- 18 Jul, 2016 2 commits
-
-
Soby Mathew authored
This patch moves the PSCI services and BL31 frameworks like context management and per-cpu data into new library components `PSCI` and `el3_runtime` respectively. This enables PSCI to be built independently from BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant PSCI library sources and gets included by `bl31.mk`. Other changes which are done as part of this patch are: * The runtime services framework is now moved to the `common/` folder to enable reuse. * The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture specific folder. * The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder to `plat/common` folder. The original file location now has a stub which just includes the file from new location to maintain platform compatibility. Most of the changes wouldn't affect platform builds as they just involve changes to the generic bl1.mk and bl31.mk makefiles. NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION. Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
-
Soby Mathew authored
This patch reworks type usage in generic code, drivers and ARM platform files to make it more portable. The major changes done with respect to type usage are as listed below: * Use uintptr_t for storing address instead of uint64_t or unsigned long. * Review usage of unsigned long as it can no longer be assumed to be 64 bit. * Use u_register_t for register values whose width varies depending on whether AArch64 or AArch32. * Use generic C types where-ever possible. In addition to the above changes, this patch also modifies format specifiers in print invocations so that they are AArch64/AArch32 agnostic. Only files related to upcoming feature development have been reworked. Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
-
- 16 Jun, 2016 1 commit
-
-
Yatharth Kochar authored
This patch adds following optional PSCI STAT functions: - PSCI_STAT_RESIDENCY: This call returns the amount of time spent in power_state in microseconds, by the node represented by the `target_cpu` and the highest level of `power_state`. - PSCI_STAT_COUNT: This call returns the number of times a `power_state` has been used by the node represented by the `target_cpu` and the highest power level of `power_state`. These APIs provides residency statistics for power states that has been used by the platform. They are implemented according to v1.0 of the PSCI specification. By default this optional feature is disabled in the PSCI implementation. To enable it, set the boolean flag `ENABLE_PSCI_STAT` to 1. This also sets `ENABLE_PMF` to 1. Change-Id: Ie62e9d37d6d416ccb1813acd7f616d1ddd3e8aff
-
- 25 Apr, 2016 1 commit
-
-
Sandrine Bailleux authored
The "end power level" value passed as the 3rd argument to the psci_cpu_on_start() function is not used so this patch removes it. Change-Id: Icaa68b8c4ecd94507287970455fbff354faaa41e
-
- 01 Feb, 2016 1 commit
-
-
Soby Mathew authored
When a CPU is powered down using PSCI CPU OFF API, it disables its caches and updates its `aff_info_state` to OFF. The corresponding cache line is invalidated by the CPU so that the update will be observed by other CPUs running with caches enabled. There is a possibility that another CPU which has been trying to turn ON this CPU via PSCI CPU ON API, has already seen the update to `aff_info_state` and proceeds to update the state to ON_PENDING prior to the cache invalidation. This may result in the update of the state to ON_PENDING being discarded. This patch fixes this issue by making sure that the update of `aff_info_state` to ON_PENDING sticks by reading back the value after the cache flush and retrying it if not updated. The patch also adds a dsbish() to `psci_do_cpu_off()` to ensure ordering of the update to `aff_info_state` prior to cache line invalidation. Fixes ARM-software/tf-issues#349 Change-Id: I225de99957fe89871f8c57bcfc243956e805dcca
-
- 21 Dec, 2015 1 commit
-
-
Sandrine Bailleux authored
Change-Id: I6f49bd779f2a4d577c6443dd160290656cdbc59b
-
- 11 Sep, 2015 1 commit
-
-
Andrew Thoelke authored
