- 13 Aug, 2015 2 commits
-
-
Soby Mathew authored
This patch adds support to the Juno and FVP ports for composite power states with both the original and extended state-id power-state formats. Both the platform ports use the recommended state-id encoding as specified in Section 6.5 of the PSCI specification (ARM DEN 0022C). The platform build flag ARM_RECOM_STATE_ID_ENC is used to include this support. By default, to maintain backwards compatibility, the original power state parameter format is used and the state-id field is expected to be zero. Change-Id: Ie721b961957eaecaca5bf417a30952fe0627ef10
-
Soby Mathew authored
This patch migrates ARM reference platforms, Juno and FVP, to the new platform API mandated by the new PSCI power domain topology and composite power state frameworks. The platform specific makefiles now exports the build flag ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer. Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
-
- 25 Jun, 2015 5 commits
-
-
Juan Castillo authored
The authentication framework deprecates plat_match_rotpk() in favour of plat_get_rotpk_info(). This patch removes plat_match_rotpk() from the platform port. Change-Id: I2250463923d3ef15496f9c39678b01ee4b33883b
-
Juan Castillo authored
This patch modifies the Trusted Board Boot implementation to use the new authentication framework, making use of the authentication module, the cryto module and the image parser module to authenticate the images in the Chain of Trust. A new function 'load_auth_image()' has been implemented. When TBB is enabled, this function will call the authentication module to authenticate parent images following the CoT up to the root of trust to finally load and authenticate the requested image. The platform is responsible for picking up the right makefiles to build the corresponding cryptographic and image parser libraries. ARM platforms use the mbedTLS based libraries. The platform may also specify what key algorithm should be used to sign the certificates. This is done by declaring the 'KEY_ALG' variable in the platform makefile. FVP and Juno use ECDSA keys. On ARM platforms, BL2 and BL1-RW regions have been increased 4KB each to accommodate the ECDSA code. REMOVED BUILD OPTIONS: * 'AUTH_MOD' Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
-
Juan Castillo authored
This patch adds a CoT based on the Trusted Board Boot Requirements document*. The CoT consists of an array of authentication image descriptors indexed by the image identifiers. A new header file with TBBR image identifiers has been added. Platforms that use the TBBR (i.e. ARM platforms) may reuse these definitions as part of their platform porting. PLATFORM PORT - IMPORTANT: Default image IDs have been removed from the platform common definitions file (common_def.h). As a consequence, platforms that used those common definitons must now either include the IDs provided by the TBBR header file or define their own IDs. *The NVCounter authentication method has not been implemented yet. Change-Id: I7c4d591863ef53bb0cd4ce6c52a60b06fa0102d5
-
Juan Castillo authored
This patch extends the platform port by adding an API that returns either the Root of Trust public key (ROTPK) or its hash. This is usually stored in ROM or eFUSE memory. The ROTPK returned must be encoded in DER format according to the following ASN.1 structure: SubjectPublicKeyInfo ::= SEQUENCE { algorithm AlgorithmIdentifier, subjectPublicKey BIT STRING } In case the platform returns a hash of the key: DigestInfo ::= SEQUENCE { digestAlgorithm AlgorithmIdentifier, keyDigest OCTET STRING } An implementation for ARM development platforms is provided in this patch. When TBB is enabled, the ROTPK hash location must be specified using the build option 'ARM_ROTPK_LOCATION'. Available options are: - 'regs' : return the ROTPK hash stored in the Trusted root-key storage registers. - 'devel_rsa' : return a ROTPK hash embedded in the BL1 and BL2 binaries. This hash has been obtained from the development RSA public key located in 'plat/arm/board/common/rotpk'. On FVP, the number of MMU tables has been increased to map and access the ROTPK registers. A new file 'board_common.mk' has been added to improve code sharing in the ARM develelopment platforms. Change-Id: Ib25862e5507d1438da10773e62bd338da8f360bf
-
Juan Castillo authored
