- 07 Dec, 2016 1 commit
-
-
Soby Mathew authored
The capabilities exposed by the PSCI generic layer depends on the hooks populated by the platform in `plat_arm_psci_pm_ops`. Currently ARM Standard platforms statically define this structure. However, some platforms may want to modify the hooks at runtime before registering them with the generic layer. This patch introduces a new ARM platform layer API `plat_arm_psci_override_pm_ops` which allows the platform to probe the power controller and modify `plat_arm_psci_pm_ops` if required. Consequently, 'plat_arm_psci_pm_ops' is no longer qualified as `const` on ARM Standard platforms. Change-Id: I7dbb44b7bd36c20ec14ded5ee45a96816ca2ab9d Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 21 Sep, 2016 1 commit
-
-
Yatharth Kochar authored
This patch adds changes in ARM platform code to use new version of image loading. Following are the major changes: -Refactor the signatures for bl31_early_platform_setup() and arm_bl31_early_platform_setup() function to use `void *` instead of `bl31_params_t *`. -Introduce `plat_arm_bl2_handle_scp_bl2()` to handle loading of SCP_BL2 image from BL2. -Remove usage of reserve_mem() function from `arm_bl1_early_platform_setup()` -Extract BL32 & BL33 entrypoint info, from the link list passed by BL2, in `arm_bl31_early_platform_setup()` -Provides weak definitions for following platform functions: plat_get_bl_image_load_info plat_get_next_bl_params plat_flush_next_bl_params bl2_plat_handle_post_image_load -Instantiates a descriptor array for ARM platforms describing image and entrypoint information for `SCP_BL2`, `BL31`, `BL32` and `BL33` images. All the above changes are conditionally compiled using the `LOAD_IMAGE_V2` flag. Change-Id: I5e88b9785a3df1a2b2bbbb37d85b8e353ca61049
-
- 15 Sep, 2016 1 commit
-
-
Jeenu Viswambharan authored
This patch implements CSS platform hook to support NODE_HW_STATE PSCI API. The platform hook queries SCP to obtain CSS power state. Power states returned by SCP are then converted to expected PSCI return codes. Juno's PSCI operation structure is modified to use the CSS implementation. Change-Id: I4a5edac0e5895dd77b51398cbd78f934831dafc0
-
- 19 Aug, 2016 1 commit
-
-
Sandrine Bailleux authored
This patch adds a WFI instruction in the default implementations of plat_error_handler() and plat_panic_handler(). This potentially reduces power consumption by allowing the hardware to enter a low-power state. The same change has been made to the FVP and Juno platform ports. Change-Id: Ia4e6e1e5bf1ed42efbba7d0ebbad7be8d5f9f173
-
- 25 Jul, 2016 1 commit
-
-
Antonio Nino Diaz authored
Compile option `ARM_BOARD_OPTIMISE_MMAP` has been renamed to `ARM_BOARD_OPTIMISE_MEM` because it now applies not only to defines related to the translation tables but to the image size as well. The defines `PLAT_ARM_MAX_BL1_RW_SIZE`, `PLAT_ARM_MAX_BL2_SIZE` and `PLAT_ARM_MAX_BL31_SIZE` have been moved to the file board_arm_def.h. This way, ARM platforms no longer have to set their own values if `ARM_BOARD_OPTIMISE_MEM=0` and they can specify optimized values otherwise. The common sizes have been set to the highest values used for any of the current build configurations. This is needed because in some build configurations some images are running out of space. This way there is a common set of values known to work for all of them and it can be optimized for each particular platform if needed. The space reserved for BL2 when `TRUSTED_BOARD_BOOT=0` has been increased. This is needed because when memory optimisations are disabled the values for Juno of `PLAT_ARM_MMAP_ENTRIES` and `MAX_XLAT_TABLES` are higher. If in this situation the code is compiled in debug mode and with "-O0", the code won't fit. Change-Id: I70a3d8d3a0b0cad1d6b602c01a7ea334776e718e
-
- 18 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch reworks type usage in generic code, drivers and ARM platform files to make it more portable. The major changes done with respect to type usage are as listed below: * Use uintptr_t for storing address instead of uint64_t or unsigned long. * Review usage of unsigned long as it can no longer be assumed to be 64 bit. * Use u_register_t for register values whose width varies depending on whether AArch64 or AArch32. * Use generic C types where-ever possible. In addition to the above changes, this patch also modifies format specifiers in print invocations so that they are AArch64/AArch32 agnostic. Only files related to upcoming feature development have been reworked. Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
