- 21 Sep, 2016 1 commit
-
-
Yatharth Kochar authored
This patch adds common changes to support AArch32 state in BL1 and BL2. Following are the changes: * Added functions for disabling MMU from Secure state. * Added AArch32 specific SMC function. * Added semihosting support. * Added reporting of unhandled exceptions. * Added uniprocessor stack support. * Added `el3_entrypoint_common` macro that can be shared by BL1 and BL32 (SP_MIN) BL stages. The `el3_entrypoint_common` is similar to the AArch64 counterpart with the main difference in the assembly instructions and the registers that are relevant to AArch32 execution state. * Enabled `LOAD_IMAGE_V2` flag in Makefile for `ARCH=aarch32` and added check to make sure that platform has not overridden to disable it. Change-Id: I33c6d8dfefb2e5d142fdfd06a0f4a7332962e1a3
-
- 10 Aug, 2016 1 commit
-
-
Soby Mathew authored
This patch adds various assembly helpers for AArch32 like : * cache management : Functions to flush, invalidate and clean cache by MVA. Also helpers to do cache operations by set-way are also added. * stack management: Macros to declare stack and get the current stack corresponding to current CPU. * Misc: Macros to access co processor registers in AArch32, macros to define functions in assembly, assert macros, generic `do_panic()` implementation and function to zero block of memory. Change-Id: I7b78ca3f922c0eda39beb9786b7150e9193425be
-
- 18 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch moves the PSCI services and BL31 frameworks like context management and per-cpu data into new library components `PSCI` and `el3_runtime` respectively. This enables PSCI to be built independently from BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant PSCI library sources and gets included by `bl31.mk`. Other changes which are done as part of this patch are: * The runtime services framework is now moved to the `common/` folder to enable reuse. * The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture specific folder. * The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder to `plat/common` folder. The original file location now has a stub which just includes the file from new location to maintain platform compatibility. Most of the changes wouldn't affect platform builds as they just involve changes to the generic bl1.mk and bl31.mk makefiles. NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION. Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
-
- 13 Aug, 2015 1 commit
-
-
Soby Mathew authored
The state-id field in the power-state parameter of a CPU_SUSPEND call can be used to describe composite power states specific to a platform. The current PSCI implementation does not interpret the state-id field. It relies on the target power level and the state type fields in the power-state parameter to perform state coordination and power management operations. The framework introduced in this patch allows the PSCI implementation to intepret generic global states like RUN, RETENTION or OFF from the State-ID to make global state coordination decisions and reduce the complexity of platform ports. It adds support to involve the platform in state coordination which facilitates the use of composite power states and improves the support for entering standby states at multiple power domains. The patch also includes support for extended state-id format for the power state parameter as specified by PSCIv1.0. The PSCI implementation now defines a generic representation of the power-state parameter. It depends on the platform port to convert the power-state parameter (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this representation via the `validate_power_state()` plat_psci_ops handler. It is an array where each index corresponds to a power level. Each entry contains the local power state the power domain at that power level could enter. The meaning of the local power state values is platform defined, and may vary between levels in a single platform. The PSCI implementation constrains the values only so that it can classify the state as RUN, RETENTION or OFF as required by the specification: * zero means RUN * all OFF state values at all levels must be higher than all RETENTION state values at all levels * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values to the framework The platform also must define the macros PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power domains have been requested to enter a retention or power down state. The PSCI implementation does not interpret the local power states defined by the platform. The only constraint is that the PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE. For a power domain tree, the generic implementation maintains an array of local power states. These are the states requested for each power domain by all the cores contained within the domain. During a request to place multiple power domains in a low power state, the platform is passed an array of requested power-states for each power domain through the plat_get_target_pwr_state() API. It coordinates amongst these states to determine a target local power state for the power domain. A default weak implementation of this API is provided in the platform layer which returns the minimum of the requested power-states back to the PSCI state coordination. Finally, the plat_psci_ops power management handlers are passed the target local power states for each affected power domain using the generic representation described above. The platform executes operations specific to these target states. The platform power management handler for placing a power domain in a standby state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for placing a core power domain into a standby or retention state should now be used to only place the core power domain in a standby or retention state. The extended state-id power state format can be enabled by setting the build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default. Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
-
- 28 Apr, 2015 1 commit
-
-
Dan Handley authored
