1. 13 Sep, 2019 1 commit
    • Alexei Fedorov's avatar
      Refactor ARMv8.3 Pointer Authentication support code · ed108b56
      Alexei Fedorov authored
      
      
      This patch provides the following features and makes modifications
      listed below:
      - Individual APIAKey key generation for each CPU.
      - New key generation on every BL31 warm boot and TSP CPU On event.
      - Per-CPU storage of APIAKey added in percpu_data[]
        of cpu_data structure.
      - `plat_init_apiakey()` function replaced with `plat_init_apkey()`
        which returns 128-bit value and uses Generic timer physical counter
        value to increase the randomness of the generated key.
        The new function can be used for generation of all ARMv8.3-PAuth keys
      - ARMv8.3-PAuth specific code placed in `lib\extensions\pauth`.
      - New `pauth_init_enable_el1()` and `pauth_init_enable_el3()` functions
        generate, program and enable APIAKey_EL1 for EL1 and EL3 respectively;
        pauth_disable_el1()` and `pauth_disable_el3()` functions disable
        PAuth for EL1 and EL3 respectively;
        `pauth_load_bl31_apiakey()` loads saved per-CPU APIAKey_EL1 from
        cpu-data structure.
      - Combined `save_gp_pauth_registers()` function replaces calls to
        `save_gp_registers()` and `pauth_context_save()`;
        `restore_gp_pauth_registers()` replaces `pauth_context_restore()`
        and `restore_gp_registers()` calls.
      - `restore_gp_registers_eret()` function removed with corresponding
        code placed in `el3_exit()`.
      - Fixed the issue when `pauth_t pauth_ctx` structure allocated space
        for 12 uint64_t PAuth registers instead of 10 by removal of macro
        CTX_PACGAKEY_END from `include/lib/el3_runtime/aarch64/context.h`
        and assigning its value to CTX_PAUTH_REGS_END.
      - Use of MODE_SP_ELX and MODE_SP_EL0 macro definitions
        in `msr	spsel`  instruction instead of hard-coded values.
      - Changes in documentation related to ARMv8.3-PAuth and ARMv8.5-BTI.
      
      Change-Id: Id18b81cc46f52a783a7e6a09b9f149b6ce803211
      Signed-off-by: default avatarAlexei Fedorov <Alexei.Fedorov@arm.com>
      ed108b56
  2. 01 Aug, 2019 2 commits
    • Julius Werner's avatar
      Switch AARCH32/AARCH64 to __aarch64__ · 402b3cf8
      Julius Werner authored
      
      
      NOTE: AARCH32/AARCH64 macros are now deprecated in favor of __aarch64__.
      
      All common C compilers pre-define the same macros to signal which
      architecture the code is being compiled for: __arm__ for AArch32 (or
      earlier versions) and __aarch64__ for AArch64. There's no need for TF-A
      to define its own custom macros for this. In order to unify code with
      the export headers (which use __aarch64__ to avoid another dependency),
      let's deprecate the AARCH32 and AARCH64 macros and switch the code base
      over to the pre-defined standard macro. (Since it is somewhat
      unintuitive that __arm__ only means AArch32, let's standardize on only
      using __aarch64__.)
      
      Change-Id: Ic77de4b052297d77f38fc95f95f65a8ee70cf200
      Signed-off-by: default avatarJulius Werner <jwerner@chromium.org>
      402b3cf8
    • Julius Werner's avatar
      Replace __ASSEMBLY__ with compiler-builtin __ASSEMBLER__ · d5dfdeb6
      Julius Werner authored
      
      
      NOTE: __ASSEMBLY__ macro is now deprecated in favor of __ASSEMBLER__.
      
      All common C compilers predefine a macro called __ASSEMBLER__ when
      preprocessing a .S file. There is no reason for TF-A to define it's own
      __ASSEMBLY__ macro for this purpose instead. To unify code with the
      export headers (which use __ASSEMBLER__ to avoid one extra dependency),
      let's deprecate __ASSEMBLY__ and switch the code base over to the
      predefined standard.
      
