1. 23 Jan, 2015 3 commits
    • Soby Mathew's avatar
      Return success if an interrupt is seen during PSCI CPU_SUSPEND · 22f08973
      Soby Mathew authored
      This patch adds support to return SUCCESS if a pending interrupt is
      detected during a CPU_SUSPEND call to a power down state. The check
      is performed as late as possible without losing the ability to return
      to the caller. This reduces the overhead incurred by a CPU in
      undergoing a complete power cycle when a wakeup interrupt is already
      pending.
      
      Fixes ARM-Software/tf-issues#102
      
      Change-Id: I1aff04a74b704a2f529734428030d1d10750fd4b
      22f08973
    • Soby Mathew's avatar
      Validate power_state and entrypoint when executing PSCI calls · 539dcedb
      Soby Mathew authored
      This patch allows the platform to validate the power_state and
      entrypoint information from the normal world early on in PSCI
      calls so that we can return the error safely. New optional
      pm_ops hooks `validate_power_state` and `validate_ns_entrypoint`
      are introduced to do this.
      
      As a result of these changes, all the other pm_ops handlers except
      the PSCI_ON handler are expected to be successful. Also, the PSCI
      implementation will now assert if a PSCI API is invoked without the
      corresponding pm_ops handler being registered by the platform.
      
      NOTE : PLATFORM PORTS WILL BREAK ON MERGE OF THIS COMMIT. The
      pm hooks have 2 additional optional callbacks and the return type
      of the other hooks have changed.
      
      Fixes ARM-Software/tf-issues#229
      
      Change-Id: I036bc0cff2349187c7b8b687b9ee0620aa7e24dc
      539dcedb
    • Soby Mathew's avatar
      Remove `ns_entrypoint` and `mpidr` from parameters in pm_ops · e146f4cc
      Soby Mathew authored
      This patch removes the non-secure entry point information being passed
      to the platform pm_ops which is not needed. Also, it removes the `mpidr`
      parameter for  platform pm hooks which are meant to do power management
      operations only on the current cpu.
      
      NOTE: PLATFORM PORTS MUST BE UPDATED AFTER MERGING THIS COMMIT.
      
      Change-Id: If632376a990b7f3b355f910e78771884bf6b12e7
      e146f4cc
  2. 19 Aug, 2014 3 commits
    • Achin Gupta's avatar
      Miscellaneous PSCI code cleanups · a4a8eaeb
      Achin Gupta authored
      This patch implements the following cleanups in PSCI generic code:
      
      1. It reworks the affinity level specific handlers in the PSCI implementation
         such that.
      
         a. Usage of the 'rc' local variable is restricted to only where it is
            absolutely needed
      
         b. 'plat_state' local variable is defined only when a direct invocation of
            plat_get_phys_state() does not suffice.
      
         c. If a platform handler is not registered then the level specific handler
            returns early.
      
      2. It limits the use of the mpidr_aff_map_nodes_t typedef to declaration of
         arrays of the type instead of using it in function prototypes as well.
      
      3. It removes dangling declarations of __psci_cpu_off() and
         __psci_cpu_suspend(). The definitions of these functions were removed in
         earlier patches.
      
      Change-Id: I51e851967c148be9c2eeda3a3c41878f7b4d6978
      a4a8eaeb
    • Achin Gupta's avatar
      Add APIs to preserve highest affinity level in OFF state · 0a46e2c3
      Achin Gupta authored
      This patch adds APIs to find, save and retrieve the highest affinity level which
      will enter or exit from the physical OFF state during a PSCI power management
      operation. The level is stored in per-cpu data.
      
      It then reworks the PSCI implementation to perform cache maintenance only
      when the handler for the highest affinity level to enter/exit the OFF state is
      called.
      
      For example. during a CPU_SUSPEND operation, state management is done prior to
      calling the affinity level specific handlers. The highest affinity level which
      will be turned off is determined using the psci_find_max_phys_off_afflvl()
      API. This level is saved using the psci_set_max_phys_off_afflvl() API. In the
      code that does generic handling for each level, prior to performing cache
      maintenance it is first determined if the current affinity level matches the
      value returned by psci_get_max_phys_off_afflvl(). Cache maintenance is done if
      the values match.
      
      This change allows the last CPU in a cluster to perform cache maintenance
      independently. Earlier, cache maintenance was started in the level 0 handler and
      finished in the level 1 handler. This change in approach will facilitate
      implementation of tf-issues#98.
      