This patch unifies the bakery lock api's across coherent and normal memory implementation of locks by using same data type `bakery_lock_t` and similar arguments to functions. A separate section `bakery_lock` has been created and used to allocate memory for bakery locks using `DEFINE_BAKERY_LOCK`. When locks are allocated in normal memory, each lock for a core has to spread across multiple cache lines. By using the total size allocated in a separate cache line for a single core at compile time, the memory for other core locks is allocated at link time by multiplying the single core locks size with (PLATFORM_CORE_COUNT - 1). The normal memory lock algorithm now uses lock address instead of the `id` in the per_cpu_data. For locks allocated in coherent memory, it moves locks from tzfw_coherent_memory to bakery_lock section. The bakery locks are allocated as part of bss or in coherent memory depending on usage of coherent memory. Both these regions are initialised to zero as part of run_time_init before locks are used. Hence, bakery_lock_init() is made an empty function as the lock memory is already initialised to zero. The above design lead to the removal of psci bakery locks from non_cpu_power_pd_node to psci_locks. NOTE: THE BAKERY LOCK API WHEN USE_COHERENT_MEM IS NOT SET HAS CHANGED. THIS IS A BREAKING CHANGE FOR ALL PLATFORM PORTS THAT ALLOCATE BAKERY LOCKS IN NORMAL MEMORY. Change-Id: Ic3751c0066b8032dcbf9d88f1d4dc73d15f61d8b
-
- 13 Aug, 2015 3 commits
-
-
Soby Mathew authored
This patch reworks the PSCI generic implementation to conform to ARM Trusted Firmware coding guidelines as described here: https://github.com/ARM-software/arm-trusted-firmware/wiki This patch also reviews the use of signed data types within PSCI Generic code and replaces them with their unsigned counterparts wherever they are not appropriate. The PSCI_INVALID_DATA macro which was defined to -1 is now replaced with PSCI_INVALID_PWR_LVL macro which is defined to PLAT_MAX_PWR_LVL + 1. Change-Id: Iaea422d0e46fc314e0b173c2b4c16e0d56b2515a
-
Soby Mathew authored
As per PSCI1.0 specification, the error code to be returned when an invalid non secure entrypoint address is specified by the PSCI client for CPU_SUSPEND, CPU_ON or SYSTEM_SUSPEND must be PSCI_E_INVALID_ADDRESS. The current PSCI implementation returned PSCI_E_INVAL_PARAMS. This patch rectifies this error and also implements a common helper function to validate the entrypoint information to be used across these PSCI API implementations. Change-Id: I52d697d236c8bf0cd3297da4008c8e8c2399b170
-
Soby Mathew authored
This commit does the switch to the new PSCI framework implementation replacing the existing files in PSCI folder with the ones in PSCI1.0 folder. The corresponding makefiles are modified as required for the new implementation. The platform.h header file is also is switched to the new one as required by the new frameworks. The build flag ENABLE_PLAT_COMPAT defaults to 1 to enable compatibility layer which let the existing platform ports to continue to build and run with minimal changes. The default weak implementation of platform_get_core_pos() is now removed from platform_helpers.S and is provided by the compatibility layer. Note: The Secure Payloads and their dispatchers still use the old platform and framework APIs and hence it is expected that the ENABLE_PLAT_COMPAT build flag will remain enabled in subsequent patch. The compatibility for SPDs using the older APIs on platforms migrated to the new APIs will be added in the following patch. Change-Id: I18c51b3a085b564aa05fdd98d11c9f3335712719
-
- 22 Jun, 2015 1 commit
-
-
Soby Mathew authored
This patch adds support for SYSTEM_SUSPEND API as mentioned in the PSCI 1.0 specification. This API, on being invoked on the last running core on a supported platform, will put the system into a low power mode with memory retention. The psci_afflvl_suspend() internal API has been reused as most of the actions to suspend a system are the same as invoking the PSCI CPU_SUSPEND API with the target affinity level as 'system'. This API needs the 'power state' parameter for the target low power state. This parameter is not passed by the caller of the SYSTEM_SUSPEND API. Hence, the platform needs to implement the get_sys_suspend_power_state() platform function to provide this information. Also, the platform also needs to add support for suspending the system to the existing 'plat_pm_ops' functions: affinst_suspend() and affinst_suspend_finish(). Change-Id: Ib6bf10809cb4e9b92f463755608889aedd83cef5
-
- 12 Feb, 2015 1 commit
-
-
Soby Mathew authored
This patch removes the plat_get_max_afflvl() platform API and instead replaces it with a platform macro PLATFORM_MAX_AFFLVL. This is done because the maximum affinity level for a platform is a static value and it is more efficient for it to be defined as a platform macro. NOTE: PLATFORM PORTS NEED TO BE UPDATED ON MERGE OF THIS COMMIT Fixes ARM-Software/tf-issues#265 Change-Id: I31d89b30c2ccda30d28271154d869060d50df7bf
-
- 26 Jan, 2015 2 commits
-