      Change-Id: Id7d0ec8cf330195da80499c68562b65cb5ab7417
      Signed-off-by: default avatarJulius Werner <jwerner@chromium.org>
      d5dfdeb6
  3. 04 Jan, 2019 1 commit
    • Antonio Nino Diaz's avatar
      Sanitise includes across codebase · 09d40e0e
      Antonio Nino Diaz authored
      Enforce full include path for includes. Deprecate old paths.
      
      The following folders inside include/lib have been left unchanged:
      
      - include/lib/cpus/${ARCH}
      - include/lib/el3_runtime/${ARCH}
      
      The reason for this change is that having a global namespace for
      includes isn't a good idea. It defeats one of the advantages of having
      folders and it introduces problems that are sometimes subtle (because
      you may not know the header you are actually including if there are two
      of them).
      
      For example, this patch had to be created because two headers were
      called the same way: e0ea0928 ("Fix gpio includes of mt8173 platform
      to avoid collision."). More recently, this patch has had similar
      problems: 46f9b2c3 ("drivers: add tzc380 support").
      
      This problem was introduced in commit 4ecca339
      
       ("Move include and
      source files to logical locations"). At that time, there weren't too
      many headers so it wasn't a real issue. However, time has shown that
      this creates problems.
      
      Platforms that want to preserve the way they include headers may add the
      removed paths to PLAT_INCLUDES, but this is discouraged.
      
      Change-Id: I39dc53ed98f9e297a5966e723d1936d6ccf2fc8f
      Signed-off-by: default avatarAntonio Nino Diaz <antonio.ninodiaz@arm.com>
      09d40e0e
  4. 01 Nov, 2018 1 commit
  5. 29 Oct, 2018 1 commit
  6. 28 Feb, 2018 1 commit
  7. 13 Nov, 2017 1 commit
    • Jeenu Viswambharan's avatar
      BL31: Introduce Exception Handling Framework · 21b818c0
      Jeenu Viswambharan authored
      
      
      EHF is a framework that allows dispatching of EL3 interrupts to their
      respective handlers in EL3.
      
      This framework facilitates the firmware-first error handling policy in
      which asynchronous exceptions may be routed to EL3. Such exceptions may
      be handed over to respective exception handlers. Individual handlers
      might further delegate exception handling to lower ELs.
      
      The framework associates the delegated execution to lower ELs with a
      priority value. For interrupts, this corresponds to the priorities
      programmed in GIC; for other types of exceptions, viz. SErrors or
      Synchronous External Aborts, individual dispatchers shall explicitly
      associate delegation to a secure priority. In order to prevent lower
      priority interrupts from preempting higher priority execution, the
      framework provides helpers to control preemption by virtue of
      programming Priority Mask register in the interrupt controller.
      
      This commit allows for handling interrupts targeted at EL3. Exception
      handlers own interrupts by assigning them a range of secure priorities,
      and registering handlers for each priority range it owns.
      
      Support for exception handling in BL31 image is enabled by setting the
      build option EL3_EXCEPTION_HANDLING=1.
      
      Documentation to follow.
      
      NOTE: The framework assumes the priority scheme supported by platform
      interrupt controller is compliant with that of ARM GIC architecture (v2
      or later).
      
      Change-Id: I7224337e4cea47c6ca7d7a4ca22a3716939f7e42
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      21b818c0
  8. 31 Oct, 2017 1 commit
  9. 01 Sep, 2017 1 commit
    • Etienne Carriere's avatar
      cpu log buffer size depends on cache line size · 86606eb5
      Etienne Carriere authored
      
      
      Platform may use specific cache line sizes. Since CACHE_WRITEBACK_GRANULE
      defines the platform specific cache line size, it is used to define the
      size of the cpu data structure CPU_DATA_SIZE aligned on cache line size.
      
      Introduce assembly macro 'mov_imm' for AArch32 to simplify implementation
      of function '_cpu_data_by_index'.
      