The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type 'io_uuid_spec_t' has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --> uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
-
- 18 Jun, 2015 1 commit
-
-
Ryan Harkin authored
Add SP804 delay timer support to the FVP BSP. This commit simply provides the 3 constants needed by the SP804 delay timer driver and calls sp804_timer_init() in bl2_platform_setup(). The BSP does not currently use the delay timer functions. Note that the FVP SP804 is a normal world accessible peripheral and should not be used by the secure world after transition to the normal world. Change-Id: I5f91d2ac9eb336fd81943b3bb388860dfb5f2b39 Co-authored-by: Dan Handley <dan.handley@arm.com>
-
- 09 Jun, 2015 1 commit
-
-
Sandrine Bailleux authored
For CSS based platforms, the constants MHU_SECURE_BASE and MHU_SECURE_SIZE used to define the extents of the Trusted Mailboxes. As such, they were misnamed because the mailboxes are completely unrelated to the MHU hardware. This patch removes the MHU_SECURE_BASE and MHU_SECURE_SIZE #defines. The address of the Trusted Mailboxes is now relative to the base of the Trusted SRAM. This patch also introduces a new constant, SCP_COM_SHARED_MEM_BASE, which is the address of the first memory region used for communication between AP and SCP. This is used by the BOM and SCPI protocols. Change-Id: Ib200f057b19816bf05e834d111271c3ea777291f
-
- 04 Jun, 2015 1 commit
-
-
Sandrine Bailleux authored
This patch removes the FIRST_RESET_HANDLER_CALL build flag and its use in ARM development platforms. If a different reset handling behavior is required between the first and subsequent invocations of the reset handling code, this should be detected at runtime. On Juno, the platform reset handler is now always compiled in. This means it is now executed twice on the cold boot path, first in BL1 then in BL3-1, and it has the same behavior in both cases. It is also executed twice on the warm boot path, first in BL1 then in the PSCI entrypoint code. Also update the documentation to reflect this change. NOTE: THIS PATCH MAY FORCE PLATFORM PORTS THAT USE THE FIRST_RESET_HANDLER_CALL BUILD OPTION TO FIX THEIR RESET HANDLER. Change-Id: Ie5c17dbbd0932f5fa3b446efc6e590798a5beae2
-
- 03 Jun, 2015 1 commit
-
-
Soby Mathew authored
This patch fixes the incorrect bit width used to extract the wakeup reason from PSYSR in platform_get_entrypoint() function. This defect did not have any observed regression. Change-Id: I42652dbffc99f5bf50cc86a5878f28d730720d9a
-
- 01 Jun, 2015 1 commit
-
-
Sandrine Bailleux authored
On ARM standard platforms, snoop and DVM requests used to be enabled for the primary CPU's cluster only in the first EL3 bootloader. In other words, if the platform reset into BL1 then CCI coherency would be enabled by BL1 only, and not by BL3-1 again. However, this doesn't cater for platforms that use BL3-1 along with a non-TF ROM bootloader that doesn't enable snoop and DVM requests. In this case, CCI coherency is never enabled. This patch modifies the function bl31_early_platform_setup() on ARM standard platforms so that it always enables snoop and DVM requests regardless of whether earlier bootloader stages have already done it. There is no harm in executing this code twice. ARM Trusted Firmware Design document updated accordingly. Change-Id: Idf1bdeb24d2e1947adfbb76a509f10beef224e1c
-
- 27 May, 2015 1 commit
-
-
Soby Mathew authored
This patch fixes the incorrect bit width used to extract the primary cpu id from `ap_data` exported by scp at SCP_BOOT_CFG_ADDR in platform_is_primary_cpu(). Change-Id: I14abb361685f31164ecce0755fc1a145903b27aa
-
- 19 May, 2015 1 commit
-
-
Dan Handley authored
Fix the return type of the FVP `plat_arm_topology_setup` function to be `void` instead of `int` to match the declaration in `plat_arm.h`. This does not result in any change in behavior. Change-Id: I62edfa7652b83bd26cffb7d167153959b38e37e7
-
- 28 Apr, 2015 5 commits
-
-
Sandrine Bailleux authored
There has been a breaking change in the communication protocols used between the AP cores and the SCP on CSS based platforms like Juno. This means both the AP Trusted Firmware and SCP firmware must be updated at the same time. In case the user forgets to update the SCP ROM firmware, this patch detects when it still uses the previous version of the communication protocol. It will then output a comprehensive error message that helps trouble-shoot the issue. Change-Id: I7baf8f05ec0b7d8df25e0ee53df61fe7be0207c2