-
Soby Mathew authored
This patch implements the PSCI_FEATURES function which is a mandatory API in the PSCI 1.0 specification. A capability variable is constructed during initialization by examining the plat_pm_ops and spd_pm_ops exported by the platform and the Secure Payload Dispatcher. This is used by the PSCI FEATURES function to determine which PSCI APIs are supported by the platform. Change-Id: I147ffc1bd5d90b469bd3cc4bbe0a20e95c247df7
-
Soby Mathew authored
This patch reworks the PSCI MIGRATE, MIGRATE_INFO_TYPE and MIGRATE_INFO_UP_CPU support for Trusted Firmware. The implementation does the appropriate validation of parameters and invokes the appropriate hook exported by the SPD. The TSP is a MP Trusted OS. Hence the ability to actually migrate a Trusted OS has not been implemented. The corresponding function is not populated in the spd_pm_hooks structure for the TSPD. The `spd_pm_ops_t` has undergone changes with this patch. SPD PORTS MAY NEED TO BE UPDATED. Fixes ARM-software/tf-issues#249 Change-Id: Iabd87521bf7c530a5e4506b6d3bfd4f1bf87604f
-
- 23 Jan, 2015 3 commits
-
-
Soby Mathew authored
This patch allows the platform to validate the power_state and entrypoint information from the normal world early on in PSCI calls so that we can return the error safely. New optional pm_ops hooks `validate_power_state` and `validate_ns_entrypoint` are introduced to do this. As a result of these changes, all the other pm_ops handlers except the PSCI_ON handler are expected to be successful. Also, the PSCI implementation will now assert if a PSCI API is invoked without the corresponding pm_ops handler being registered by the platform. NOTE : PLATFORM PORTS WILL BREAK ON MERGE OF THIS COMMIT. The pm hooks have 2 additional optional callbacks and the return type of the other hooks have changed. Fixes ARM-Software/tf-issues#229 Change-Id: I036bc0cff2349187c7b8b687b9ee0620aa7e24dc
-
Soby Mathew authored
This patch adds support to save the "power state" parameter before the affinity level specific handlers are called in a CPU_SUSPEND call. This avoids the need to pass the power_state as a parameter to the handlers and Secure Payload Dispatcher (SPD) suspend spd_pm_ops. The power_state arguments in the spd_pm_ops operations are now reserved and must not be used. The SPD can query the relevant power_state fields by using the psci_get_suspend_afflvl() & psci_get_suspend_stateid() APIs. NOTE: THIS PATCH WILL BREAK THE SPD_PM_OPS INTERFACE. HENCE THE SECURE PAYLOAD DISPATCHERS WILL NEED TO BE REWORKED TO USE THE NEW INTERFACE. Change-Id: I1293d7dc8cf29cfa6a086a009eee41bcbf2f238e
-
Soby Mathew authored
This patch replaces the internal psci_save_ns_entry() API with a psci_get_ns_ep_info() API. The new function splits the work done by the previous one such that it populates and returns an 'entry_point_info_t' structure with the information to enter the normal world upon completion of the CPU_SUSPEND or CPU_ON call. This information is used to populate the non-secure context structure separately. This allows the new internal API `psci_get_ns_ep_info` to return error and enable the code to return safely. Change-Id: Ifd87430a4a3168eac0ebac712f59c93cbad1b231
-
- 22 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch moves the bakery locks out of coherent memory to normal memory. This implies that the lock information needs to be placed on a separate cache line for each cpu. Hence the bakery_lock_info_t structure is allocated in the per-cpu data so as to minimize memory wastage. A similar platform per-cpu data is introduced for the platform locks. As a result of the above changes, the bakery lock api is completely changed. Earlier, a reference to the lock structure was passed to the lock implementation. Now a unique-id (essentially an index into the per-cpu data array) and an offset into the per-cpu data for bakery_info_t needs to be passed to the lock implementation. Change-Id: I1e76216277448713c6c98b4c2de4fb54198b39e0
-
- 04 Dec, 2014 1 commit
-
-
Soby Mathew authored
This patch fixes the array size of mpidr_aff_map_nodes_t which was less by one element. Fixes ARM-software/tf-issues#264 Change-Id: I48264f6f9e7046a3d0f4cbcd63b9ba49657e8818
-
- 19 Aug, 2014 5 commits
-
-
Achin Gupta authored