      Change-Id: I57233f0a27b3ddd6ddca6deb6a88b234525b0ae6
      0a46e2c3
    • Achin Gupta's avatar
      Rework state management in the PSCI implementation · 84c9f100
      Achin Gupta authored
      This patch pulls out state management from the affinity level specific handlers
      into the top level functions specific to the operation
      i.e. psci_afflvl_suspend(), psci_afflvl_on() etc.
      
      In the power down path this patch will allow an affinity instance at level X to
      determine the state that an affinity instance at level X+1 will enter before the
      level specific handlers are called. This will be useful to determine whether a
      CPU is the last in the cluster during a suspend/off request and so on.
      
      Similarly, in the power up path this patch will allow an affinity instance at
      level X to determine the state that an affinity instance at level X+1 has
      emerged from, even after the level specific handlers have been called. This will
      be useful in determining whether a CPU is the first in the cluster during a
      on/resume request and so on.
      
      As before, while powering down, state is updated before the level specific
      handlers are invoked so that they can perform actions based upon their target
      state. While powering up, state is updated after the level specific handlers have
      been invoked so that they can perform actions based upon the state they emerged
      from.
      
      Change-Id: I40fe64cb61bb096c66f88f6d493a1931243cfd37
      84c9f100
  3. 28 Jul, 2014 1 commit
    • Achin Gupta's avatar
      Remove the concept of coherent stacks · 539a7b38
      Achin Gupta authored
      This patch removes the allocation of memory for coherent stacks, associated
      accessor function and some dead code which called the accessor function. It also
      updates the porting guide to remove the concept and the motivation behind using
      stacks allocated in coherent memory.
      
      Fixes ARM-software/tf-issues#198
      
      Change-Id: I00ff9a04f693a03df3627ba39727e3497263fc38
      539a7b38
  4. 19 Jul, 2014 1 commit
    • Achin Gupta's avatar
      Remove coherent stack usage from the warm boot path · b51da821
      Achin Gupta authored
      This patch uses stacks allocated in normal memory to enable the MMU early in the
      warm boot path thus removing the dependency on stacks allocated in coherent
      memory. Necessary cache and stack maintenance is performed when a cpu is being
      powered down and up. This avoids any coherency issues that can arise from
      reading speculatively fetched stale stack memory from another CPUs cache. These
      changes affect the warm boot path in both BL3-1 and BL3-2.
      
      The EL3 system registers responsible for preserving the MMU state are not saved
      and restored any longer. Static values are used to program these system
      registers when a cpu is powered on or resumed from suspend.
      
      Change-Id: I8357e2eb5eb6c5f448492c5094b82b8927603784
      b51da821
  5. 25 Jun, 2014 1 commit
    • Andrew Thoelke's avatar
      Remove current CPU mpidr from PSCI common code · 56378aa6
      Andrew Thoelke authored
      Many of the interfaces internal to PSCI pass the current CPU
      MPIDR_EL1 value from function to function. This is not required,
      and with inline access to the system registers is less efficient
      than requiring the code to read that register whenever required.
      
      This patch remove the mpidr parameter from the affected interfaces
      and reduces code in FVP BL3-1 size by 160 bytes.
      
      Change-Id: I16120a7c6944de37232016d7e109976540775602
      56378aa6
  6. 23 Jun, 2014 1 commit
    • Andrew Thoelke's avatar
      Initialise CPU contexts from entry_point_info · 167a9357
      Andrew Thoelke authored
      Consolidate all BL3-1 CPU context initialization for cold boot, PSCI
      and SPDs into two functions:
      *  The first uses entry_point_info to initialize the relevant
         cpu_context for first entry into a lower exception level on a CPU
      *  The second populates the EL1 and EL2 system registers as needed
         from the cpu_context to ensure correct entry into the lower EL
      
      This patch alters the way that BL3-1 determines which exception level
      is used when first entering EL1 or EL2 during cold boot - this is now
      fully determined by the SPSR value in the entry_point_info for BL3-3,
      as set up by the platform code in BL2 (or otherwise provided to BL3-1).
      
      In the situation that EL1 (or svc mode) is selected for a processor
      that supports EL2, the context management code will now configure all
      essential EL2 register state to ensure correct execution of EL1. This
      allows the platform code to run non-secure EL1 payloads directly
      without requiring a small EL2 stub or OS loader.
      
      Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
      167a9357
  7. 07 May, 2014 1 commit
    • Andrew Thoelke's avatar
      Correct usage of data and instruction barriers · 8cec598b
      Andrew Thoelke authored
      The current code does not always use data and instruction
      barriers as required by the architecture and frequently uses
      barriers excessively due to their inclusion in all of the
      write_*() helper functions.
      
      Barriers should be used explicitly in assembler or C code
      when modifying processor state that requires the barriers in
      order to enable review of correctness of the code.
      
      This patch removes the barriers from the helper functions and
      introduces them as necessary elsewhere in the code.
      
      PORTING NOTE: check any port of Trusted Firmware for use of
      system register helper functions for reliance on the previous
      barrier behaviour and add explicit barriers as necessary.
      
      Fixes ARM-software/tf-issues#92
      
      Change-Id: Ie63e187404ff10e0bdcb39292dd9066cb84c53bf
      8cec598b
  8. 06 May, 2014 3 commits
    • Dan Handley's avatar
      Reduce deep nesting of header files · 97043ac9
      Dan Handley authored
      Reduce the number of header files included from other header
      files as much as possible without splitting the files. Use forward
      declarations where possible. This allows removal of some unnecessary
      "#ifndef __ASSEMBLY__" statements.
      
      Also, review the .c and .S files for which header files really need
      including and reorder the #include statements alphabetically.
      
      Fixes ARM-software/tf-issues#31
      
      Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
      97043ac9
    • Dan Handley's avatar
      Always use named structs in header files · fb037bfb
      Dan Handley authored
      Add tag names to all unnamed structs in header files. This
      allows forward declaration of structs, which is necessary to
      reduce header file nesting (to be implemented in a subsequent
      commit).
      
      Also change the typedef names across the codebase to use the _t
      suffix to be more conformant with the Linux coding style. The
      coding style actually prefers us not to use typedefs at all but
      this is considered a step too far for Trusted Firmware.
      
      Also change the IO framework structs defintions to use typedef'd
      structs to be consistent with the rest of the codebase.
      
      Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
      fb037bfb
    • Dan Handley's avatar
      Make use of user/system includes more consistent · 35e98e55
      Dan Handley authored
      Make codebase consistent in its use of #include "" syntax for
      user includes and #include <> syntax for system includes.
      
      Fixes ARM-software/tf-issues#65
      
      Change-Id: If2f7c4885173b1fd05ac2cde5f1c8a07000c7a33
      35e98e55
  9. 21 Mar, 2014 1 commit
    • Vikram Kanigiri's avatar
      Remove partially qualified asm helper functions · 6ba0b6d6
      Vikram Kanigiri authored
      Each ARM Trusted Firmware image should know in which EL it is running
      and it should use the corresponding register directly instead of reading
      currentEL and knowing which asm register to read/write
      
      Change-Id: Ief35630190b6f07c8fbb7ba6cb20db308f002945
      6ba0b6d6
  10. 20 Mar, 2014 1 commit
    • Jeenu Viswambharan's avatar
      Implement ARM Standard Service · 64f6ea9b
      Jeenu Viswambharan authored
      This patch implements ARM Standard Service as a runtime service and adds
      support for call count, UID and revision information SMCs. The existing
      PSCI implementation is subsumed by the Standard Service calls and all
      PSCI calls are therefore dispatched by the Standard Service to the PSCI
      handler.
      
      At present, PSCI is the only specification under Standard Service. Thus
      call count returns the number of PSCI calls implemented. As this is the
      initial implementation, a revision number of 0.1 is returned for call
      revision.
      
      Fixes ARM-software/tf-issues#62
      
      Change-Id: I6d4273f72ad6502636efa0f872e288b191a64bc1
      64f6ea9b
  11. 26 Feb, 2014 1 commit
    • Jeenu Viswambharan's avatar
      Implement late binding for runtime hooks · 7f366605
      Jeenu Viswambharan authored
      At present SPD power management hooks and BL3-2 entry are implemented
      using weak references. This would have the handlers bound and registered
      with the core framework at build time, but leaves them dangling if a
      service fails to initialize at runtime.
      
      This patch replaces implementation by requiring runtime handlers to
      register power management and deferred initialization hooks with the
      core framework at runtime. The runtime services are to register the
      hooks only as the last step, after having all states successfully
      initialized.
      
      Change-Id: Ibe788a2a381ef39aec1d4af5ba02376e67269782
      7f366605
  12. 20 Feb, 2014 2 commits
    • Achin Gupta's avatar
      Add power management support in the SPD · 607084ee
      Achin Gupta authored
      This patch implements a set of handlers in the SPD which are called by
      the PSCI runtime service upon receiving a power management
      operation. These handlers in turn pass control to the Secure Payload
      image if required before returning control to PSCI. This ensures that
      the Secure Payload has complete visibility of all power transitions in
      the system and can prepare accordingly.
      