-
Sandrine Bailleux authored
The communication protocol used between the AP cores and the SCP in CSS-based platforms like Juno has undergone a number of changes. This patch makes the required modifications to the SCP Boot Protocol, SCPI Protocol and MHU driver code in shared CSS platform code so that the AP cores are still able to communicate with the SCP. This patch focuses on the mandatory changes to make it work. The design of this code needs to be improved but this will come in a subsequent patch. The main changes are: - MHU communication protocol - The command ID and payload size are no longer written into the MHU registers directly. Instead, they are stored in the payload area. The MHU registers are now used only as a doorbell to kick off messages. Same goes for any command result, the AP has to pick it up from the payload area. - SCP Boot Protocol - The BL3-0 image is now expected to embed a checksum. This checksum must be passed to the SCP, which uses it to check the integrity of the image it received. - The BL3-0 image used to be transferred a block (4KB) at a time. The SCP now supports receiving up to 128KB at a time, which is more than the size of the BL3-0 image. Therefore, the image is now sent in one go. - The command IDs have changed. - SCPI Protocol - The size of the SCPI payload has been reduced down from 512 bytes to 256 bytes. This changes the base address of the AP-to-SCP payload area. - For commands that have a response, the response is the same SCPI header that was sent, except for the size and the status, which both must be updated appropriately. Success/Failure of a command is determined by looking at the updated status code. - Some command IDs have changed. NOTE: THIS PATCH BREAKS COMPATIBILITY WITH FORMER VERSIONS OF THE SCP FIRMWARE AND THUS REQUIRES AN UPDATE OF THIS BINARY. THE LATEST SCP BINARY CAN BE OBTAINED FROM THE ARM CONNECTED COMMUNITY WEBSITE. Change-Id: Ia5f6b95fe32401ee04a3805035748e8ef6718da7
-
Dan Handley authored
Move the Juno port from plat/juno to plat/arm/board/juno. Also rename some of the files so they are consistently prefixed with juno_. Update the platform makefiles accordingly. Change-Id: I0af6cb52a5fee7ef209107a1188b76a3c33a2a9f
-
Dan Handley authored
Move the FVP port from plat/fvp to plat/arm/board/fvp. Also rename some of the files so they are consistently prefixed with fvp_. Update the platform makefiles accordingly. Change-Id: I7569affc3127d66405f1548fc81b878a858e61b7
-
Dan Handley authored
This major change pulls out the common functionality from the FVP and Juno platform ports into the following categories: * (include/)plat/common. Common platform porting functionality that typically may be used by all platforms. * (include/)plat/arm/common. Common platform porting functionality that may be used by all ARM standard platforms. This includes all ARM development platforms like FVP and Juno but may also include non-ARM-owned platforms. * (include/)plat/arm/board/common. Common platform porting functionality for ARM development platforms at the board (off SoC) level. * (include/)plat/arm/css/common. Common platform porting functionality at the ARM Compute SubSystem (CSS) level. Juno is an example of a CSS-based platform. * (include/)plat/arm/soc/common. Common platform porting functionality at the ARM SoC level, which is not already defined at the ARM CSS level. No guarantees are made about the backward compatibility of functionality provided in (include/)plat/arm. Also remove any unnecessary variation between the ARM development platform ports, including: * Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the Juno implementation, which copies the information from BL2 memory instead of expecting it to persist in shared memory. * Unify the TZC configuration. There is no need to add a region for SCP in Juno; it's enough to simply not allow any access to this reserved region. Also set region 0 to provide no access by default instead of assuming this is the case. * Unify the number of memory map regions required for ARM development platforms, although the actual ranges mapped for each platform may be different. For the FVP port, this reduces the mapped peripheral address space. These latter changes will only be observed when the platform ports are migrated to use the new common platform code in subsequent patches. Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8
-