This patch implements the following cleanups in PSCI generic code: 1. It reworks the affinity level specific handlers in the PSCI implementation such that. a. Usage of the 'rc' local variable is restricted to only where it is absolutely needed b. 'plat_state' local variable is defined only when a direct invocation of plat_get_phys_state() does not suffice. c. If a platform handler is not registered then the level specific handler returns early. 2. It limits the use of the mpidr_aff_map_nodes_t typedef to declaration of arrays of the type instead of using it in function prototypes as well. 3. It removes dangling declarations of __psci_cpu_off() and __psci_cpu_suspend(). The definitions of these functions were removed in earlier patches. Change-Id: I51e851967c148be9c2eeda3a3c41878f7b4d6978
-
Achin Gupta authored
This patch adds APIs to find, save and retrieve the highest affinity level which will enter or exit from the physical OFF state during a PSCI power management operation. The level is stored in per-cpu data. It then reworks the PSCI implementation to perform cache maintenance only when the handler for the highest affinity level to enter/exit the OFF state is called. For example. during a CPU_SUSPEND operation, state management is done prior to calling the affinity level specific handlers. The highest affinity level which will be turned off is determined using the psci_find_max_phys_off_afflvl() API. This level is saved using the psci_set_max_phys_off_afflvl() API. In the code that does generic handling for each level, prior to performing cache maintenance it is first determined if the current affinity level matches the value returned by psci_get_max_phys_off_afflvl(). Cache maintenance is done if the values match. This change allows the last CPU in a cluster to perform cache maintenance independently. Earlier, cache maintenance was started in the level 0 handler and finished in the level 1 handler. This change in approach will facilitate implementation of tf-issues#98. Change-Id: I57233f0a27b3ddd6ddca6deb6a88b234525b0ae6
-
Achin Gupta authored
This patch pulls out state management from the affinity level specific handlers into the top level functions specific to the operation i.e. psci_afflvl_suspend(), psci_afflvl_on() etc. In the power down path this patch will allow an affinity instance at level X to determine the state that an affinity instance at level X+1 will enter before the level specific handlers are called. This will be useful to determine whether a CPU is the last in the cluster during a suspend/off request and so on. Similarly, in the power up path this patch will allow an affinity instance at level X to determine the state that an affinity instance at level X+1 has emerged from, even after the level specific handlers have been called. This will be useful in determining whether a CPU is the first in the cluster during a on/resume request and so on. As before, while powering down, state is updated before the level specific handlers are invoked so that they can perform actions based upon their target state. While powering up, state is updated after the level specific handlers have been invoked so that they can perform actions based upon the state they emerged from. Change-Id: I40fe64cb61bb096c66f88f6d493a1931243cfd37
-
Achin Gupta authored
This patch adds a structure defined by the PSCI service to the per-CPU data array. The structure is used to save the 'power_state' parameter specified during a 'cpu_suspend' call on the current CPU. This parameter was being saved in the cpu node in the PSCI topology tree earlier. The existing API to return the state id specified during a PSCI CPU_SUSPEND call i.e. psci_get_suspend_stateid(mpidr) has been renamed to psci_get_suspend_stateid_by_mpidr(mpidr). The new psci_get_suspend_stateid() API returns the state id of the current cpu. The psci_get_suspend_afflvl() API has been changed to return the target affinity level of the current CPU. This was specified using the 'mpidr' parameter in the old implementation. The behaviour of the get_power_on_target_afflvl() has been tweaked such that traversal of the PSCI topology tree to locate the affinity instance node for the current CPU is done only in the debug build as it is an expensive operation. Change-Id: Iaad49db75abda471f6a82d697ee6e0df554c4caf
-
Juan Castillo authored
This patch adds support for SYSTEM_OFF and SYSTEM_RESET PSCI operations. A platform should export handlers to complete the requested operation. The FVP port exports fvp_system_off() and fvp_system_reset() as an example. If the SPD provides a power management hook for system off and system reset, then the SPD is notified about the corresponding operation so it can do some bookkeeping. The TSPD exports tspd_system_off() and tspd_system_reset() for that purpose. Versatile Express shutdown and reset methods have been removed from the FDT as new PSCI sys_poweroff and sys_reset services have been added. For those kernels that do not support yet these PSCI services (i.e. GICv3 kernel), the original dtsi files have been renamed to *-no_psci.dtsi. Fixes ARM-software/tf-issues#218 Change-Id: Ic8a3bf801db979099ab7029162af041c4e8330c8
