- 05 Mar, 2015 1 commit
-
-
Sandrine Bailleux authored
All coding style violations have been fixed in a previous patch and since then, each individual patch has been checked in this regard. However, the latest version of the checkpatch.pl script from the Linux kernel is more advanced and it is able to flag new errors in the Trusted Firmware codebase. This patch fixes them. Change-Id: I1f332f2440984be85d36b231bb83260368987077
-
- 16 Feb, 2015 1 commit
-
-
Robin Murphy authored
By default the SMMU for the DMA-330 is configured to mark some stream IDs as always belonging to the Secure world. As a result, if EL1 software turns the SMMU on, certain Non-Secure accesses get rewritten as Secure, making them bypass translation and access Secure physical addresses directly. Since the current Juno board firmware configures the DMA-330 hardware as Non-Secure, rewrite the SMMU's default SSD table as well to prevent any unexpected behaviour in EL1. Change-Id: Iaa81d883eecf28d80eb182b9ce475684bf9c718c
-
- 12 Feb, 2015 2 commits
-
-
Soby Mathew authored
This patch removes the plat_get_max_afflvl() platform API and instead replaces it with a platform macro PLATFORM_MAX_AFFLVL. This is done because the maximum affinity level for a platform is a static value and it is more efficient for it to be defined as a platform macro. NOTE: PLATFORM PORTS NEED TO BE UPDATED ON MERGE OF THIS COMMIT Fixes ARM-Software/tf-issues#265 Change-Id: I31d89b30c2ccda30d28271154d869060d50df7bf
-
Soby Mathew authored
This patch defines MAX_MMAP_REGIONS separately for each BL stage as per its requirements. This minimizes the size of the mmap[] array. Fixes ARM-Software/tf-issues#201 Change-Id: I19b15e1a91a8365b2ecf24e2cd71937cb73916b2
-
- 28 Jan, 2015 6 commits
-
-
Juan Castillo authored
This patch adds support to authenticate the Trusted Key certificate and the BL3-x certificates and images at BL2. Change-Id: I69a8c13a14c8da8b75f93097d3a4576aed71c5dd
-
Juan Castillo authored
This patch moves fvp_io_setup() to bl2_early_platform_setup() in order to allow BL2 to use the IO framework before bl2_platform_setup(). Change-Id: I75e1a772ab5f9b4727f6727822a2527c30f3c63d
-
Juan Castillo authored
This patch adds support to authenticate the BL2 content certificate and image using the authentication module in BL1. The FIP driver has been extended to include the BL2 certificate UUID. FVP and Juno ports include the BL2 certificate FIP file definition. Change-Id: I32680e9bd123c8db4a4193c14448c9b32b0e9325
-
Juan Castillo authored
This patch implements an authentication module based on the PolarSSL library (v1.3.9) to verify the Chain of Trust when Trusted Boot is enabled. PolarSSL sources must be fetched separately. The POLARSSL_DIR build option may be used to indicate the path to the PolarSSL main directory (this directory must contain the 'include' and 'library' subdirectories). To be able to build PolarSSL sources as a part of the Trusted Firmware build process, the DISABLE_PEDANTIC flag in polarssl.mk will tell the build system to remove the -pedantic option from the CFLAGS. Inclusion of PolarSSL increases the memory requirements of the BL1 and BL2 images. The following are the changes made to the FVP and Juno platforms to cater for this when TRUSTED_BOARD_BOOT is defined: Changes on FVP: - BL1 and BL2 stacks have been increased to 4 KB - BL1(rw) section has been increased to 32 KB. - BL2 memory region has been increased to 112 KB Changes on Juno: - BL1 and BL2 stacks have been increased to 4 KB - BL1(rw) section has been increased to 32 KB. - Trusted ROM region in Flash has been increased to 128 KB. - BL2 memory region has been increased to 116 KB Change-Id: Ie87d80d43408eb6239c4acd0ec5ab2120e4e9e80
-
Juan Castillo authored
This patch adds the function plat_match_rotpk() to the platform porting layer to provide a Root Of Trust Public key (ROTPK) verification mechanism. This function is called during the Trusted Board Boot process and receives a supposed valid copy of the ROTPK as a parameter, usually obtained from an external source (for instance, a certificate). It returns 0 (success) if that key matches the actual ROTPK stored in the system or any other value otherwise. The mechanism to access the actual ROTPK stored in the system is platform specific and should be implemented as part of this function. The format of the ROTPK is also platform specific (to save memory, some platforms might store a hash of the key instead of the whole key). TRUSTED_BOARD_BOOT build option has been added to allow the user to enable the Trusted Board Boot features. The implementation of the plat_match_rotpk() funtion is mandatory when Trusted Board Boot is enabled. For development purposes, FVP and Juno ports provide a dummy function that returns always success (valid key). A safe trusted boot implementation should provide a proper matching function. Documentation updated accordingly. Change-Id: I74ff12bc2b041556c48533375527d9e8c035b8c3