      Change-Id: I2d1dba5629b7cf2d53999d39fe807dfcf3f62fe2
      607084ee
    • Achin Gupta's avatar
      Move PSCI to runtime services directory · 0a9f7473
      Achin Gupta authored
      This patch creates a 'services' directory and moves the PSCI under
      it. Other runtime services e.g. the Secure Payload Dispatcher service
      will be placed under the same directory in the future.
      
      Also fixes issue ARM-software/tf-issues#12
      
      Change-Id: I187f83dcb660b728f82155d91882e961d2255068
      0a9f7473
  13. 20 Jan, 2014 1 commit
    • Achin Gupta's avatar
      psci: fix affinity level upgrade issue · 75f7367b
      Achin Gupta authored
      The psci implementation does not track target affinity level requests
      specified during cpu_suspend calls correctly as per the following
      example.
      
      1. cpu0.cluster0 calls cpu_suspend with the target affinity level as 0
      2. Only the cpu0.cluster0 is powered down while cluster0 remains
         powered up
      3. cpu1.cluster0 calls cpu_off to power itself down to highest
         possible affinity level
      4. cluster0 will be powered off even though cpu0.cluster0 does not
         allow cluster shutdown
      
      This patch introduces reference counts at affinity levels > 0 to track
      the number of cpus which want an affinity instance at level X to
      remain powered up. This instance can be turned off only if its
      reference count is 0. Cpus still undergo the normal state transitions
      (ON, OFF, ON_PENDING, SUSPEND) but the higher levels can only be
      either ON or OFF depending upon their reference count.
      
      The above issue is thus fixed as follows:
      
      1. cluster0's reference count is incremented by two when cpu0 and cpu1
         are initially powered on.
      
      2. cpu0.cluster0 calls cpu_suspend with the target affinity level as
         0. This does not affect the cluster0 reference count.
      
      3. Only the cpu0.cluster0 is powered down while cluster0 remains
         powered up as it has a non-zero reference count.
      
      4. cpu1.cluster0 call cpu_off to power itself down to highest possible
         affinity level. This decrements the cluster0 reference count.
      
      5. cluster0 is still not powered off since its reference count will at
         least be 1 due to the restriction placed by cpu0.
      
      Change-Id: I433dfe82b946f5f6985b1602c2de87800504f7a9
      75f7367b
  14. 17 Jan, 2014 1 commit
  15. 05 Dec, 2013 3 commits
    • Achin Gupta's avatar
      psci: rectify and homogenise generic code · 0959db5c
      Achin Gupta authored
      This patch performs a major rework of the psci generic implementation
      to achieve the following:
      
      1. replace recursion with iteration where possible to aid code
         readability e.g. affinity instance states are changed iteratively
         instead of recursively.
      
      2. acquire pointers to affinity instance nodes at the beginning of a
         psci operation. All subsequent actions use these pointers instead
         of calling psci_get_aff_map_node() repeatedly e.g. management of
         locks has been abstracted under functions which use these pointers
         to ensure correct ordering. Helper functions have been added to
         create these abstractions.
      
      3. assertions have been added to cpu level handlers to ensure correct
         state transition
      
      4. the affinity level extents specified to various functions have the
         same meaning i.e. start level is always less than the end level.
      
      Change-Id: If0508c3a7b20ea3ddda2a66128429382afc3dfc8
      0959db5c
    • Achin Gupta's avatar
      psci: rework cpu_off assertion and minor cleanups · 3140a9e5
      Achin Gupta authored
      This patch:
      
      1. removes a duplicate assertion to check that the only error
         condition that can be returned while turning a cpu off is
         PSCI_E_DENIED. Having this assertion after calling
         psci_afflvl_off() is sufficient.
      
      2. corrects some incorrect usage of 'its' vs 'it is'
      
      3. removes some unwanted white spaces
      
      Change-Id: Icf014e269b54f5be5ce0b9fbe6b41258e4ebf403
      3140a9e5
    • Dan Handley's avatar
      Enable third party contributions · ab2d31ed
      Dan Handley authored
      - Add instructions for contributing to ARM Trusted Firmware.
      
      - Update copyright text in all files to acknowledge contributors.
      
      Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5
      ab2d31ed
  16. 25 Oct, 2013 1 commit