      Change-Id: Ic2d49ffe0c3e51649425fd9c8c99559c582ac5a1
      Signed-off-by: default avatarEtienne Carriere <etienne.carriere@linaro.org>
      86606eb5
  10. 03 May, 2017 1 commit
  11. 12 Oct, 2016 1 commit
    • dp-arm's avatar
      Add PMF instrumentation points in TF · 872be88a
      dp-arm authored
      
      
      In order to quantify the overall time spent in the PSCI software
      implementation, an initial collection of PMF instrumentation points
      has been added.
      
      Instrumentation has been added to the following code paths:
      
      - Entry to PSCI SMC handler.  The timestamp is captured as early
        as possible during the runtime exception and stored in memory
        before entering the PSCI SMC handler.
      
      - Exit from PSCI SMC handler.  The timestamp is captured after
        normal return from the PSCI SMC handler or if a low power state
        was requested it is captured in the bl31 warm boot path before
        return to normal world.
      
      - Entry to low power state.  The timestamp is captured before entry
        to a low power state which implies either standby or power down.
        As these power states are mutually exclusive, only one timestamp
        is defined to describe both.  It is possible to differentiate between
        the two power states using the PSCI STAT interface.
      
      - Exit from low power state.  The timestamp is captured after a standby
        or power up operation has completed.
      
      To calculate the number of cycles spent running code in Trusted Firmware
      one can perform the following calculation:
      
      (exit_psci - enter_psci) - (exit_low_pwr - enter_low_pwr).
      
      The resulting number of cycles can be converted to time given the
      frequency of the counter.
      
      Change-Id: Ie3b8f3d16409b6703747093b3a2d5c7429ad0166
      Signed-off-by: default avatardp-arm <dimitris.papastamos@arm.com>
      872be88a
  12. 10 Aug, 2016 1 commit
    • Soby Mathew's avatar
      AArch32: Add support in TF libraries · e33b78a6
      Soby Mathew authored
      This patch adds AArch32 support to cpu ops, context management,
      per-cpu data and spinlock libraries. The `entrypoint_info`
      structure is modified to add support for AArch32 register
      arguments. The CPU operations for AEM generic cpu in AArch32
      mode is also added.
      
      Change-Id: I1e52e79f498661d8f31f1e7b3a29e222bc7a4483
      e33b78a6
  13. 18 Jul, 2016 3 commits
    • Soby Mathew's avatar
      Introduce `el3_runtime` and `PSCI` libraries · 532ed618
      Soby Mathew authored
      This patch moves the PSCI services and BL31 frameworks like context
      management and per-cpu data into new library components `PSCI` and
      `el3_runtime` respectively. This enables PSCI to be built independently from
      BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant
      PSCI library sources and gets included by `bl31.mk`. Other changes which
      are done as part of this patch are:
      
      * The runtime services framework is now moved to the `common/` folder to
        enable reuse.
      * The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture
        specific folder.
      * The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder
        to `plat/common` folder. The original file location now has a stub which
        just includes the file from new location to maintain platform compatibility.
      
      Most of the changes wouldn't affect platform builds as they just involve
      changes to the generic bl1.mk and bl31.mk makefiles.
      
      NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT
      THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR
      MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION.
      
      Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
      532ed618
    • Soby Mathew's avatar
      Fix coding guideline warnings · da554d74
      Soby Mathew authored
      This patch fixes some coding guideline warnings reported by the checkpatch
      script. Only files related to upcoming feature development have been fixed.
      
      Change-Id: I26fbce75c02ed62f00493ed6c106fe7c863ddbc5
      da554d74
    • Soby Mathew's avatar
      Rework type usage in Trusted Firmware · 4c0d0390
      Soby Mathew authored
      This patch reworks type usage in generic code, drivers and ARM platform files
      to make it more portable. The major changes done with respect to
      type usage are as listed below:
      
      * Use uintptr_t for storing address instead of uint64_t or unsigned long.
      * Review usage of unsigned long as it can no longer be assumed to be 64 bit.
      * Use u_register_t for register values whose width varies depending on
        whether AArch64 or AArch32.
      * Use generic C types where-ever possible.
      
      In addition to the above changes, this patch also modifies format specifiers
      in print invocations so that they are AArch64/AArch32 agnostic. Only files
      related to upcoming feature development have been reworked.
      
      Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
      4c0d0390
  14. 13 Aug, 2015 2 commits
    • Soby Mathew's avatar
      PSCI: Migrate TF to the new platform API and CM helpers · 85a181ce
      Soby Mathew authored
      This patch migrates the rest of Trusted Firmware excluding Secure Payload and
      the dispatchers to the new platform and context management API. The per-cpu
      data framework APIs which took MPIDRs as their arguments are deleted and only
      the ones which take core index as parameter are retained.
      
      Change-Id: I839d05ad995df34d2163a1cfed6baa768a5a595d
      85a181ce
    • Soby Mathew's avatar
      PSCI: Add framework to handle composite power states · 8ee24980
      Soby Mathew authored
      The state-id field in the power-state parameter of a CPU_SUSPEND call can be
      used to describe composite power states specific to a platform. The current PSCI
      implementation does not interpret the state-id field. It relies on the target
      power level and the state type fields in the power-state parameter to perform
      state coordination and power management operations. The framework introduced
      in this patch allows the PSCI implementation to intepret generic global states
      like RUN, RETENTION or OFF from the State-ID to make global state coordination
      decisions and reduce the complexity of platform ports. It adds support to
      involve the platform in state coordination which facilitates the use of
      composite power states and improves the support for entering standby states
      at multiple power domains.
      
      The patch also includes support for extended state-id format for the power
      state parameter as specified by PSCIv1.0.
      
      The PSCI implementation now defines a generic representation of the power-state
      parameter. It depends on the platform port to convert the power-state parameter
      (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this
      representation via the `validate_power_state()` plat_psci_ops handler. It is an
      array where each index corresponds to a power level. Each entry contains the
      local power state the power domain at that power level could enter.
      
      The meaning of the local power state values is platform defined, and may vary
      between levels in a single platform. The PSCI implementation constrains the
      values only so that it can classify the state as RUN, RETENTION or OFF as
      required by the specification:
         * zero means RUN
         * all OFF state values at all levels must be higher than all RETENTION
           state values at all levels
         * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values
           to the framework
      
      The platform also must define the macros PLAT_MAX_RET_STATE and
      PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power
      domains have been requested to enter a retention or power down state. The PSCI
      implementation does not interpret the local power states defined by the
      platform. The only constraint is that the PLAT_MAX_RET_STATE <
      PLAT_MAX_OFF_STATE.
      
      For a power domain tree, the generic implementation maintains an array of local
      power states. These are the states requested for each power domain by all the
      cores contained within the domain. During a request to place multiple power
      domains in a low power state, the platform is passed an array of requested
      power-states for each power domain through the plat_get_target_pwr_state()
      API. It coordinates amongst these states to determine a target local power
      state for the power domain. A default weak implementation of this API is
      provided in the platform layer which returns the minimum of the requested
      power-states back to the PSCI state coordination.
      
      Finally, the plat_psci_ops power management handlers are passed the target
      local power states for each affected power domain using the generic
      representation described above. The platform executes operations specific to
      these target states.
      
      The platform power management handler for placing a power domain in a standby
      state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for
      placing a core power domain into a standby or retention state should now be
      used to only place the core power domain in a standby or retention state.
      
      The extended state-id power state format can be enabled by setting the
      build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default.
      
      Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
      8ee24980
  15. 13 Mar, 2015 1 commit
    • Vikram Kanigiri's avatar
      Initialise cpu ops after enabling data cache · 12e7c4ab
      Vikram Kanigiri authored
      The cpu-ops pointer was initialized before enabling the data cache in the cold
      and warm boot paths. This required a DCIVAC cache maintenance operation to
      invalidate any stale cache lines resident in other cpus.
      
      This patch moves this initialization to the bl31_arch_setup() function
      which is always called after the data cache and MMU has been enabled.
      
      This change removes the need:
       1. for the DCIVAC cache maintenance operation.
       2. to initialise the CPU ops upon resumption from a PSCI CPU_SUSPEND
          call since memory contents are always preserved in this case.
      
