- 14 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch removes the dash character from the image name, to follow the image terminology in the Trusted Firmware Wiki page: https://github.com/ARM-software/arm-trusted-firmware/wiki Changes apply to output messages, comments and documentation. non-ARM platform files have been left unmodified. Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
-
- 09 Dec, 2015 2 commits
-
-
Soby Mathew authored
This patch overrides the default weak definition of `bl31_plat_runtime_setup()` for ARM Standard platforms to specify a BL31 runtime console. ARM Standard platforms are now expected to define `PLAT_ARM_BL31_RUN_UART_BASE` and `PLAT_ARM_BL31_RUN_UART_CLK_IN_HZ` macros which is required by `arm_bl31_plat_runtime_setup()` to initialize the runtime console. The system suspend resume helper `arm_system_pwr_domain_resume()` is fixed to initialize the runtime console rather than the boot console on resumption from system suspend. Fixes ARM-software/tf-issues#220 Change-Id: I80eafe5b6adcfc7f1fdf8b99659aca1c64d96975
-
Achin Gupta authored
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three separate drivers instead of providing a single driver that can work on both versions of the GIC architecture. These drivers correspond to the following software use cases: 1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations e.g. GIC-400 2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features 3. A deprecated GICv3 driver that operates in legacy mode. This driver can operate only in the GICv2 mode in the secure world. On a GICv3 system, this driver allows normal world to run in either GICv3 mode (asymmetric mode) or in the GICv2 mode. Both modes of operation are deprecated on GICv3 systems. ARM platforms implement both versions of the GIC architecture. This patch adds a layer of abstraction to help ARM platform ports chose the right GIC driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been introduced to initialise the GIC and the driver during cold and warm boot. These functions are prefixed as "plat_arm_gic_". Weak definitions of these functions have been provided for each type of driver. 2. Each platform includes the sources that implement the right functions directly into the its makefile. The FVP can be instantiated with different versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option to specify which of the three drivers should be included in the build. 3. A list of secure interrupts has to be provided to initialise each of the three GIC drivers. For GIC v3.0 the interrupt ids have to be further categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two types are merged and treated as Group 0 interrupts. The two lists of interrupts are exported from the platform_def.h. The lists are constructed by adding a list of board specific interrupt ids to a list of ids common to all ARM platforms and Compute sub-systems. This patch also makes some fields of `arm_config` data structure in FVP redundant and these unused fields are removed. Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
-
- 13 Nov, 2015 1 commit
-
-
Juan Castillo authored
BL2 is responsible for loading BL32 and passing a pointer to the BL32 entrypoint info to BL31 in the BL31 parameters. If no BL32 image is loaded, a NULL pointer is passed. The platform is responsible for accessing BL31 parameters and extracting the corresponding BL32 EP info. In ARM platforms, arm_bl31_early_platform_setup() dereferences the pointer to the BL32 EP info without checking first if the pointer is NULL. This will cause an exception if a BL32 entrypoint has not been populated by BL2. FVP and Juno are not affected because they always define BL32_BASE, irrespective of whether a BL32 image is included in the FIP or not. This patches fixes the issue by checking the BL32 ep_info pointer before trying to access the data. If `RESET_TO_BL31` is enabled, the BL32 entrypoint is not populated if BL32_BASE is not defined. NOTE: Maintainers of partner platforms should check for this issue in their ports. Fixes ARM-software/tf-issues#320 Change-Id: I31456155503f2765766e8b7cd30ab4a40958fb96
-
- 30 Oct, 2015 1 commit
-
-
Soby Mathew authored