-
Juan Castillo authored
This patch adds a tool that generates all the necessary elements to establish the chain of trust (CoT) between the images. The tool reads the binary images and signing keys and outputs the corresponding certificates that will be used by the target at run time to verify the authenticity of the images. Note: the platform port must provide the file platform_oid.h. This file will define the OIDs of the x509 extensions that will be added to the certificates in order to establish the CoT. Change-Id: I2734d6808b964a2107ab3a4805110698066a04be
-
- 26 Jan, 2015 2 commits
-
-
Yatharth Kochar authored
This patch adds support to call the reset_handler() function in BL3-1 in the cold and warm boot paths when another Boot ROM reset_handler() has already run. This means the BL1 and BL3-1 versions of the CPU and platform specific reset handlers may execute different code to each other. This enables a developer to perform additional actions or undo actions already performed during the first call of the reset handlers e.g. apply additional errata workarounds. Typically, the reset handler will be first called from the BL1 Boot ROM. Any additional functionality can be added to the reset handler when it is called from BL3-1 resident in RW memory. The constant FIRST_RESET_HANDLER_CALL is used to identify whether this is the first version of the reset handler code to be executed or an overridden version of the code. The Cortex-A57 errata workarounds are applied only if they have not already been applied. Fixes ARM-software/tf-issue#275 Change-Id: Id295f106e4fda23d6736debdade2ac7f2a9a9053
-
Juan Castillo authored
This patch allows the secure payload (BL3-2) to be loaded in the DRAM region secured by the TrustZone controller (top 16 MB of DRAM1). The location of BL3-2 can be selected at build time by setting the build flag FVP_TSP_RAM_LOCATION to one of the following options: - 'tsram' : Trusted SRAM (this is the default option) - 'tdram' : Trusted DRAM - 'dram' : Secure region in DRAM1 (top 16MB configured by the TrustZone controller) The number of MMU tables in BL3-2 depends on its location in memory: 3 in case it is loaded in DRAM, 2 otherwise. Documentation updated accordingly. Fixes ARM-software/tf-issues#212 Change-Id: I371eef3a4159f06a0c9e3c6c1f4c905b2f93803a
-
- 23 Jan, 2015 2 commits
-
-
Soby Mathew authored
This patch allows the platform to validate the power_state and entrypoint information from the normal world early on in PSCI calls so that we can return the error safely. New optional pm_ops hooks `validate_power_state` and `validate_ns_entrypoint` are introduced to do this. As a result of these changes, all the other pm_ops handlers except the PSCI_ON handler are expected to be successful. Also, the PSCI implementation will now assert if a PSCI API is invoked without the corresponding pm_ops handler being registered by the platform. NOTE : PLATFORM PORTS WILL BREAK ON MERGE OF THIS COMMIT. The pm hooks have 2 additional optional callbacks and the return type of the other hooks have changed. Fixes ARM-Software/tf-issues#229 Change-Id: I036bc0cff2349187c7b8b687b9ee0620aa7e24dc
-
Soby Mathew authored
This patch removes the non-secure entry point information being passed to the platform pm_ops which is not needed. Also, it removes the `mpidr` parameter for platform pm hooks which are meant to do power management operations only on the current cpu. NOTE: PLATFORM PORTS MUST BE UPDATED AFTER MERGING THIS COMMIT. Change-Id: If632376a990b7f3b355f910e78771884bf6b12e7
-
- 22 Jan, 2015 2 commits
-
-
Soby Mathew authored
This patch extends the build option `USE_COHERENT_MEMORY` to conditionally remove coherent memory from the memory maps of all boot loader stages. The patch also adds necessary documentation for coherent memory removal in firmware-design, porting and user guides. Fixes ARM-Software/tf-issues#106 Change-Id: I260e8768c6a5c2efc402f5804a80657d8ce38773
-
Soby Mathew authored
