. The FVP can be instantiated with different versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option to specify which of the three drivers should be included in the build. 3. A list of secure interrupts has to be provided to initialise each of the three GIC drivers. For GIC v3.0 the interrupt ids have to be further categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two types are merged and treated as Group 0 interrupts. The two lists of interrupts are exported from the platform_def.h. The lists are constructed by adding a list of board specific interrupt ids to a list of ids common to all ARM platforms and Compute sub-systems. This patch also makes some fields of `arm_config` data structure in FVP redundant and these unused fields are removed. Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
-
Soby Mathew authored
This patch adds platform helpers for the new GICv2 and GICv3 drivers in plat_gicv2.c and plat_gicv3.c. The platforms can include the appropriate file in their build according to the GIC driver to be used. The existing plat_gic.c is only meant for the legacy GIC driver. In the case of ARM platforms, the major changes are as follows: 1. The crash reporting helper macro `arm_print_gic_regs` that prints the GIC CPU interface register values has been modified to detect the type of CPU interface being used (System register or memory mappped interface) before using the right interface to print the registers. 2. The power management helper function that is called after a core is powered up has been further refactored. This is to highlight that the per-cpu distributor interface should be initialised only when the core was originally powered down using the CPU_OFF PSCI API and not when the CPU_SUSPEND PSCI API was used. 3. In the case of CSS platforms, the system power domain restore helper `arm_system_pwr_domain_resume()` is now only invoked in the `suspend_finish` handler as the system power domain is always expected to be initialized when the `on_finish` handler is invoked. Change-Id: I7fc27d61fc6c2a60cea2436b676c5737d0257df6
-
- 02 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch adds watchdog support on ARM platforms (FVP and Juno). A secure instance of SP805 is used as Trusted Watchdog. It is entirely managed in BL1, being enabled in the early platform setup hook and disabled in the exit hook. By default, the watchdog is enabled in every build (even when TBB is disabled). A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG` has been introduced to allow the user to disable the watchdog at build time. This feature may be used for testing or debugging purposes. Specific error handlers for Juno and FVP are also provided in this patch. These handlers will be called after an image load or authentication error. On FVP, the Table of Contents (ToC) in the FIP is erased. On Juno, the corresponding error code is stored in the V2M Non-Volatile flags register. In both cases, the CPU spins until a watchdog reset is generated after 256 seconds (as specified in the TBBR document). Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
-
- 26 Nov, 2015 1 commit
-
-
Sandrine Bailleux authored
This patch adds support for booting EL3 payloads on CSS platforms, for example Juno. In this scenario, the Trusted Firmware follows its normal boot flow up to the point where it would normally pass control to the BL31 image. At this point, it jumps to the EL3 payload entry point address instead. Before handing over to the EL3 payload, the data SCP writes for AP at the beginning of the Trusted SRAM is restored, i.e. we zero the first 128 bytes and restore the SCP Boot configuration. The latter is saved before transferring the BL30 image to SCP and is restored just after the transfer (in BL2). The goal is to make it appear that the EL3 payload is the first piece of software to run on the target. The BL31 entrypoint info structure is updated to make the primary CPU jump to the EL3 payload instead of the BL31 image. The mailbox is populated with the EL3 payload entrypoint address, which releases the secondary CPUs out of their holding pen (if the SCP has powered them on). The arm_program_trusted_mailbox() function has been exported for this purpose. The TZC-400 configuration in BL2 is simplified: it grants secure access only to the whole DRAM. Other security initialization is unchanged. This alternative boot flow is disabled by default. A new build option EL3_PAYLOAD_BASE has been introduced to enable it and provide the EL3 payload's entry point address. The build system has been modified such that BL31 and BL33 are not compiled and/or not put in the FIP in this case, as those images are not used in this boot flow. Change-Id: Id2e26fa57988bbc32323a0effd022ab42f5b5077
-
- 30 Oct, 2015 3 commits
-
-
Soby Mathew authored