-
- 16 Jun, 2016 1 commit
-
-
Soby Mathew authored
This patch enables optional PSCI functions `PSCI_STAT_COUNT` and `PSCI_STAT_RESIDENCY` for ARM standard platforms. The optional platform API 'translate_power_state_by_mpidr()' is implemented for the Juno platform. 'validate_power_state()' on Juno downgrades PSCI CPU_SUSPEND requests for the system power level to the cluster power level. Hence, it is not suitable for validating the 'power_state' parameter passed in a PSCI_STAT_COUNT/RESIDENCY call. Change-Id: I9548322676fa468d22912392f2325c2a9f96e4d2
-
- 14 Apr, 2016 1 commit
-
-
Gerald Lejeune authored
It is up to the platform to implement the new plat_crash_print_regs macro to report all relevant platform registers helpful for troubleshooting. plat_crash_print_regs merges or calls previously defined plat_print_gic_regs and plat_print_interconnect_regs macros for each existing platforms. NOTE: THIS COMMIT REQUIRES ALL PLATFORMS THAT ENABLE THE `CRASH_REPORTING` BUILD FLAG TO MIGRATE TO USE THE NEW `plat_crash_print_regs()` MACRO. BY DEFAULT, `CRASH_REPORTING` IS ENABLED IN DEBUG BUILDS FOR ALL PLATFORMS. Fixes: arm-software/tf-issues#373 Signed-off-by: Gerald Lejeune <gerald.lejeune@st.com>
-
- 31 Mar, 2016 1 commit
-
-
Soby Mathew authored
This patch migrates ARM Standard platforms to the refactored TZC driver. Change-Id: I2a2f60b645f73e14d8f416740c4551cec87cb1fb
-
- 14 Mar, 2016 1 commit
-
-
Antonio Nino Diaz authored
Added a new platform porting function plat_panic_handler, to allow platforms to handle unexpected error situations. It must be implemented in assembly as it may be called before the C environment is initialized. A default implementation is provided, which simply spins. Corrected all dead loops in generic code to call this function instead. This includes the dead loop that occurs at the end of the call to panic(). All unnecesary wfis from bl32/tsp/aarch64/tsp_exceptions.S have been removed. Change-Id: I67cb85f6112fa8e77bd62f5718efcef4173d8134
-
- 22 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
`board_arm_def.h` contains multiple definitions of `PLAT_ARM_MMAP_ENTRIES` and `MAX_XLAT_TABLES` that are optimised for memory usage depending upon the chosen build configuration. To ease maintenance of these constants, this patch replaces their multiple definitions with a single set of definitions that will work on all ARM platforms. Platforms can override the defaults with optimal values by enabling the `ARM_BOARD_OPTIMISE_MMAP` build option. An example has been provided in the Juno ADP port. Additionally, `PLAT_ARM_MMAP_ENTRIES` is increased by one to accomodate future ARM platforms. Change-Id: I5ba6490fdd1e118cc9cc2d988ad7e9c38492b6f0
-
- 19 Feb, 2016 1 commit
-
-
Soby Mathew authored
The common topology description helper funtions and macros for ARM Standard platforms assumed a dual cluster system. This is not flexible enough to scale to multi cluster platforms. This patch does the following changes for more flexibility in defining topology: 1. The `plat_get_power_domain_tree_desc()` definition is moved from `arm_topology.c` to platform specific files, that is `fvp_topology.c` and `juno_topology.c`. Similarly the common definition of the porting macro `PLATFORM_CORE_COUNT` in `arm_def.h` is moved to platform specific `platform_def.h` header. 2. The ARM common layer porting macros which were dual cluster specific are now removed and a new macro PLAT_ARM_CLUSTER_COUNT is introduced which must be defined by each ARM standard platform. 3. A new mandatory ARM common layer porting API `plat_arm_get_cluster_core_count()` is introduced to enable the common implementation of `arm_check_mpidr()` to validate MPIDR. 4. For the FVP platforms, a new build option `FVP_NUM_CLUSTERS` has been introduced which allows the user to specify the cluster count to be used to build the topology tree within Trusted Firmare. This enables Trusted Firmware to be built for multi cluster FVP models. Change-Id: Ie7a2e38e5661fe2fdb2c8fdf5641d2b2614c2b6b