      Change-Id: Ibb2fa2f7460d1a1f1e721242025e382734c204c6
      12e7c4ab
  16. 22 Jan, 2015 1 commit
    • Soby Mathew's avatar
      Move bakery algorithm implementation out of coherent memory · 8c5fe0b5
      Soby Mathew authored
      This patch moves the bakery locks out of coherent memory to normal memory.
      This implies that the lock information needs to be placed on a separate cache
      line for each cpu. Hence the bakery_lock_info_t structure is allocated in the
      per-cpu data so as to minimize memory wastage. A similar platform per-cpu
      data is introduced for the platform locks.
      
      As a result of the above changes, the bakery lock api is completely changed.
      Earlier, a reference to the lock structure was passed to the lock implementation.
      Now a unique-id (essentially an index into the per-cpu data array) and an offset
      into the per-cpu data for bakery_info_t needs to be passed to the lock
      implementation.
      
      Change-Id: I1e76216277448713c6c98b4c2de4fb54198b39e0
      8c5fe0b5
  17. 13 Jan, 2015 1 commit
    • Soby Mathew's avatar
      Invalidate the dcache after initializing cpu-ops · 09997346
      Soby Mathew authored
      This patch fixes a crash due to corruption of cpu_ops
      data structure. During the secondary CPU boot, after the
      cpu_ops has been initialized in the per cpu-data, the
      dcache lines need to invalidated so that the update in
      memory can be seen later on when the dcaches are turned ON.
      Also, after initializing the psci per cpu data, the dcache
      lines are flushed so that they are written back to memory
      and dirty dcache lines are avoided.
      
      Fixes ARM-Software/tf-issues#271
      
      Change-Id: Ia90f55e9882690ead61226eea5a5a9146d35f313
      09997346
  18. 20 Aug, 2014 1 commit
    • Soby Mathew's avatar
      Introduce framework for CPU specific operations · 9b476841
      Soby Mathew authored
      This patch introduces a framework which will allow CPUs to perform
      implementation defined actions after a CPU reset, during a CPU or cluster power
      down, and when a crash occurs. CPU specific reset handlers have been implemented
      in this patch. Other handlers will be implemented in subsequent patches.
      
      Also moved cpu_helpers.S to the new directory lib/cpus/aarch64/.
      
      Change-Id: I1ca1bade4d101d11a898fb30fea2669f9b37b956
      9b476841
  19. 19 Aug, 2014 2 commits
    • Achin Gupta's avatar
      Add PSCI service specific per-CPU data · 776b68ae
      Achin Gupta authored
      This patch adds a structure defined by the PSCI service to the per-CPU data
      array. The structure is used to save the 'power_state' parameter specified
      during a 'cpu_suspend' call on the current CPU. This parameter was being saved
      in the cpu node in the PSCI topology tree earlier.
      
      The existing API to return the state id specified during a PSCI CPU_SUSPEND call
      i.e. psci_get_suspend_stateid(mpidr) has been renamed to
      psci_get_suspend_stateid_by_mpidr(mpidr). The new psci_get_suspend_stateid() API
      returns the state id of the current cpu.
      
      The psci_get_suspend_afflvl() API has been changed to return the target affinity
      level of the current CPU. This was specified using the 'mpidr' parameter in the
      old implementation.
      
      The behaviour of the get_power_on_target_afflvl() has been tweaked such that
      traversal of the PSCI topology tree to locate the affinity instance node for the
      current CPU is done only in the debug build as it is an expensive operation.
      
      Change-Id: Iaad49db75abda471f6a82d697ee6e0df554c4caf
      776b68ae
    • Achin Gupta's avatar
      Add macro to flush per-CPU data · 04fafcee
      Achin Gupta authored
      This patch adds a macro which will flush the contents of the specified member of
      the per-CPU data structure to the PoC. This is required to enable an update of a
      per-CPU data member to be visible to all observers.
      
      Change-Id: I20e0feb9b9f345dc5a1162e88adc7956a7ad7a64
      04fafcee
  20. 28 Jul, 2014 1 commit
    • Soby Mathew's avatar
      Rework the crash reporting in BL3-1 to use less stack · 626ed510
      Soby Mathew authored
      This patch reworks the crash reporting mechanism to further
      optimise the stack and code size. The reporting makes use
      of assembly console functions to avoid calling C Runtime
      to report the CPU state. The crash buffer requirement is
      reduced to 64 bytes with this implementation. The crash
      buffer is now part of per-cpu data which makes retrieving
      the crash buffer trivial.
      
