- 23 May, 2014 2 commits
-
-
Andrew Thoelke authored
The TSP has a number of entrypoints used by the TSP on different occasions. These were provided to the TSPD as a table of function pointers, and required the TSPD to read the entry in the table, which is in TSP memory, in order to program the exception return address. Ideally, the TSPD has no access to the TSP memory. This patch changes the table of function pointers into a vector table of single instruction entrypoints. This allows the TSPD to calculate the entrypoint address instead of read it. Fixes ARM-software/tf-issues#160 Change-Id: Iec6e055d537ade78a45799fbc6f43765a4725ad3
-
Soby Mathew authored
Implements support for Non Secure Interrupts preempting the Standard SMC call in EL1. Whenever an IRQ is trapped in the Secure world we securely handover to the Normal world to process the interrupt. The normal world then issues "resume" smc call to resume the previous interrupted SMC call. Fixes ARM-software/tf-issues#105 Change-Id: I72b760617dee27438754cdfc9fe9bcf4cc024858
-
- 22 May, 2014 2 commits
-
-
Achin Gupta authored
This patch adds support in the TSP for handling S-EL1 interrupts handed over by the TSPD. It includes GIC support in its platform port, updates various statistics related to FIQ handling, exports an entry point that the TSPD can use to hand over interrupts and defines the handover protocol w.r.t what context is the TSP expected to preserve and the state in which the entry point is invoked by the TSPD. Change-Id: I93b22e5a8133400e4da366f5fc862f871038df39
-
Achin Gupta authored
This patch adds support in the TSP to program the secure physical generic timer to generate a EL-1 interrupt every half second. It also adds support for maintaining the timer state across power management operations. The TSPD ensures that S-EL1 can access the timer by programming the SCR_EL3.ST bit. This patch does not actually enable the timer. This will be done in a subsequent patch once the complete framework for handling S-EL1 interrupts is in place. Change-Id: I1b3985cfb50262f60824be3a51c6314ce90571bc
-
- 06 May, 2014 4 commits
-
-
Dan Handley authored
Reduce the number of header files included from other header files as much as possible without splitting the files. Use forward declarations where possible. This allows removal of some unnecessary "#ifndef __ASSEMBLY__" statements. Also, review the .c and .S files for which header files really need including and reorder the #include statements alphabetically. Fixes ARM-software/tf-issues#31 Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
-
Dan Handley authored
Add tag names to all unnamed structs in header files. This allows forward declaration of structs, which is necessary to reduce header file nesting (to be implemented in a subsequent commit). Also change the typedef names across the codebase to use the _t suffix to be more conformant with the Linux coding style. The coding style actually prefers us not to use typedefs at all but this is considered a step too far for Trusted Firmware. Also change the IO framework structs defintions to use typedef'd structs to be consistent with the rest of the codebase. Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
-
Dan Handley authored
Separate out the CASSERT macro out of bl_common.h into its own header to allow more efficient header inclusion. Change-Id: I291be0b6b8f9879645e839a8f0dd1ec9b3db9639
-
Dan Handley authored
Move almost all system include files to a logical sub-directory under ./include. The only remaining system include directories not under ./include are specific to the platform. Move the corresponding source files to match the include directory structure. Also remove pm.h as it is no longer used. Change-Id: Ie5ea6368ec5fad459f3e8a802ad129135527f0b3
-
- 20 Mar, 2014 1 commit
-
-
Jeenu Viswambharan authored
This patch adds call count, UID and version information SMC calls for the Trusted OS, as specified by the SMC calling convention. Change-Id: I9a3e84ac1bb046051db975d853dcbe9612aba6a9
-
- 20 Feb, 2014 1 commit
-
-
Achin Gupta authored
This patch adds a simple TSP as the BL3-2 image. The secure payload executes in S-EL1. It paves the way for the addition of the TSP dispatcher runtime service to BL3-1. The TSP and the dispatcher service will serve as an example of the runtime firmware's ability to toggle execution between the non-secure and secure states in response to SMC request from the non-secure state. The TSP will be replaced by a Trusted OS in a real system. The TSP also exports a set of handlers which should be called in response to a PSCI power management event e.g a cpu being suspended or turned off. For now it runs out of Secure DRAM on the ARM FVP port and will be moved to Secure SRAM later. The default translation table setup code assumes that the caller is executing out of secure SRAM. Hence the TSP exports its own translation table setup function. The TSP only services Fast SMCs, is non-reentrant and non-interruptible. It does arithmetic operations on two sets of four operands, one set supplied by the non-secure client, and the other supplied by the TSP dispatcher in EL3. It returns the result according to the Secure Monitor Calling convention standard. This TSP has two functional entry points: - An initial, one-time entry point through which the TSP is initialized and prepares for receiving further requests from secure monitor/dispatcher - A fast SMC service entry point through which the TSP dispatcher requests secure services on behalf of the non-secure client Change-Id: I24377df53399307e2560a025eb2c82ce98ab3931 Co-authored-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-