This patch moves the bakery locks out of coherent memory to normal memory. This implies that the lock information needs to be placed on a separate cache line for each cpu. Hence the bakery_lock_info_t structure is allocated in the per-cpu data so as to minimize memory wastage. A similar platform per-cpu data is introduced for the platform locks. As a result of the above changes, the bakery lock api is completely changed. Earlier, a reference to the lock structure was passed to the lock implementation. Now a unique-id (essentially an index into the per-cpu data array) and an offset into the per-cpu data for bakery_info_t needs to be passed to the lock implementation. Change-Id: I1e76216277448713c6c98b4c2de4fb54198b39e0
-
- 21 Jan, 2015 1 commit
-
-
Juan Castillo authored
This patch maps the non-secure region of DRAM1 in the MMU. The non-secure region comprises the whole DRAM1 (0x80000000 - 0xffffffff) excluding the top 16 MB (0xff000000 - 0xffffffff). The TrustZone controller configures this 16 MB region as secure memory, so it can not be accessed in non-secure mode. The number of MMU tables in BL2 has been increased to 3 because the new size of the non-secure region in DRAM requires an extra L2 table. Change-Id: I5ad080c6e181f6b6060e15cebb1d18b7fa128cf5
-
- 12 Jan, 2015 1 commit
-
-
Juan Castillo authored
This patch allows the BL3-1 NOBITS section to overlap the BL1 R/W section since the former will always be used after the latter. Similarly, the BL3-2 NOBITS section can overlay the BL2 image when BL3-2 is loaded in Trusted SRAM. Due to the current size of the images, there is no actual overlap. Nevertheless, this reorganization may help to optimise the Trusted SRAM usage when the images size grows. Note that because BL3-1 NOBITS section is allowed to overlap the BL1 R/W section, BL1 global variables will remain valid only until execution reaches the BL3-1 entry point during a cold boot. Documentation updated accordingly. Fixes ARM-software/tf-issues#254 Change-Id: Id538f4d1c7f1f7858108280fd7b97e138572b879
-
- 10 Dec, 2014 1 commit
-
-
Sandrine Bailleux authored
In both FVP and Juno ports, IRQ #16, which is a PPI, is incorrectly identified as secure SGI #8 through the constant IRQ_SEC_SGI_8. This patch removes it. Fixes ARM-software/tf-issues#282 Change-Id: I9e52d849611ffcd2b1f28e56dd156c5b217ed63e
-
- 04 Nov, 2014 1 commit
-
-
Soby Mathew authored
This patch reassigns the crash console on Juno and FVP to use the runtime BL3-1 console. The crash console is changed to SoC UART0 (UART2) from the previous FPGA UART0 (UART0) on Juno. In FVP, it is changed from UART0 to UART1. Fixes ARM-software/tf-issues#256 Change-Id: I7df54f86ca00ec2652c27261dd66a94c12610816
-
- 31 Oct, 2014 1 commit
-
-
Juan Castillo authored
This patch replaces the usage of the GIC private driver in Juno with the generic ARM GIC driver. The private driver is no longer necessary and has been removed from the Juno port. Fixes ARM-software/tf-issues#253 Change-Id: I6aaabc252e5e6fb5fcf44ab6d0febd9b38791056
-
- 29 Oct, 2014 1 commit
-
-
Soby Mathew authored
This patch optimizes the Cortex-A57 cluster power down sequence by not flushing the Level1 data cache. The L1 data cache and the L2 unified cache are inclusive. A flush of the L2 by set/way flushes any dirty lines from the L1 as well. This is a known safe deviation from the Cortex-A57 TRM defined power down sequence. This optimization can be enabled by the platform through the 'SKIP_A57_L1_FLUSH_PWR_DWN' build flag. Each Cortex-A57 based platform must make its own decision on whether to use the optimization. This patch also renames the cpu-errata-workarounds.md to cpu-specific-build-macros.md as this facilitates documentation of both CPU Specific errata and CPU Specific Optimization build macros. Change-Id: I299b9fe79e9a7e08e8a0dffb7d345f9a00a71480
-
- 22 Oct, 2014 1 commit
-
-
Juan Castillo authored
This patch deprecates the build option to relocate the shared data into Trusted DRAM in FVP. After this change, shared data is always located at the base of Trusted SRAM. This reduces the complexity of the memory map and the number of combinations in the build options. Fixes ARM-software/tf-issues#257 Change-Id: I68426472567b9d8c6d22d8884cb816f6b61bcbd3
-
- 21 Oct, 2014 1 commit
-
-
Vikram Kanigiri authored
This patch adds support on the Juno platform for entering a wfi in response to a PSCI CPU_SUSPEND call where the state type is a standby state. Change-Id: I0a102dee1f8d2ad936c63ad1d1d3ad001a4a4768
-
- 14 Oct, 2014 1 commit
-
-
Juan Castillo authored