      Also now panic() will use crash reporting if
      invoked from BL3-1.
      
      Fixes ARM-software/tf-issues#199
      
      Change-Id: I79d27a4524583d723483165dc40801f45e627da5
      626ed510
  21. 16 Jun, 2014 2 commits
    • Andrew Thoelke's avatar
      Move CPU context pointers into cpu_data · aaba4f28
      Andrew Thoelke authored
      Moving the context pointers for each CPU into the per-cpu data
      allows for much more efficient access to the contexts for the
      current CPU.
      
      Change-Id: Id784e210d63cbdcddb44ac1591617ce668dbc29f
      aaba4f28
    • Andrew Thoelke's avatar
      Per-cpu data cache restructuring · 5e910074
      Andrew Thoelke authored
      This patch prepares the per-cpu pointer cache for wider use by:
      * renaming the structure to cpu_data and placing in new header
      * providing accessors for this CPU, or other CPUs
      * splitting the initialization of the TPIDR pointer from the
        initialization of the cpu_data content
      * moving the crash stack initialization to a crash stack function
      * setting the TPIDR pointer very early during boot
      
      Change-Id: Icef9004ff88f8eb241d48c14be3158087d7e49a3
      5e910074
  22. 10 Jun, 2014 1 commit
    • Andrew Thoelke's avatar
      Make system register functions inline assembly · 5c3272a7
      Andrew Thoelke authored
      Replace the current out-of-line assembler implementations of
      the system register and system instruction operations with
      inline assembler.
      
      This enables better compiler optimisation and code generation
      when accessing system registers.
      
      Fixes ARM-software/tf-issues#91
      
      Change-Id: I149af3a94e1e5e5140a3e44b9abfc37ba2324476
      5c3272a7
  23. 23 May, 2014 1 commit
  24. 06 May, 2014 2 commits
    • Dan Handley's avatar
      Refactor GIC header files · 8a4fb6f6
      Dan Handley authored
      Move the function prototypes from gic.h into either gic_v2.h or
      gic_v3.h as appropriate. Update the source files to include the
      correct headers.
      
      Change-Id: I368cfda175cdcbd3a68f46e2332738ec49048e19
      8a4fb6f6
    • Dan Handley's avatar
      Move include and source files to logical locations · 4ecca339
      Dan Handley authored
      Move almost all system include files to a logical sub-directory
      under ./include. The only remaining system include directories
      not under ./include are specific to the platform. Move the
      corresponding source files to match the include directory
      structure.
      
      Also remove pm.h as it is no longer used.
      
      Change-Id: Ie5ea6368ec5fad459f3e8a802ad129135527f0b3
      4ecca339
  25. 17 Jan, 2014 2 commits
    • Harry Liebel's avatar
      Probe for GICv3 re-distributors on core bring-up · eaec590e
      Harry Liebel authored
      The GICv3 distributor can have more ports than CPUs are available in
      the system. Probe all re-distributors and use the matching affinity
      levels as specified by each core and re-distributor to decide which
      re-distributor to use with which CPU core.
      
      If a core cannot be matched with a re-distributor, the core panics and
      is placed in an endless loop.
      
      Change-Id: Ie393cfe07c7449a2383959e3c968664882e18afc
      eaec590e
    • Dan Handley's avatar
      Update year in copyright text to 2014 · e83b0cad
      Dan Handley authored
      Change-Id: Ic7fb61aabae1d515b9e6baf3dd003807ff42da60
      e83b0cad
  26. 05 Dec, 2013 1 commit
    • Dan Handley's avatar
      Enable third party contributions · ab2d31ed
      Dan Handley authored
      - Add instructions for contributing to ARM Trusted Firmware.
      
      - Update copyright text in all files to acknowledge contributors.
      
      Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5
      ab2d31ed
  27. 27 Nov, 2013 1 commit
  28. 25 Oct, 2013 1 commit