-
- 19 Jul, 2014 1 commit
-
-
Achin Gupta authored
This patch uses stacks allocated in normal memory to enable the MMU early in the warm boot path thus removing the dependency on stacks allocated in coherent memory. Necessary cache and stack maintenance is performed when a cpu is being powered down and up. This avoids any coherency issues that can arise from reading speculatively fetched stale stack memory from another CPUs cache. These changes affect the warm boot path in both BL3-1 and BL3-2. The EL3 system registers responsible for preserving the MMU state are not saved and restored any longer. Static values are used to program these system registers when a cpu is powered on or resumed from suspend. Change-Id: I8357e2eb5eb6c5f448492c5094b82b8927603784
-
- 25 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
Many of the interfaces internal to PSCI pass the current CPU MPIDR_EL1 value from function to function. This is not required, and with inline access to the system registers is less efficient than requiring the code to read that register whenever required. This patch remove the mpidr parameter from the affected interfaces and reduces code in FVP BL3-1 size by 160 bytes. Change-Id: I16120a7c6944de37232016d7e109976540775602
-
- 23 Jun, 2014 3 commits
-
-
Andrew Thoelke authored
The array of affinity nodes is currently allocated for 32 entries with the PSCI_NUM_AFFS value defined in psci.h. This is not enough for large systems, and will substantially over allocate the array for small systems. This patch introduces an optional platform definition PLATFORM_NUM_AFFS to platform_def.h. If defined this value is used for PSCI_NUM_AFFS, otherwise a value of two times the number of CPU cores is used. The FVP port defines PLATFORM_NUM_AFFS to be 10 which saves nearly 1.5KB of memory. Fixes ARM-software/tf-issues#192 Change-Id: I68e30ac950de88cfbd02982ba882a18fb69c1445
-
Andrew Thoelke authored
psci_suspend_context is an array of cache-line aligned structures containing the single power_state integer per cpu. This array is the only structure indexed by the aff_map_node.data integer. This patch saves 2KB of BL3-1 memory by placing the CPU power_state value directly in the aff_map_node structure. As a result, this value is now never cached and the cache clean when writing the value is no longer required. Fixes ARM-software/tf-issues#195 Change-Id: Ib4c70c8f79eed295ea541e7827977a588a19ef9b
-
Andrew Thoelke authored
Consolidate all BL3-1 CPU context initialization for cold boot, PSCI and SPDs into two functions: * The first uses entry_point_info to initialize the relevant cpu_context for first entry into a lower exception level on a CPU * The second populates the EL1 and EL2 system registers as needed from the cpu_context to ensure correct entry into the lower EL This patch alters the way that BL3-1 determines which exception level is used when first entering EL1 or EL2 during cold boot - this is now fully determined by the SPSR value in the entry_point_info for BL3-3, as set up by the platform code in BL2 (or otherwise provided to BL3-1). In the situation that EL1 (or svc mode) is selected for a processor that supports EL2, the context management code will now configure all essential EL2 register state to ensure correct execution of EL1. This allows the platform code to run non-secure EL1 payloads directly without requiring a small EL2 stub or OS loader. Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
-
- 23 May, 2014 2 commits
-
-
Dan Handley authored
Some data variables were declared but not used. These have been removed. Change-Id: I038632af3c32d88984cd25b886c43ff763269bf9
-
Dan Handley authored
Function declarations implicitly have external linkage so do not need the extern keyword. Change-Id: Ia0549786796d8bf5956487e8996450a0b3d79f32
-
- 06 May, 2014 4 commits
-
-
Dan Handley authored
Update code base to remove variables from the .data section, mainly by using const static data where possible and adding the const specifier as required. Most changes are to the IO subsystem, including the framework APIs. The FVP power management code is also affected. Delay initialization of the global static variable, next_image_type in bl31_main.c, until it is realy needed. Doing this moves the variable from the .data to the .bss section. Also review the IO interface for inconsistencies, using uintptr_t where possible instead of void *. Remove the io_handle and io_dev_handle typedefs, which were unnecessary, replacing instances with uintptr_t. Fixes ARM-software/tf-issues#107. Change-Id: I085a62197c82410b566e4698e5590063563ed304