This patch configures the TrustZone Controller in Juno to split the 2GB DDR-DRAM memory at 0x80000000 into Secure and Non-Secure regions: - Secure DDR-DRAM: top 16 MB, except for the last 2 MB which are used by the SCP for DDR retraining - Non-Secure DDR-DRAM: remaining DRAM starting at base address Build option PLAT_TSP_LOCATION selects the location of the secure payload (BL3-2): - 'tsram' : Trusted SRAM (default option) - 'dram' : Secure region in the DDR-DRAM (set by the TrustZone controller) The MMU memory map has been updated to give BL2 permission to load BL3-2 into the DDR-DRAM secure region. Fixes ARM-software/tf-issues#233 Change-Id: I6843fc32ef90aadd3ea6ac4c7f314f8ecbd5d07b
-
- 09 Oct, 2014 1 commit
-
-
Juan Castillo authored
This patch replaces direct accesses to the TZC-400 registers by the appropiate calls to the generic driver available in the Trusted Firmware in order to initialize the TrustZone Controller. Functions related to the initialization of the secure memory, like the TZC-400 configuration, have been moved to a new file 'plat_security.c'. This reorganization makes easier to set up the secure memory from any BL stage. TZC-400 initialization has been moved from BL1 to BL2 because BL1 does not access the non-secure memory. It is BL2's responsibility to enable and configure the TZC-400 before loading the next BL images. In Juno, BL3-0 initializes some of the platform peripherals, like the DDR controller. Thus, BL3-0 must be loaded before configuring the TrustZone Controller. As a consequence, the IO layer initialization has been moved to early platform initialization. Fixes ARM-software/tf-issues#234 Change-Id: I83dde778f937ac8d2996f7377e871a2e77d9490e
-
- 25 Sep, 2014 1 commit
-
-
Soby Mathew authored
This patch uses the IMAGE_BL<x> constants to create translation tables specific to a boot loader stage. This allows each stage to create mappings only for areas in the memory map that it needs. Fixes ARM-software/tf-issues#209 Change-Id: Ie4861407ddf9317f0fb890fc7575eaa88d0de51c
-
- 22 Sep, 2014 1 commit
-
-
Soby Mathew authored
This patch avoids the problem of crash reporting mechanism accessing global data in BSS by 'plat_print_gic_regs' for FVP platforms. Earlier it depended on the global 'plat_config' object for the GIC Base address in FVP platforms which would have caused exception if it were accessed before the BSS was initialized. It is now fixed by dynamically querying the V2M_SYS_ID to find the FVP model type and accordingly selecting the appropriate GIC Base address. This patch also fixes the 'plat_print_gic_regs' to use the correct GIC Distributor base address for printing GICD_IS_PENDR register values for both Juno and FVP platforms. Fixes ARM-Software/tf-issues#236 Change-Id: I545c7b908b3111419bf27db0575ce86acf86784b
-
- 27 Aug, 2014 1 commit
-
-
Sandrine Bailleux authored
This patch gathers miscellaneous minor fixes to the documentation, and comments in the source code. Change-Id: I631e3dda5abafa2d90f464edaee069a1e58b751b Co-Authored-By: Soby Mathew <soby.mathew@arm.com> Co-Authored-By: Dan Handley <dan.handley@arm.com>
-
- 21 Aug, 2014 6 commits
-
-
Soby Mathew authored
This patch changes the UART port assignment for various BL stages so as to make it consistent on the platform ports. The BL1, BL2 and BL3-1 now uses UART0 on the FVP port and SoC UART0 on the Juno port. The BL3-2 uses UART2 on the FVP port and FPGA UART0 on the Juno port. This provides an interim fix to ARM-software/tf-issues#220 until support is added for changing the UART port for a BL image between cold boot and runtime. Change-Id: Iae5faea90be3d59e41e597b34a902f93e737505a
-
Juan Castillo authored
This patch removes the PRIMARY_CPU definition hardcoded in the Juno port. Instead, the primary CPU is obtained at runtime by reading the SCC General Purpose Register 1 (GPR_1), whose value is copied by the SCP into shared memory during the boot process. Change-Id: I3981daa92eb7142250712274cf7f655b219837f5
-
Juan Castillo authored
This patch adds the Juno platform specific handlers for PSCI SYSTEM_OFF and SYSTEM_RESET operations. Change-Id: Ie389adead533ec2314af44d721b4d0f306147c7d
-
Sandrine Bailleux authored