This patch fixes a compilation issue for platforms that are aligned to ARM Standard platforms and include the `plat_arm.h` header in their platform port. The compilation would fail for such a platform because `xlat_tables.h` which has the definition for `mmap_region_t` is not included in `plat_arm.h`. This patch fixes this by including `xlat_tables.h` in `plat_arm.h` header. Fixes ARM-Software/tf-issues#318 Change-Id: I75f990cfb4078b3996fc353c8cd37c9de61d555e
-
Soby Mathew authored
This patch adds the capability to power down at system power domain level on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers are modified to add support for power management operations at system power domain level. A new helper for populating `get_sys_suspend_power_state` handler in plat_psci_ops is defined. On entering the system suspend state, the SCP powers down the SYSTOP power domain on the SoC and puts the memory into retention mode. On wakeup from the power down, the system components on the CSS will be reinitialized by the platform layer and the PSCI client is responsible for restoring the context of these system components. According to PSCI Specification, interrupts targeted to cores in PSCI CPU SUSPEND should be able to resume it. On Juno, when the system power domain is suspended, the GIC is also powered down. The SCP resumes the final core to be suspend when an external wake-up event is received. But the other cores cannot be woken up by a targeted interrupt, because GIC doesn't forward these interrupts to the SCP. Due to this hardware limitation, we down-grade PSCI CPU SUSPEND requests targeted to the system power domain level to cluster power domain level in `juno_validate_power_state()` and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c. A system power domain resume helper `arm_system_pwr_domain_resume()` is defined for ARM standard platforms which resumes/re-initializes the system components on wakeup from system suspend. The security setup also needs to be done on resume from system suspend, which means `plat_arm_security_setup()` must now be included in the BL3-1 image in addition to previous BL images if system suspend need to be supported. Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
-
Soby Mathew authored
This patch implements the necessary topology changes for supporting system power domain on CSS platforms. The definition of PLAT_MAX_PWR_LVL and PLAT_NUM_PWR_DOMAINS macros are removed from arm_def.h and are made platform specific. In addition, the `arm_power_domain_tree_desc[]` and `arm_pm_idle_states[]` are modified to support the system power domain at level 2. With this patch, even though the power management operations involving the system power domain will not return any error, the platform layer will silently ignore any operations to the power domain. The actual power management support for the system power domain will be added later. Change-Id: I791867eded5156754fe898f9cdc6bba361e5a379
-
- 11 Sep, 2015 2 commits
-
-
Vikram Kanigiri authored
This patch updates ARM platform ports to use the new unified bakery locks API. The caller does not have to use a different bakery lock API depending upon the value of the USE_COHERENT_MEM build option. NOTE: THIS PATCH CAN BE USED AS A REFERENCE TO UPDATE OTHER PLATFORM PORTS. Change-Id: I1b26afc7c9a9808a6040eb22f603d30192251da7
-
Vikram Kanigiri authored
This patch replaces the `ARM_TZC_BASE` constant with `PLAT_ARM_TZC_BASE` to support different TrustZone Controller base addresses across ARM platforms. Change-Id: Ie4e1c7600fd7a5875323c7cc35e067de0c6ef6dd
-
- 13 Aug, 2015 3 commits
-
-
Soby Mathew authored
This patch implements the platform power managment handler to verify non secure entrypoint for ARM platforms. The handler ensures that the entry point specified by the normal world during CPU_SUSPEND, CPU_ON or SYSTEM_SUSPEND PSCI API is a valid address within the non secure DRAM. Change-Id: I4795452df99f67a24682b22f0e0967175c1de429
-
Soby Mathew authored
This patch adds support to the Juno and FVP ports for composite power states with both the original and extended state-id power-state formats. Both the platform ports use the recommended state-id encoding as specified in Section 6.5 of the PSCI specification (ARM DEN 0022C). The platform build flag ARM_RECOM_STATE_ID_ENC is used to include this support. By default, to maintain backwards compatibility, the original power state parameter format is used and the state-id field is expected to be zero. Change-Id: Ie721b961957eaecaca5bf417a30952fe0627ef10
-
Soby Mathew authored
This patch migrates ARM reference platforms, Juno and FVP, to the new platform API mandated by the new PSCI power domain topology and composite power state frameworks. The platform specific makefiles now exports the build flag ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer. Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
-
- 05 Aug, 2015 1 commit
-
-
Juan Castillo authored