-
- 16 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
ARM Trusted Firmware supports 2 different interconnect peripheral drivers: CCI and CCN. ARM platforms are implemented using either of the interconnect peripherals. This patch adds a layer of abstraction to help ARM platform ports to choose the right interconnect driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been implemented to initialise an interconnect and for entering/exiting a cluster from coherency. These functions are prefixed as "plat_arm_interconnect_". Weak definitions of these functions have been provided for each type of driver. 2.`plat_print_interconnect_regs` macro used for printing CCI registers is moved from a common arm_macros.S to cci_macros.S. 3. The `ARM_CONFIG_HAS_CCI` flag used in `arm_config_flags` structure is renamed to `ARM_CONFIG_HAS_INTERCONNECT`. Change-Id: I02f31184fbf79b784175892d5ce1161b65a0066c
-
- 15 Feb, 2016 2 commits
-
-
Vikram Kanigiri authored
Prior to this patch, it was assumed that on all ARM platforms the bare minimal security setup required is to program TrustZone protection. This would always be done by programming the TZC-400 which was assumed to be present in all ARM platforms. The weak definition of platform_arm_security_setup() in plat/arm/common/arm_security.c reflected these assumptions. In reality, each ARM platform either decides at runtime whether TrustZone protection needs to be programmed (e.g. FVPs) or performs some security setup in addition to programming TrustZone protection (e.g. NIC setup on Juno). As a result, the weak definition of plat_arm_security_setup() is always overridden. When a platform needs to program TrustZone protection and implements the TZC-400 peripheral, it uses the arm_tzc_setup() function to do so. It is also possible to program TrustZone protection through other peripherals that include a TrustZone controller e.g. DMC-500. The programmer's interface is slightly different across these various peripherals. In order to satisfy the above requirements, this patch makes the following changes to the way security setup is done on ARM platforms. 1. arm_security.c retains the definition of arm_tzc_setup() and has been renamed to arm_tzc400.c. This is to reflect the reliance on the TZC-400 peripheral to perform TrustZone programming. The new file is not automatically included in all platform ports through arm_common.mk. Each platform must include it explicitly in a platform specific makefile if needed. This approach enables introduction of similar library code to program TrustZone protection using a different peripheral. This code would be used by the subset of ARM platforms that implement this peripheral. 2. Due to #1 above, existing platforms which implements the TZC-400 have been updated to include the necessary files for both BL2, BL2U and BL31 images. Change-Id: I513c58f7a19fff2e9e9c3b95721592095bcb2735
-
Vikram Kanigiri authored
Current code assumes `SCP_COM_SHARED_MEM_BASE` as the base address for BOM/SCPI protocol between AP<->SCP on all CSS platforms. To cater for future ARM platforms this is made platform specific. Similarly, the bit shifts of `SCP_BOOT_CONFIG_ADDR` are also made platform specific. Change-Id: Ie8866c167abf0229a37b3c72576917f085c142e8
-
- 11 Feb, 2016 2 commits
-
-
Vikram Kanigiri authored
Each ARM Compute Subsystem based platform implements a System Security Control (SSC) Registers Unit. The SSC_VERSION register inside it carries information to identify the platform. This enables ARM Trusted Firmware to compile in support for multiple ARM platforms and choose one at runtime. This patch adds macros to enable access to this register. Each platform is expected to export its PART_NUMBER separately. Additionally, it also adds juno part number. Change-Id: I2b1d5f5b65a9c7b76c6f64480cc7cf0aef019422
-
Vikram Kanigiri authored
This patch moves the definition of some macros used only on ARM platforms from common headers to platform specific headers. It also forces all ARM standard platforms to have distinct definitions (even if they are usually the same). 1. `PLAT_ARM_TZC_BASE` and `PLAT_ARM_NSTIMER_FRAME_ID` have been moved from `css_def.h` to `platform_def.h`. 2. `MHU_BASE` used in CSS platforms is moved from common css_def.h to platform specific header `platform_def.h` on Juno and renamed as `PLAT_ARM_MHU_BASE`. 3. To cater for different sizes of BL images, new macros like `PLAT_ARM_MAX_BL31_SIZE` have been created for each BL image. All ARM platforms need to define them for each image. Change-Id: I9255448bddfad734b387922aa9e68d2117338c3f