This major change pulls out the common functionality from the FVP and Juno platform ports into the following categories: * (include/)plat/common. Common platform porting functionality that typically may be used by all platforms. * (include/)plat/arm/common. Common platform porting functionality that may be used by all ARM standard platforms. This includes all ARM development platforms like FVP and Juno but may also include non-ARM-owned platforms. * (include/)plat/arm/board/common. Common platform porting functionality for ARM development platforms at the board (off SoC) level. * (include/)plat/arm/css/common. Common platform porting functionality at the ARM Compute SubSystem (CSS) level. Juno is an example of a CSS-based platform. * (include/)plat/arm/soc/common. Common platform porting functionality at the ARM SoC level, which is not already defined at the ARM CSS level. No guarantees are made about the backward compatibility of functionality provided in (include/)plat/arm. Also remove any unnecessary variation between the ARM development platform ports, including: * Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the Juno implementation, which copies the information from BL2 memory instead of expecting it to persist in shared memory. * Unify the TZC configuration. There is no need to add a region for SCP in Juno; it's enough to simply not allow any access to this reserved region. Also set region 0 to provide no access by default instead of assuming this is the case. * Unify the number of memory map regions required for ARM development platforms, although the actual ranges mapped for each platform may be different. For the FVP port, this reduces the mapped peripheral address space. These latter changes will only be observed when the platform ports are migrated to use the new common platform code in subsequent patches. Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8
-
- 05 Mar, 2015 1 commit
-
-
Sandrine Bailleux authored
All coding style violations have been fixed in a previous patch and since then, each individual patch has been checked in this regard. However, the latest version of the checkpatch.pl script from the Linux kernel is more advanced and it is able to flag new errors in the Trusted Firmware codebase. This patch fixes them. Change-Id: I1f332f2440984be85d36b231bb83260368987077
-
- 12 Feb, 2015 1 commit
-
-
Soby Mathew authored
This patch removes the plat_get_max_afflvl() platform API and instead replaces it with a platform macro PLATFORM_MAX_AFFLVL. This is done because the maximum affinity level for a platform is a static value and it is more efficient for it to be defined as a platform macro. NOTE: PLATFORM PORTS NEED TO BE UPDATED ON MERGE OF THIS COMMIT Fixes ARM-Software/tf-issues#265 Change-Id: I31d89b30c2ccda30d28271154d869060d50df7bf
-
- 21 Aug, 2014 1 commit
-
-
Sandrine Bailleux authored
This patch adds the initial port of the ARM Trusted Firmware on the Juno development platform. This port does not support a BL3-2 image or any PSCI APIs apart from PSCI_VERSION and PSCI_CPU_ON. It enables workarounds for selected Cortex-A57 (#806969 & #813420) errata and implements the workaround for a Juno platform errata (Defect id 831273). Change-Id: Ib3d92df3af53820cfbb2977582ed0d7abf6ef893
-
- 28 Jul, 2014 1 commit
-
-
Soby Mathew authored
This patch reworks the crash reporting mechanism to further optimise the stack and code size. The reporting makes use of assembly console functions to avoid calling C Runtime to report the CPU state. The crash buffer requirement is reduced to 64 bytes with this implementation. The crash buffer is now part of per-cpu data which makes retrieving the crash buffer trivial. Also now panic() will use crash reporting if invoked from BL3-1. Fixes ARM-software/tf-issues#199 Change-Id: I79d27a4524583d723483165dc40801f45e627da5
-
- 16 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
This patch prepares the per-cpu pointer cache for wider use by: * renaming the structure to cpu_data and placing in new header * providing accessors for this CPU, or other CPUs * splitting the initialization of the TPIDR pointer from the initialization of the cpu_data content * moving the crash stack initialization to a crash stack function * setting the TPIDR pointer very early during boot Change-Id: Icef9004ff88f8eb241d48c14be3158087d7e49a3
-
- 06 May, 2014 3 commits
-
-
Dan Handley authored
Update code base to remove variables from the .data section, mainly by using const static data where possible and adding the const specifier as required. Most changes are to the IO subsystem, including the framework APIs. The FVP power management code is also affected. Delay initialization of the global static variable, next_image_type in bl31_main.c, until it is realy needed. Doing this moves the variable from the .data to the .bss section. Also review the IO interface for inconsistencies, using uintptr_t where possible instead of void *. Remove the io_handle and io_dev_handle typedefs, which were unnecessary, replacing instances with uintptr_t. Fixes ARM-software/tf-issues#107. Change-Id: I085a62197c82410b566e4698e5590063563ed304
-
Dan Handley authored
Reduce the number of header files included from other header files as much as possible without splitting the files. Use forward declarations where possible. This allows removal of some unnecessary "#ifndef __ASSEMBLY__" statements. Also, review the .c and .S files for which header files really need including and reorder the #include statements alphabetically. Fixes ARM-software/tf-issues#31 Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
-
Dan Handley authored
Move almost all system include files to a logical sub-directory under ./include. The only remaining system include directories not under ./include are specific to the platform. Move the corresponding source files to match the include directory structure. Also remove pm.h as it is no longer used. Change-Id: Ie5ea6368ec5fad459f3e8a802ad129135527f0b3
-
- 17 Feb, 2014 2 commits
-
-
Harry Liebel authored
The Firmware Image Package (FIP) driver allows for data to be loaded from a FIP on platform storage. The FVP supports loading bootloader images from a FIP located in NOR FLASH. The implemented FVP policy states that bootloader images will be loaded from a FIP in NOR FLASH if available and fall back to loading individual images from semi-hosting. NOTE: - BL3-3(e.g. UEFI) is loaded into DRAM and needs to be configured to run from the BL33_BASE address. This is currently set to DRAM_BASE+128MB for the FVP. Change-Id: I2e4821748e3376b5f9e467cf3ec09509e43579a0
-
James Morrissey authored
The modified implementation uses the IO abstraction rather than making direct semi-hosting calls. The semi-hosting driver is now registered for the FVP platform during initialisation of each boot stage where it is used. Additionally, the FVP platform includes a straightforward implementation of 'plat_get_image_source' which provides a generic means for the 'load_image' function to determine how to access the image data. Change-Id: Ia34457b471dbee990c7b3c79de7aee4ceea51aa6
-
- 17 Jan, 2014 2 commits
-
-
Jeenu Viswambharan authored
Ctags seem to have a problem with generating tags for assembler symbols when a comment immediately follows an assembly label. This patch inserts a single space character between the label definition and the following comments to help ctags. The patch is generated by the command: git ls-files -- \*.S | xargs sed -i 's/^\([^:]\+\):;/\1: ;/1' Change-Id: If7a3c9d0f51207ea033cc8b8e1b34acaa0926475
-
Dan Handley authored
Change-Id: Ic7fb61aabae1d515b9e6baf3dd003807ff42da60
-
- 05 Dec, 2013 1 commit
-
-
Dan Handley authored
- Add instructions for contributing to ARM Trusted Firmware. - Update copyright text in all files to acknowledge contributors. Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5
-
- 25 Oct, 2013 1 commit
-
-
Achin Gupta authored
-