If Trusted Firmware is built with optimizations disabled (-O0), the linker throws the following error: undefined reference to 'xxx' Where 'xxx' is a raw inline function defined in a header file. The reason is that, with optimizations disabled, GCC may decide to skip the inlining. If that is the case, an external definition to the compilation unit must be provided. Because no external definition is present, the linker throws the error. This patch fixes the problem by declaring the following inline functions static, so the internal definition is used: inline void soc_css_security_setup(void) inline const arm_config_t *get_arm_config(void) Change-Id: Id650d6be1b1396bdb48af1ac8a4c7900d212e95f
-
- 09 Jul, 2015 1 commit
-
-
Juan Castillo authored
This patch changes the type of the base address parameter in the ARM device driver APIs to uintptr_t (GIC, CCI, TZC400, PL011). The uintptr_t type allows coverage of the whole memory space and to perform arithmetic operations on the addresses. ARM platform code has also been updated to use uintptr_t as GIC base address in the configuration. Fixes ARM-software/tf-issues#214 Change-Id: I1b87daedadcc8b63e8f113477979675e07d788f1
-
- 25 Jun, 2015 3 commits
-
-
Juan Castillo authored
This patch modifies the Trusted Board Boot implementation to use the new authentication framework, making use of the authentication module, the cryto module and the image parser module to authenticate the images in the Chain of Trust. A new function 'load_auth_image()' has been implemented. When TBB is enabled, this function will call the authentication module to authenticate parent images following the CoT up to the root of trust to finally load and authenticate the requested image. The platform is responsible for picking up the right makefiles to build the corresponding cryptographic and image parser libraries. ARM platforms use the mbedTLS based libraries. The platform may also specify what key algorithm should be used to sign the certificates. This is done by declaring the 'KEY_ALG' variable in the platform makefile. FVP and Juno use ECDSA keys. On ARM platforms, BL2 and BL1-RW regions have been increased 4KB each to accommodate the ECDSA code. REMOVED BUILD OPTIONS: * 'AUTH_MOD' Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
-
Juan Castillo authored
This patch adds a CoT based on the Trusted Board Boot Requirements document*. The CoT consists of an array of authentication image descriptors indexed by the image identifiers. A new header file with TBBR image identifiers has been added. Platforms that use the TBBR (i.e. ARM platforms) may reuse these definitions as part of their platform porting. PLATFORM PORT - IMPORTANT: Default image IDs have been removed from the platform common definitions file (common_def.h). As a consequence, platforms that used those common definitons must now either include the IDs provided by the TBBR header file or define their own IDs. *The NVCounter authentication method has not been implemented yet. Change-Id: I7c4d591863ef53bb0cd4ce6c52a60b06fa0102d5
-
Juan Castillo authored
The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type 'io_uuid_spec_t' has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --> uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
-
- 28 Apr, 2015 1 commit
-
-
Dan Handley authored
This major change pulls out the common functionality from the FVP and Juno platform ports into the following categories: * (include/)plat/common. Common platform porting functionality that typically may be used by all platforms. * (include/)plat/arm/common. Common platform porting functionality that may be used by all ARM standard platforms. This includes all ARM development platforms like FVP and Juno but may also include non-ARM-owned platforms. * (include/)plat/arm/board/common. Common platform porting functionality for ARM development platforms at the board (off SoC) level. * (include/)plat/arm/css/common. Common platform porting functionality at the ARM Compute SubSystem (CSS) level. Juno is an example of a CSS-based platform. * (include/)plat/arm/soc/common. Common platform porting functionality at the ARM SoC level, which is not already defined at the ARM CSS level. No guarantees are made about the backward compatibility of functionality provided in (include/)plat/arm. Also remove any unnecessary variation between the ARM development platform ports, including: * Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the Juno implementation, which copies the information from BL2 memory instead of expecting it to persist in shared memory. * Unify the TZC configuration. There is no need to add a region for SCP in Juno; it's enough to simply not allow any access to this reserved region. Also set region 0 to provide no access by default instead of assuming this is the case. * Unify the number of memory map regions required for ARM development platforms, although the actual ranges mapped for each platform may be different. For the FVP port, this reduces the mapped peripheral address space. These latter changes will only be observed when the platform ports are migrated to use the new common platform code in subsequent patches. Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8
-