- 13 Jul, 2018 1 commit
-
-
Antonio Nino Diaz authored
Most registers are 64-bit wide, even in AArch32 mode: - MAIR_ELx is equivalent to MAIR0 and MAIR1. - TTBR is 64 bit in both AArch64 and AArch32. The only difference is the TCR register, which is 32 bit in AArch32 and in EL3 in AArch64. For consistency with the rest of ELs in AArch64, it makes sense to also have it as a 64-bit value. Change-Id: I2274d66a28876702e7085df5f8aad0e7ec139da9 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 27 Jun, 2018 1 commit
-
-
Jeenu Viswambharan authored
At present, the function provided by the translation library to enable MMU constructs appropriate values for translation library, and programs them to the right registers. The construction of initial values, however, is only required once as both the primary and secondaries program the same values. Additionally, the MMU-enabling function is written in C, which means there's an active stack at the time of enabling MMU. On some systems, like Arm DynamIQ, having active stack while enabling MMU during warm boot might lead to coherency problems. This patch addresses both the above problems by: - Splitting the MMU-enabling function into two: one that sets up values to be programmed into the registers, and another one that takes the pre-computed values and writes to the appropriate registers. With this, the primary effectively calls both functions to have the MMU enabled, but secondaries only need to call the latter. - Rewriting the function that enables MMU in assembly so that it doesn't use stack. This patch fixes a bunch of MISRA issues on the way. Change-Id: I0faca97263a970ffe765f0e731a1417e43fbfc45 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-