- 23 Jan, 2017 1 commit
-
-
Masahiro Yamada authored
One nasty part of ATF is some of boolean macros are always defined as 1 or 0, and the rest of them are only defined under certain conditions. For the former group, "#if FOO" or "#if !FOO" must be used because "#ifdef FOO" is always true. (Options passed by $(call add_define,) are the cases.) For the latter, "#ifdef FOO" or "#ifndef FOO" should be used because checking the value of an undefined macro is strange. Here, IMAGE_BL* is handled by make_helpers/build_macro.mk like follows: $(eval IMAGE := IMAGE_BL$(call uppercase,$(3))) $(OBJ): $(2) @echo " CC $$<" $$(Q)$$(CC) $$(TF_CFLAGS) $$(CFLAGS) -D$(IMAGE) -c $$< -o $$@ This means, IMAGE_BL* is defined when building the corresponding image, but *undefined* for the other images. So, IMAGE_BL* belongs to the latter group where we should use #ifdef or #ifndef. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
-
- 19 Dec, 2016 1 commit
-
-
Jeenu Viswambharan authored
ASM_ASSERT failure and panic messages are suppressed at present. This patch enables printing the PC location for panic messages, and file name and line number upon assembly assert failure. Change-Id: I80cb715988e7ce766f64da1e1d7065a74a096a0c Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 05 Dec, 2016 1 commit
-
-
Jeenu Viswambharan authored
There are many instances in ARM Trusted Firmware where control is transferred to functions from which return isn't expected. Such jumps are made using 'bl' instruction to provide the callee with the location from which it was jumped to. Additionally, debuggers infer the caller by examining where 'lr' register points to. If a 'bl' of the nature described above falls at the end of an assembly function, 'lr' will be left pointing to a location outside of the function range. This misleads the debugger back trace. This patch defines a 'no_ret' macro to be used when jumping to functions from which return isn't expected. The macro ensures to use 'bl' instruction for the jump, and also, for debug builds, places a 'nop' instruction immediately thereafter (unless instructed otherwise) so as to leave 'lr' pointing within the function range. Change-Id: Ib34c69fc09197cfd57bc06e147cc8252910e01b0 Co-authored-by: Douglas Raillard <douglas.raillard@arm.com> Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 01 Dec, 2016 1 commit
-
-
David Cunado authored
This patch resets EL2 and EL3 registers that have architecturally UNKNOWN values on reset and that also provide EL2/EL3 configuration and trap controls. Specifically, the EL2 physical timer is disabled to prevent timer interrups into EL2 - CNTHP_CTL_EL2 and CNTHP_CTL for AArch64 and AArch32, respectively. Additionally, for AArch64, HSTR_EL2 is reset to avoid unexpected traps of non-secure access to certain system registers at EL1 or lower. For AArch32, the patch also reverts the reset to SDCR which was incorrectly added in a previous change. Change-Id: If00eaa23afa7dd36a922265194ccd6223187414f Signed-off-by: David Cunado <david.cunado@arm.com>
-
- 09 Nov, 2016 1 commit
-
-
David Cunado authored
In order to avoid unexpected traps into EL3/MON mode, this patch resets the debug registers, MDCR_EL3 and MDCR_EL2 for AArch64, and SDCR and HDCR for AArch32. MDCR_EL3/SDCR is zero'ed when EL3/MON mode is entered, at the start of BL1 and BL31/SMP_MIN. For MDCR_EL2/HDCR, this patch zero's the bits that are architecturally UNKNOWN values on reset. This is done when exiting from EL3/MON mode but only on platforms that support EL2/HYP mode but choose to exit to EL1/SVC mode. Fixes ARM-software/tf-issues#430 Change-Id: Idb992232163c072faa08892251b5626ae4c3a5b6 Signed-off-by: David Cunado <david.cunado@arm.com>
-
- 28 Sep, 2016 1 commit
-
-
Yatharth Kochar authored
At present the `el3_entrypoint_common` macro uses `memcpy` function defined in lib/stdlib/mem.c file, to copy data from ROM to RAM for BL1. Depending on the compiler being used the stack could potentially be used, in `memcpy`, for storing the local variables. Since the stack is initialized much later in `el3_entrypoint_common` it may result in unknown behaviour. This patch adds `memcpy4` function definition in assembly so that it can be used before the stack is initialized and it also replaces `memcpy` by `memcpy4` in `el3_entrypoint_common` macro, to copy data from ROM to RAM for BL1. Change-Id: I3357a0e8095f05f71bbbf0b185585d9499bfd5e0
-
- 21 Sep, 2016 1 commit
-
-
Yatharth Kochar authored
This patch adds common changes to support AArch32 state in BL1 and BL2. Following are the changes: * Added functions for disabling MMU from Secure state. * Added AArch32 specific SMC function. * Added semihosting support. * Added reporting of unhandled exceptions. * Added uniprocessor stack support. * Added `el3_entrypoint_common` macro that can be shared by BL1 and BL32 (SP_MIN) BL stages. The `el3_entrypoint_common` is similar to the AArch64 counterpart with the main difference in the assembly instructions and the registers that are relevant to AArch32 execution state. * Enabled `LOAD_IMAGE_V2` flag in Makefile for `ARCH=aarch32` and added check to make sure that platform has not overridden to disable it. Change-Id: I33c6d8dfefb2e5d142fdfd06a0f4a7332962e1a3
-
- 10 Aug, 2016 1 commit
-
-
Soby Mathew authored
This patch adds various assembly helpers for AArch32 like : * cache management : Functions to flush, invalidate and clean cache by MVA. Also helpers to do cache operations by set-way are also added. * stack management: Macros to declare stack and get the current stack corresponding to current CPU. * Misc: Macros to access co processor registers in AArch32, macros to define functions in assembly, assert macros, generic `do_panic()` implementation and function to zero block of memory. Change-Id: I7b78ca3f922c0eda39beb9786b7150e9193425be
-