This patch adds the capability to power down at system power domain level on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers are modified to add support for power management operations at system power domain level. A new helper for populating `get_sys_suspend_power_state` handler in plat_psci_ops is defined. On entering the system suspend state, the SCP powers down the SYSTOP power domain on the SoC and puts the memory into retention mode. On wakeup from the power down, the system components on the CSS will be reinitialized by the platform layer and the PSCI client is responsible for restoring the context of these system components. According to PSCI Specification, interrupts targeted to cores in PSCI CPU SUSPEND should be able to resume it. On Juno, when the system power domain is suspended, the GIC is also powered down. The SCP resumes the final core to be suspend when an external wake-up event is received. But the other cores cannot be woken up by a targeted interrupt, because GIC doesn't forward these interrupts to the SCP. Due to this hardware limitation, we down-grade PSCI CPU SUSPEND requests targeted to the system power domain level to cluster power domain level in `juno_validate_power_state()` and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c. A system power domain resume helper `arm_system_pwr_domain_resume()` is defined for ARM standard platforms which resumes/re-initializes the system components on wakeup from system suspend. The security setup also needs to be done on resume from system suspend, which means `plat_arm_security_setup()` must now be included in the BL3-1 image in addition to previous BL images if system suspend need to be supported. Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
-
- 11 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
On Juno and FVP platforms, the Non-Secure System timer corresponds to frame 1. However, this is a platform-specific decision and it shouldn't be hard-coded. Hence, this patch introduces PLAT_ARM_NSTIMER_FRAME_ID which should be used by all ARM platforms to specify the correct non-secure timer frame. Change-Id: I6c3a905d7d89200a2f58c20ce5d1e1d166832bba
-
- 13 Aug, 2015 1 commit
-
-
Soby Mathew authored
This patch migrates ARM reference platforms, Juno and FVP, to the new platform API mandated by the new PSCI power domain topology and composite power state frameworks. The platform specific makefiles now exports the build flag ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer. Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
-
- 01 Jun, 2015 1 commit
-
-
Sandrine Bailleux authored
On ARM standard platforms, snoop and DVM requests used to be enabled for the primary CPU's cluster only in the first EL3 bootloader. In other words, if the platform reset into BL1 then CCI coherency would be enabled by BL1 only, and not by BL3-1 again. However, this doesn't cater for platforms that use BL3-1 along with a non-TF ROM bootloader that doesn't enable snoop and DVM requests. In this case, CCI coherency is never enabled. This patch modifies the function bl31_early_platform_setup() on ARM standard platforms so that it always enables snoop and DVM requests regardless of whether earlier bootloader stages have already done it. There is no harm in executing this code twice. ARM Trusted Firmware Design document updated accordingly. Change-Id: Idf1bdeb24d2e1947adfbb76a509f10beef224e1c
-
- 28 Apr, 2015 1 commit
-
-
Dan Handley authored
This major change pulls out the common functionality from the FVP and Juno platform ports into the following categories: * (include/)plat/common. Common platform porting functionality that typically may be used by all platforms. * (include/)plat/arm/common. Common platform porting functionality that may be used by all ARM standard platforms. This includes all ARM development platforms like FVP and Juno but may also include non-ARM-owned platforms. * (include/)plat/arm/board/common. Common platform porting functionality for ARM development platforms at the board (off SoC) level. * (include/)plat/arm/css/common. Common platform porting functionality at the ARM Compute SubSystem (CSS) level. Juno is an example of a CSS-based platform. * (include/)plat/arm/soc/common. Common platform porting functionality at the ARM SoC level, which is not already defined at the ARM CSS level. No guarantees are made about the backward compatibility of functionality provided in (include/)plat/arm. Also remove any unnecessary variation between the ARM development platform ports, including: * Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the Juno implementation, which copies the information from BL2 memory instead of expecting it to persist in shared memory. * Unify the TZC configuration. There is no need to add a region for SCP in Juno; it's enough to simply not allow any access to this reserved region. Also set region 0 to provide no access by default instead of assuming this is the case. * Unify the number of memory map regions required for ARM development platforms, although the actual ranges mapped for each platform may be different. For the FVP port, this reduces the mapped peripheral address space. These latter changes will only be observed when the platform ports are migrated to use the new common platform code in subsequent patches. Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8
-
- 22 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch extends the build option `USE_COHERENT_MEMORY` to conditionally remove coherent memory from the memory maps of all boot loader stages. The patch also adds necessary documentation for coherent memory removal in firmware-design, porting and user guides. Fixes ARM-Software/tf-issues#106 Change-Id: I260e8768c6a5c2efc402f5804a80657d8ce38773
-
- 14 Aug, 2014 1 commit
-
-
Dan Handley authored
* Create cci_init() function in CCI-400 driver to allow platform to provide arguments needed by the driver (i.e. base address and cluster indices for the ACE slave interfaces). * Rename cci_(en|dis)able_coherency to cci_(en|dis)able_cluster_coherency to make it clear that the driver only enables/disables the coherency of CPU clusters and not other devices connected to the CCI-400. * Update FVP port to use new cci_init() function and remove unnecessary CCI defintions from platform_def.h. Also rename fvp_cci_setup() to fvp_cci_enable() to more clearly differentiate between CCI initialization and enabling. THIS CHANGE REQUIRES PLATFORM PORTS THAT USE THE CCI-400 DRIVER TO BE UPDATED Fixes ARM-software/tf-issues#168 Change-Id: I1946a51409b91217b92285b6375082619f607fec
-
- 01 Aug, 2014 1 commit
-
-
Vikram Kanigiri authored
There is no mechanism which allows the TSPD to specify what SPSR to use when entering BL3-2 instead of BL3-3. This patch divides the responsibility between tspd_setup() and tspd_init() for initializing the TSPD and TSP to support the alternate BL3-2 initialization flow where BL3-1 handsover control to BL3-2 instead of BL3-3. SPSR generated by TSPD for TSP is preserved due the new division of labour which fixes #174. This patch also moves the cpu_context initialization code from tspd_setup() to tspd_init() immediately before entering the TSP. Instead tspd_setup() updates the BL3-2 entrypoint info structure with the state required for initializing the TSP later. Fixes ARM-software/TF-issues#174 Change-Id: Ida0a8a48d466c71d5b07b8c7f2af169b73f96940
-
- 28 Jul, 2014 2 commits
-
-
Juan Castillo authored
Assert a valid security state using the macro sec_state_is_valid(). Replace assert() with panic() in those cases that might arise because of runtime errors and not programming errors. Replace panic() with assert() in those cases that might arise because of programming errors. Fixes ARM-software/tf-issues#96 Change-Id: I51e9ef0439fd5ff5e0edfef49050b69804bf14d5
-
Soby Mathew authored
This patch adds baud rate and UART clock frequency as parameters to the pl011 driver api console_init(). This allows each platform to specify UART clock and baud rate according to their specific hardware implementation. Fixes ARM-software/tf-issues#215 Change-Id: Id13eef70a1c530e709b34dd1e6eb84db0797ced2
-
- 09 Jul, 2014 1 commit
-
-
Dan Handley authored
Refactor the FVP gic code in plat/fvp/fvp_gic.c to be a generic ARM GIC driver in drivers/arm/gic/arm_gic.c. Provide the platform specific inputs in the arm_gic_setup() function so that the driver has no explicit dependency on platform code. Provide weak implementations of the platform interrupt controller API in a new file, plat/common/plat_gic.c. These simply call through to the ARM GIC driver. Move the only remaining FVP GIC function, fvp_gic_init() to plat/fvp/aarch64/fvp_common.c and remove plat/fvp/fvp_gic.c Fixes ARM-software/tf-issues#182 Change-Id: Iea82fe095fad62dd33ba9efbddd48c57717edd21
-
- 24 Jun, 2014 2 commits
-
-
Juan Castillo authored
Exclude stdlib files because they do not follow kernel code style. Fixes ARM-software/tf-issues#73 Change-Id: I4cfafa38ab436f5ab22c277cb38f884346a267ab