-
- 15 Dec, 2015 1 commit
-
-
Dan Handley authored
The current FWU_SMC_UPDATE_DONE implementation incorrectly passes an unused framework cookie through to the 1st argument in the platform function `bl1_plat_fwu_done`. The intent is to allow the SMC caller to pass a cookie through to this function. This patch fixes FWU_SMC_UPDATE_DONE to pass x1 from the caller through to `bl1_plat_fwu_done`. The argument names are updated for clarity. Upstream platforms currently do not use this argument so no impact is expected. Change-Id: I107f4b51eb03e7394f66d9a534ffab1cbc09a9b2
-
- 09 Dec, 2015 3 commits
-
-
Yatharth Kochar authored
This patch adds support for Firmware update in BL2U for ARM platforms such that TZC initialization is performed on all ARM platforms and (optionally) transfer of SCP_BL2U image on ARM CSS platforms. BL2U specific functions are added to handle early_platform and plat_arch setup. The MMU is configured to map in the BL2U code/data area and other required memory. Change-Id: I57863295a608cc06e6cbf078b7ce34cbd9733e4f
-
Yatharth Kochar authored
This patch adds Firmware Update support for ARM platforms. New files arm_bl1_fwu.c and juno_bl1_setup.c were added to provide platform specific Firmware update code. BL1 now includes mmap entry for `ARM_MAP_NS_DRAM1` to map DRAM for authenticating NS_BL2U image(For both FVP and JUNO platform). Change-Id: Ie116cd83f5dc00aa53d904c2f1beb23d58926555
-
Achin Gupta authored
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three separate drivers instead of providing a single driver that can work on both versions of the GIC architecture. These drivers correspond to the following software use cases: 1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations e.g. GIC-400 2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features 3. A deprecated GICv3 driver that operates in legacy mode. This driver can operate only in the GICv2 mode in the secure world. On a GICv3 system, this driver allows normal world to run in either GICv3 mode (asymmetric mode) or in the GICv2 mode. Both modes of operation are deprecated on GICv3 systems. ARM platforms implement both versions of the GIC architecture. This patch adds a layer of abstraction to help ARM platform ports chose the right GIC driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been introduced to initialise the GIC and the driver during cold and warm boot. These functions are prefixed as "plat_arm_gic_". Weak definitions of these functions have been provided for each type of driver. 2. Each platform includes the sources that implement the right functions directly into the its makefile. The FVP can be instantiated with different versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option to specify which of the three drivers should be included in the build. 3. A list of secure interrupts has to be provided to initialise each of the three GIC drivers. For GIC v3.0 the interrupt ids have to be further categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two types are merged and treated as Group 0 interrupts. The two lists of interrupts are exported from the platform_def.h. The lists are constructed by adding a list of board specific interrupt ids to a list of ids common to all ARM platforms and Compute sub-systems. This patch also makes some fields of `arm_config` data structure in FVP redundant and these unused fields are removed. Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
-
- 02 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch adds watchdog support on ARM platforms (FVP and Juno). A secure instance of SP805 is used as Trusted Watchdog. It is entirely managed in BL1, being enabled in the early platform setup hook and disabled in the exit hook. By default, the watchdog is enabled in every build (even when TBB is disabled). A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG` has been introduced to allow the user to disable the watchdog at build time. This feature may be used for testing or debugging purposes. Specific error handlers for Juno and FVP are also provided in this patch. These handlers will be called after an image load or authentication error. On FVP, the Table of Contents (ToC) in the FIP is erased. On Juno, the corresponding error code is stored in the V2M Non-Volatile flags register. In both cases, the CPU spins until a watchdog reset is generated after 256 seconds (as specified in the TBBR document). Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