This patch implements the TSP on Juno. It executes from on-chip Trusted SRAM. Also, the other bootloader images (i.e. BL1 R/W, BL2 and BL3-1) have been moved around. The reason is, although there was enough space overall to store the TSP in SRAM, there was no contiguous free chunk of SRAM big enough to hold it. This patch keeps the overall memory layout (i.e. keeping BL1 R/W at the bottom, BL2 at the top and BL3-1 in between) but moves the base addresses of all the bootloader images in such a way that: - memory fragmentation is reduced enough to fit BL3-2 in; - new base addresses are suitable for release builds as well as debug ones; - each image has a few extra kilobytes for future growth. BL3-1 and BL3-2 are the images which received the biggest allocations since they will most probably grow the most. This patch also adds instruction synchronization barriers around the code which handles the timer interrupt in the TSP. This ensures that the interrupt is not acknowledged after or EOIed before it is deactivated at the peripheral. Change-Id: I1c5b51858700027ee283ac85d18e06863a27c72e
-
Achin Gupta authored
This patch adds support for PSCI CPU_OFF and CPU_SUSPEND APIs to the Juno port of the ARM Trusted Firmware. The maximum affinity level that can be suspended is the cluster level (affinity level 1). Support for suspending the system level is not present. Change-Id: Ie2c9da0acd7d1b0d5ac64940cdf40347153e52c8
-
Sandrine Bailleux authored
This patch adds the initial port of the ARM Trusted Firmware on the Juno development platform. This port does not support a BL3-2 image or any PSCI APIs apart from PSCI_VERSION and PSCI_CPU_ON. It enables workarounds for selected Cortex-A57 (#806969 & #813420) errata and implements the workaround for a Juno platform errata (Defect id 831273). Change-Id: Ib3d92df3af53820cfbb2977582ed0d7abf6ef893
-
- 20 Aug, 2014 3 commits
-
-
Soby Mathew authored
This patch adds CPU core and cluster power down sequences to the CPU specific operations framework introduced in a earlier patch. Cortex-A53, Cortex-A57 and generic AEM sequences have been added. The latter is suitable for the Foundation and Base AEM FVPs. A pointer to each CPU's operations structure is saved in the per-cpu data so that it can be easily accessed during power down seqeunces. An optional platform API has been introduced to allow a platform to disable the Accelerator Coherency Port (ACP) during a cluster power down sequence. The weak definition of this function (plat_disable_acp()) does not take any action. It should be overriden with a strong definition if the ACP is present on a platform. Change-Id: I8d09bd40d2f528a28d2d3f19b77101178778685d
-
Soby Mathew authored
This patch adds an optional platform API (plat_reset_handler) which allows the platform to perform any actions immediately after a cold or warm reset e.g. implement errata workarounds. The function is called with MMU and caches turned off. This API is weakly defined and does nothing by default but can be overriden by a platform with a strong definition. Change-Id: Ib0acdccbd24bc756528a8bd647df21e8d59707ff
-
Soby Mathew authored
This patch introduces a framework which will allow CPUs to perform implementation defined actions after a CPU reset, during a CPU or cluster power down, and when a crash occurs. CPU specific reset handlers have been implemented in this patch. Other handlers will be implemented in subsequent patches. Also moved cpu_helpers.S to the new directory lib/cpus/aarch64/. Change-Id: I1ca1bade4d101d11a898fb30fea2669f9b37b956
-
- 19 Aug, 2014 2 commits
-
-
Soby Mathew authored
This patch provides a workaround for the ASM_ASSERT label issue and also reworks the use of labels in assembly macros. If the caller of the ASM_ASSERT macro happened to use the label '1' to jump past the ASM_ASSERT macro, it would not have worked since the ASM_ASSERT macro internally used the same label. Hence, as a workaround, this patch makes the label a high number in the expectation that the caller will never use it. Also updated the other assembly macros using numerical labels to named lables. Change-Id: Iec892359db84f2391ad2a83a92141c4d7049776a
-
Achin Gupta authored
This patch reworks FVP port's power management implementation to perform platform actions only when the platform exported hook is invoked for the highest affinity level to enter/exit the OFF state. For example, during a CPU_OFF operation, fvp_affinst_off() is called twice: for affinity level 0 and affinity level 1 (in that order). CPU specific operations are deferred until the next invocation if it is determined through a call to psci_get_max_phys_off_afflvl() that this is CPU is the last in the cluster. Similarly, during power up if the CPU is the first in the cluster, both CPU and cluster specific operations are performed when fvp_affinst_on_finish() is invoked for affinity level 1. Earlier, they were done across the two invocations of the handler. Change-Id: I4288ed3ba1385db36a69cc2e598deb219f209b8a
-