-
Vikram Kanigiri authored
This patch reworks FVP specific code responsible for determining the entry point information for BL3-2 and BL3-3 stages when BL3-1 is configured as the reset handler. Change-Id: Ia661ff0a6a44c7aabb0b6c1684b2e8d3642d11ec
-
- 29 May, 2014 1 commit
-
-
Andrew Thoelke authored
bl2_main() was overwriting any platform set X1 parameter for BL3-1 with the value zero. This patch ensure that any platform set value is correctly passed to BL3-1. The FVP port adds a check to verify this parameter is being passed correctly. Fixes ARM-software/tf-issues#173 Change-Id: Ifbcda73d3d41d2b04a4baf5614e9d2d21f1717c8
-
- 27 May, 2014 1 commit
-
-
Dan Handley authored
Rename the ic_* platform porting functions to plat_ic_* to be consistent with the other functions in platform.h. Also rename bl31_get_next_image_info() to bl31_plat_get_next_image_ep_info() and remove the duplicate declaration in bl31.h. Change-Id: I4851842069d3cff14c0a468daacc0a891a7ede84
-
- 23 May, 2014 3 commits
-
-
Dan Handley authored
FVP specific files and functions containing the word "plat" have been renamed to use the word "fvp" to distinguish them from the common platform functionality and porting functions. Change-Id: I39f9673dab3ee9c74bd18b3e62b7c21027232f7d
-
Dan Handley authored
Previously, platform.h contained many declarations and definitions used for different purposes. This file has been split so that: * Platform definitions used by common code that must be defined by the platform are now in platform_def.h. The exact include path is exported through $PLAT_INCLUDES in the platform makefile. * Platform definitions specific to the FVP platform are now in /plat/fvp/fvp_def.h. * Platform API declarations specific to the FVP platform are now in /plat/fvp/fvp_private.h. * The remaining platform API declarations that must be ported by each platform are still in platform.h but this file has been moved to /include/plat/common since this can be shared by all platforms. Change-Id: Ieb3bb22fbab3ee8027413c6b39a783534aee474a
-
Andrew Thoelke authored
At present BL3-1 has access to all of the SRAM, including regions that are mapped as read-only and non-cacheable by other firmware images. This patch restricts BL3-1 to only be able to read/write from memory used for its own data sections Change-Id: I26cda1b9ba803d91a9eacda768f3ce7032c6db94 Conflicts: plat/fvp/bl31_plat_setup.c
-
- 22 May, 2014 3 commits
-
-
Vikram Kanigiri authored
This change adds optional reset vector support to BL3-1 which means BL3-1 entry point can detect cold/warm boot, initialise primary cpu, set up cci and mail box. When using BL3-1 as a reset vector it is assumed that the BL3-1 platform code can determine the location of the BL3-2 images, or load them as there are no parameters that can be passed to BL3-1 at reset. It also fixes the incorrect initialisation of mailbox registers on the FVP platform This feature can be enabled by building the code with make variable RESET_TO_BL31 set as 1 Fixes ARM-software/TF-issues#133 Fixes ARM-software/TF-issues#20 Change-Id: I4e23939b1c518614b899f549f1e8d412538ee570
-
Vikram Kanigiri authored
The issues addressed in this patch are: 1. Remove meminfo_t from the common interfaces in BL3-x, expecting that platform code will find a suitable mechanism to determine the memory extents in these images and provide it to the BL3-x images. 2. Remove meminfo_t and bl31_plat_params_t from all FVP BL3-x code as the images use link-time information to determine memory extents. meminfo_t is still used by common interface in BL1/BL2 for loading images Change-Id: I4e825ebf6f515b59d84dc2bdddf6edbf15e2d60f
-
Vikram Kanigiri authored
This patch is based on spec published at https://github.com/ARM-software/tf-issues/issues/133 It rearranges the bl31_args struct into bl31_params and bl31_plat_params which provide the information needed for Trusted firmware and platform specific data via x0 and x1 On the FVP platform BL3-1 params and BL3-1 plat params and its constituents are stored at the start of TZDRAM. The information about memory availability and size for BL3-1, BL3-2 and BL3-3 is moved into platform specific data. Change-Id: I8b32057a3d0dd3968ea26c2541a0714177820da9
-
- 09 May, 2014 1 commit
-
-
Sandrine Bailleux authored