-
Dan Handley authored
Reduce the number of header files included from other header files as much as possible without splitting the files. Use forward declarations where possible. This allows removal of some unnecessary "#ifndef __ASSEMBLY__" statements. Also, review the .c and .S files for which header files really need including and reorder the #include statements alphabetically. Fixes ARM-software/tf-issues#31 Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
-
Dan Handley authored
Add tag names to all unnamed structs in header files. This allows forward declaration of structs, which is necessary to reduce header file nesting (to be implemented in a subsequent commit). Also change the typedef names across the codebase to use the _t suffix to be more conformant with the Linux coding style. The coding style actually prefers us not to use typedefs at all but this is considered a step too far for Trusted Firmware. Also change the IO framework structs defintions to use typedef'd structs to be consistent with the rest of the codebase. Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
-
Dan Handley authored
Move the PSCI global functions out of psci_private.h and into psci.h to allow the standard service to only depend on psci.h. Change-Id: I8306924a3814b46e70c1dcc12524c7aefe06eed1
-
- 29 Apr, 2014 1 commit
-
-
Vikram Kanigiri authored
This patch saves the 'power_state' parameter prior to suspending a cpu and invalidates it upon its resumption. The 'affinity level' and 'state id' fields of this parameter can be read using a set of public and private apis. Validation of power state parameter is introduced which checks for SBZ bits are zero. This change also takes care of flushing the parameter from the cache to main memory. This ensures that it is available after cpu reset when the caches and mmu are turned off. The earlier support for saving only the 'affinity level' field of the 'power_state' parameter has also been reworked. Fixes ARM-Software/tf-issues#26 Fixes ARM-Software/tf-issues#130 Change-Id: Ic007ccb5e39bf01e0b67390565d3b4be33f5960a
-
- 20 Mar, 2014 1 commit
-
-
Jeenu Viswambharan authored
This patch implements ARM Standard Service as a runtime service and adds support for call count, UID and revision information SMCs. The existing PSCI implementation is subsumed by the Standard Service calls and all PSCI calls are therefore dispatched by the Standard Service to the PSCI handler. At present, PSCI is the only specification under Standard Service. Thus call count returns the number of PSCI calls implemented. As this is the initial implementation, a revision number of 0.1 is returned for call revision. Fixes ARM-software/tf-issues#62 Change-Id: I6d4273f72ad6502636efa0f872e288b191a64bc1
-
- 26 Feb, 2014 1 commit
-
-
Jeenu Viswambharan authored
At present SPD power management hooks and BL3-2 entry are implemented using weak references. This would have the handlers bound and registered with the core framework at build time, but leaves them dangling if a service fails to initialize at runtime. This patch replaces implementation by requiring runtime handlers to register power management and deferred initialization hooks with the core framework at runtime. The runtime services are to register the hooks only as the last step, after having all states successfully initialized. Change-Id: Ibe788a2a381ef39aec1d4af5ba02376e67269782
-
- 20 Feb, 2014 2 commits
-
-
Achin Gupta authored
This patch implements a set of handlers in the SPD which are called by the PSCI runtime service upon receiving a power management operation. These handlers in turn pass control to the Secure Payload image if required before returning control to PSCI. This ensures that the Secure Payload has complete visibility of all power transitions in the system and can prepare accordingly. Change-Id: I2d1dba5629b7cf2d53999d39fe807dfcf3f62fe2
-
Achin Gupta authored
This patch creates a 'services' directory and moves the PSCI under it. Other runtime services e.g. the Secure Payload Dispatcher service will be placed under the same directory in the future. Also fixes issue ARM-software/tf-issues#12 Change-Id: I187f83dcb660b728f82155d91882e961d2255068
-