-
- 19 Nov, 2015 2 commits
-
-
Sandrine Bailleux authored
The default reset values for the L2 Data & Tag RAM latencies on the Cortex-A72 on Juno R2 are not suitable. This patch modifies the Juno platform reset handler to configure the right settings on Juno R2. Change-Id: I20953de7ba0619324a389e0b7bbf951b64057db8
-
Sandrine Bailleux authored
This patch splits the Juno reset handler in 4 distinct pieces: - Detection of the board revision; - Juno R0 specific handler; - Juno R1 specific handler; - Juno R2 specific handler. Depending on the board revision, the appropriate handler is called. This makes the code easier to understand and maintain. This patch is mainly cosmetic. The only functional change introduced is that the Juno platform reset handler will now spin infinitely if the board revision is not recognised. Previously, it would have assumed that it was running on Juno R1 in this case. Change-Id: I54ed77c4665085ead9d1573316c9c884d7d3ffa0
-
- 04 Nov, 2015 1 commit
-
-
Brendan Jackman authored
Cortex-A72 library support is now compiled into the Juno platform port to go with the existing A53/A57 support. This enables a single set of Juno TF binaries to run on Juno R0, R1 and R2 boards. Change-Id: I4a601dc4f671e98bdb19d98bbb66f02f0d8b7fc7
-
- 30 Oct, 2015 2 commits
-
-
Soby Mathew authored
This patch adds the capability to power down at system power domain level on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers are modified to add support for power management operations at system power domain level. A new helper for populating `get_sys_suspend_power_state` handler in plat_psci_ops is defined. On entering the system suspend state, the SCP powers down the SYSTOP power domain on the SoC and puts the memory into retention mode. On wakeup from the power down, the system components on the CSS will be reinitialized by the platform layer and the PSCI client is responsible for restoring the context of these system components. According to PSCI Specification, interrupts targeted to cores in PSCI CPU SUSPEND should be able to resume it. On Juno, when the system power domain is suspended, the GIC is also powered down. The SCP resumes the final core to be suspend when an external wake-up event is received. But the other cores cannot be woken up by a targeted interrupt, because GIC doesn't forward these interrupts to the SCP. Due to this hardware limitation, we down-grade PSCI CPU SUSPEND requests targeted to the system power domain level to cluster power domain level in `juno_validate_power_state()` and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c. A system power domain resume helper `arm_system_pwr_domain_resume()` is defined for ARM standard platforms which resumes/re-initializes the system components on wakeup from system suspend. The security setup also needs to be done on resume from system suspend, which means `plat_arm_security_setup()` must now be included in the BL3-1 image in addition to previous BL images if system suspend need to be supported. Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
-
Soby Mathew authored
This patch implements the necessary topology changes for supporting system power domain on CSS platforms. The definition of PLAT_MAX_PWR_LVL and PLAT_NUM_PWR_DOMAINS macros are removed from arm_def.h and are made platform specific. In addition, the `arm_power_domain_tree_desc[]` and `arm_pm_idle_states[]` are modified to support the system power domain at level 2. With this patch, even though the power management operations involving the system power domain will not return any error, the platform layer will silently ignore any operations to the power domain. The actual power management support for the system power domain will be added later. Change-Id: I791867eded5156754fe898f9cdc6bba361e5a379