Instead of having a single version of the MMU setup functions for all bootloader images that can execute either in EL3 or in EL1, provide separate functions for EL1 and EL3. Each bootloader image can then call the appropriate version of these functions. The aim is to reduce the amount of code compiled in each BL image by embedding only what's needed (e.g. BL1 to embed only EL3 variants). Change-Id: Ib86831d5450cf778ae78c9c1f7553fe91274c2fa
-
- 08 May, 2014 1 commit
-
-
Vikram Kanigiri authored
This patch moves console_init() to bl32_early_platform_setup(). It also ensures that console_init() is called in each blX_early_platform_setup() function before the console is used e.g. through a printf call in an assert() statement. Fixes ARM-software/TF-issues#127 Change-Id: I5b1f17e0152bab674d807d2a95ff3689c5d4794e
-
- 06 May, 2014 3 commits
-
-
Dan Handley authored
Reduce the number of header files included from other header files as much as possible without splitting the files. Use forward declarations where possible. This allows removal of some unnecessary "#ifndef __ASSEMBLY__" statements. Also, review the .c and .S files for which header files really need including and reorder the #include statements alphabetically. Fixes ARM-software/tf-issues#31 Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
-
Dan Handley authored
Add tag names to all unnamed structs in header files. This allows forward declaration of structs, which is necessary to reduce header file nesting (to be implemented in a subsequent commit). Also change the typedef names across the codebase to use the _t suffix to be more conformant with the Linux coding style. The coding style actually prefers us not to use typedefs at all but this is considered a step too far for Trusted Firmware. Also change the IO framework structs defintions to use typedef'd structs to be consistent with the rest of the codebase. Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
-
Dan Handley authored
Move the FVP power driver to a directory under the FVP platform port as this is not a generically usable driver. Change-Id: Ibc78bd88752eb3e3964336741488349ac345f4f0
-
- 08 Apr, 2014 2 commits
-
-
Sandrine Bailleux authored
BL3-1 architecture setup code programs the system counter frequency into the CNTFRQ_EL0 register. This frequency is defined by the platform, though. This patch introduces a new platform hook that the architecture setup code can call to retrieve this information. In the ARM FVP port, this returns the first entry of the frequency modes table from the memory mapped generic timer. All system counter setup code has been removed from BL1 as some platforms may not have initialized the system counters at this stage. The platform specific settings done exclusively in BL1 have been moved to BL3-1. In the ARM FVP port, this consists in enabling and initializing the System level generic timer. Also, the frequency change request in the counter control register has been set to 0 to make it explicit it's using the base frequency. The CNTCR_FCREQ() macro has been fixed in this context to give an entry number rather than a bitmask. In future, when support for firmware update is implemented, there is a case where BL1 platform specific code will need to program the counter frequency. This should be implemented at that time. This patch also updates the relevant documentation. It properly fixes ARM-software/tf-issues#24 Change-Id: If95639b279f75d66ac0576c48a6614b5ccb0e84b
-
Sandrine Bailleux authored
This reverts commit 1c297bf0 because it introduced a bug: the CNTFRQ_EL0 register was no longer programmed by all CPUs. bl31_platform_setup() function is invoked only in the cold boot path and consequently only on the primary cpu. A subsequent commit will correctly implement the necessary changes to the counter frequency setup code. Fixes ARM-software/tf-issues#125 Conflicts: docs/firmware-design.md plat/fvp/bl31_plat_setup.c Change-Id: Ib584ad7ed069707ac04cf86717f836136ad3ab54
-
- 26 Mar, 2014 1 commit
-
-
Vikram Kanigiri authored
This patch reworks the console driver to ensure that each bootloader stage initializes it independently. As a result, both BL3-1 and BL2 platform code now calls console_init() instead of relying on BL1 to perform console setup Fixes ARM-software/tf-issues#120 Change-Id: Ic4d66e0375e40a2fc7434afcabc8bbb4715c14ab
-
- 10 Mar, 2014 1 commit
-
-
Jeenu Viswambharan authored
At present, bl1_arch_setup() and bl31_arch_setup() program the counter frequency using a value from the memory mapped generic timer. The generic timer however is not necessarily present on all ARM systems (although it is architected to be present on all server systems). This patch moves the timer setup to platform-specific code and updates the relevant documentation. Also, CNTR.FCREQ is set as the specification requires the bit corresponding to the counter's frequency to be set when enabling. Since we intend to use the base frequency, set bit 8. Fixes ARM-software/tf-issues#24 Change-Id: I32c52cf882253e01f49056f47c58c23e6f422652
-
- 20 Feb, 2014 2 commits
-
-
Achin Gupta authored
This patch adds the following support to the BL3-1 stage: 1. BL3-1 allows runtime services to specify and determine the security state of the next image after BL3-1. This has been done by adding the `bl31_set_next_image_type()` & `bl31_get_next_image_type()` apis. The default security state is non-secure. The platform api `bl31_get_next_image_info()` has been modified to let the platform decide which is the next image in the desired security state. 2. BL3-1 exports the `bl31_prepare_next_image_entry()` function to program entry into the target security state. It uses the apis introduced in 1. to do so. 3. BL3-1 reads the information populated by BL2 about the BL3-2 image into its internal data structures. 4. BL3-1 introduces a weakly defined reference `bl32_init()` to allow initialisation of a BL3-2 image. A runtime service like the Secure payload dispatcher will define this function if present. Change-Id: Icc46dcdb9e475ce6575dd3f9a5dc7a48a83d21d1
-
Achin Gupta authored
This patch reworks BL2 to BL3-1 hand over interface by introducing a composite structure (bl31_args) that holds the superset of information that needs to be passed from BL2 to BL3-1. - The extents of secure memory available to BL3-1 - The extents of memory available to BL3-2 (not yet implemented) and BL3-3 - Information to execute BL3-2 (not yet implemented) and BL3-3 images This patch also introduces a new platform API (bl2_get_bl31_args_ptr) that needs to be implemented by the platform code to export reference to bl31_args structure which has been allocated in platform-defined memory. The platform will initialize the extents of memory available to BL3-3 during early platform setup in bl31_args structure. This obviates the need for bl2_get_ns_mem_layout platform API. BL2 calls the bl2_get_bl31_args_ptr function to get a reference to bl31_args structure. It uses the 'bl33_meminfo' field of this structure to load the BL3-3 image. It sets the entry point information for the BL3-3 image in the 'bl33_image_info' field of this structure. The reference to this structure is passed to the BL3-1 image. Also fixes issue ARM-software/tf-issues#25 Change-Id: Ic36426196dd5ebf89e60ff42643bed01b3500517
-
- 17 Jan, 2014 2 commits
-
-
Dan Handley authored
Change-Id: Ic7fb61aabae1d515b9e6baf3dd003807ff42da60
-
Ian Spray authored
GIC setup code which used to be in bl31_plat_setup.c is now in fvp_gic.c to simplify future changes to other bootloader stages. This patch moves code from bl31_plat_setup.c to fvp_gic.c, simplifies the include file list for bl31_plat_setup.c, moves GIC declarations from the bl31.h header file into the platform.h, and reworks files according to coding style guide. Change-Id: I48d82a4ba33e7114dcc88f9ca98767a06cf8f417
-
- 12 Dec, 2013 2 commits
-
-
Sandrine Bailleux authored
ns_entry_info used to be a per-cpu array. This is a waste of space because it is only accessed by the primary CPU on the cold boot path. This patch reduces ns_entry_info to a single-cpu area. Change-Id: I647c70c4e76069560f1aaad37a1d5910f56fba4c
-
Sandrine Bailleux authored
Platform setup code has to reserve some memory for storing the memory layout information. It is populated in early platform setup code. blx_get_sec_mem_layout() functions used to return a copy of this structure. This patch modifies blx_get_sec_mem_layout() functions so that they now directly return a pointer to their memory layout structure. It ensures that the memory layout returned by blx_get_sec_mem_layout() is always up-to-date and also avoids a useless copy of the meminfo structure. Also rename blx_get_sec_mem_layout() to blx_plat_sec_mem_layout() to make it clear those functions are platform specific. Change-Id: Ic7a6f9d6b6236b14865ab48a9f5eff545ce56551
-