-
- 27 Oct, 2015 1 commit
-
-
David Wang authored
Currently all ARM CSS platforms which include css_helpers.S use the same strong definition of `plat_arm_calc_core_pos`. This patch allows these CSS platforms to define their own strong definition of this function. * Replace the strong definition of `plat_arm_calc_core_pos` in css_helpers.S with a utility function `css_calc_core_pos_swap_cluster` does the same thing (swaps cluster IDs). ARM CSS platforms may choose to use this function or not. * Add a Juno strong definition of `plat_arm_calc_core_pos`, which uses `css_calc_core_pos_swap_cluster`. Change-Id: Ib5385ed10e44adf6cd1398a93c25973eb3506d9d
-
- 11 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
Currently, on ARM platforms(ex. Juno) non-secure access to specific peripheral regions, config registers which are inside and outside CSS is done in the soc_css_security_setup(). This patch separates the CSS security setup from the SOC security setup in the css_security_setup(). The CSS security setup involves programming of the internal NIC to provide access to regions inside the CSS. This is needed only in Juno, hence Juno implements it in its board files as css_init_nic400(). Change-Id: I95a1fb9f13f9b18fa8e915eb4ae2f15264f1b060
-
- 01 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
ARM TF configures all interrupts as non-secure except those which are present in irq_sec_array. This patch updates the irq_sec_array with the missing secure interrupts for ARM platforms. It also updates the documentation to be inline with the latest implementation. Fixes ARM-software/tf-issues#312 Change-Id: I39956c56a319086e3929d1fa89030b4ec4b01fcc
-
- 13 Aug, 2015 1 commit
-
-
Soby Mathew authored
This patch migrates ARM reference platforms, Juno and FVP, to the new platform API mandated by the new PSCI power domain topology and composite power state frameworks. The platform specific makefiles now exports the build flag ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer. Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
-
- 25 Jun, 2015 1 commit
-
-
Juan Castillo authored
This patch modifies the Trusted Board Boot implementation to use the new authentication framework, making use of the authentication module, the cryto module and the image parser module to authenticate the images in the Chain of Trust. A new function 'load_auth_image()' has been implemented. When TBB is enabled, this function will call the authentication module to authenticate parent images following the CoT up to the root of trust to finally load and authenticate the requested image. The platform is responsible for picking up the right makefiles to build the corresponding cryptographic and image parser libraries. ARM platforms use the mbedTLS based libraries. The platform may also specify what key algorithm should be used to sign the certificates. This is done by declaring the 'KEY_ALG' variable in the platform makefile. FVP and Juno use ECDSA keys. On ARM platforms, BL2 and BL1-RW regions have been increased 4KB each to accommodate the ECDSA code. REMOVED BUILD OPTIONS: * 'AUTH_MOD' Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
-
- 04 Jun, 2015 1 commit
-
-
Sandrine Bailleux authored
This patch removes the FIRST_RESET_HANDLER_CALL build flag and its use in ARM development platforms. If a different reset handling behavior is required between the first and subsequent invocations of the reset handling code, this should be detected at runtime. On Juno, the platform reset handler is now always compiled in. This means it is now executed twice on the cold boot path, first in BL1 then in BL3-1, and it has the same behavior in both cases. It is also executed twice on the warm boot path, first in BL1 then in the PSCI entrypoint code. Also update the documentation to reflect this change. NOTE: THIS PATCH MAY FORCE PLATFORM PORTS THAT USE THE FIRST_RESET_HANDLER_CALL BUILD OPTION TO FIX THEIR RESET HANDLER. Change-Id: Ie5c17dbbd0932f5fa3b446efc6e590798a5beae2
-
- 28 Apr, 2015 1 commit
-
-
Dan Handley authored
Move the Juno port from plat/juno to plat/arm/board/juno. Also rename some of the files so they are consistently prefixed with juno_. Update the platform makefiles accordingly. Change-Id: I0af6cb52a5fee7ef209107a1188b76a3c33a2a9f
-