- 02 Mar, 2016 1 commit
-
-
Antonio Nino Diaz authored
Enable alternative boot flow where BL2 does not load BL33 from non-volatile storage, and BL31 hands execution over to a preloaded BL33. The flag used to enable this bootflow is BL33_BASE, which must hold the entrypoint address of the BL33 image. The User Guide has been updated with an example of how to use this option with a bootwrapped kernel. Change-Id: I48087421a7b0636ac40dca7d457d745129da474f
-
- 22 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
`board_arm_def.h` contains multiple definitions of `PLAT_ARM_MMAP_ENTRIES` and `MAX_XLAT_TABLES` that are optimised for memory usage depending upon the chosen build configuration. To ease maintenance of these constants, this patch replaces their multiple definitions with a single set of definitions that will work on all ARM platforms. Platforms can override the defaults with optimal values by enabling the `ARM_BOARD_OPTIMISE_MMAP` build option. An example has been provided in the Juno ADP port. Additionally, `PLAT_ARM_MMAP_ENTRIES` is increased by one to accomodate future ARM platforms. Change-Id: I5ba6490fdd1e118cc9cc2d988ad7e9c38492b6f0
-
- 19 Feb, 2016 1 commit
-
-
Soby Mathew authored
The common topology description helper funtions and macros for ARM Standard platforms assumed a dual cluster system. This is not flexible enough to scale to multi cluster platforms. This patch does the following changes for more flexibility in defining topology: 1. The `plat_get_power_domain_tree_desc()` definition is moved from `arm_topology.c` to platform specific files, that is `fvp_topology.c` and `juno_topology.c`. Similarly the common definition of the porting macro `PLATFORM_CORE_COUNT` in `arm_def.h` is moved to platform specific `platform_def.h` header. 2. The ARM common layer porting macros which were dual cluster specific are now removed and a new macro PLAT_ARM_CLUSTER_COUNT is introduced which must be defined by each ARM standard platform. 3. A new mandatory ARM common layer porting API `plat_arm_get_cluster_core_count()` is introduced to enable the common implementation of `arm_check_mpidr()` to validate MPIDR. 4. For the FVP platforms, a new build option `FVP_NUM_CLUSTERS` has been introduced which allows the user to specify the cluster count to be used to build the topology tree within Trusted Firmare. This enables Trusted Firmware to be built for multi cluster FVP models. Change-Id: Ie7a2e38e5661fe2fdb2c8fdf5641d2b2614c2b6b
-
- 17 Feb, 2016 1 commit
-
-
Antonio Nino Diaz authored
The folowing build options were missing from the User Guide and have been documented: - CTX_INCLUDE_FPREGS - DISABLE_PEDANTIC - BUILD_STRING - VERSION_STRING - BUILD_MESSAGE_TIMESTAMP Change-Id: I6a9c39ff52cad8ff04deff3ac197af84d437b8b7
-
- 16 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
Current code mandates loading of SCP_BL2/SCP_BL2U images for all CSS platforms. On future ARM CSS platforms, the Application Processor (AP) might not need to load these images. So, these items can be removed from the FIP on those platforms. BL2 tries to load SCP_BL2/SCP_BL2U images if their base addresses are defined causing boot error if the images are not found in FIP. This change adds a make flag `CSS_LOAD_SCP_IMAGES` which if set to `1` does: 1. Adds SCP_BL2, SCP_BL2U images to FIP. 2. Defines the base addresses of these images so that AP loads them. And vice-versa if it is set to `0`. The default value is set to `1`. Change-Id: I5abfe22d5dc1e9d80d7809acefc87b42a462204a
-
- 05 Feb, 2016 1 commit
-
-
Antonio Nino Diaz authored
Move up to Base FVP version 7.2 (build 0.8/7202) and Foundation FVP version 9.5 (build 9.5.41) in the user guide. Change-Id: Ie9900596216808cadf45f042eec639d906e497b2
-
- 29 Jan, 2016 1 commit
-
-
Sandrine Bailleux authored
This patch reworks the section about booting an EL3 payload in the User Guide: - Centralize all EL3 payload related information in the same section. - Mention the possibility to program the EL3 payload in flash memory and execute it in place. - Provide model parameters for both the Base and Foundation FVPs. - Provide some guidance to boot an EL3 payload on Juno. Change-Id: I975c8de6b9b54ff4de01a1154cba63271d709912
-
- 20 Jan, 2016 1 commit
-
-
Juan Castillo authored
Currently, Trusted Firmware on ARM platforms unlocks access to the timer frame registers that will be used by the Non-Secure world. This unlock operation should be done by the Non-Secure software itself, instead of relying on secure firmware settings. This patch adds a new ARM specific build option 'ARM_CONFIG_CNTACR' to unlock access to the timer frame by setting the corresponding bits in the CNTACR<N> register. The frame id <N> is defined by 'PLAT_ARM_NSTIMER_FRAME_ID'. Default value is true (unlock timer access). Documentation updated accordingly. Fixes ARM-software/tf-issues#170 Change-Id: Id9d606efd781e43bc581868cd2e5f9c8905bdbf6
-
- 05 Jan, 2016 1 commit
-
-
Juan Castillo authored
The fip_create tool specifies images in the command line using the ARM TF naming convention (--bl2, --bl31, etc), while the cert_create tool uses the TBBR convention (--tb-fw, --soc-fw, etc). This double convention is confusing and should be aligned. This patch updates the fip_create command line options to follow the TBBR naming convention. Usage examples in the User Guide have been also updated. NOTE: users that build the FIP by calling the fip_create tool directly from the command line must update the command line options in their scripts. Users that build the FIP by invoking the main ARM TF Makefile should not notice any difference. Change-Id: I84d602630a2585e558d927b50dfde4dd2112496f
-
- 21 Dec, 2015 2 commits
-
-
Sandrine Bailleux authored
Change-Id: I6f49bd779f2a4d577c6443dd160290656cdbc59b
-
Dan Handley authored
Remove the following redundant sentence from the user guide, which implies the user should use the TF version from the Linaro release, which was not the intention: "However, the rest of this document assumes that you got the Trusted Firmware as part of the Linaro release." Also, tidied up the grammar in this section. Change-Id: I5dae0b68d3683e2a85a7b3c6a31222182a66f6c8
-
- 17 Dec, 2015 3 commits
-
-
Yatharth Kochar authored
This patch adds design documentation for the Firmware Update (FWU) feature in `firmware-update.md`. It provides an overview of FWU, describes the BL1 SMC interface, and includes diagrams showing an example FWU boot flow and the FWU state machine. This patch also updates the existing TF documents where needed: * `porting-guide.md` * `user-guide.md` * `firmware-design.md` * `rt-svc-writers-guide.md` * `trusted_board_boot.md` Change-Id: Ie6de31544429b18f01327bd763175e218299a4ce Co-Authored-By: Dan Handley <dan.handley@arm.com>
-
Olivier Martin authored
-
Olivier Martin authored
`FVP_TSP_RAM_LOCATION` has been renamed into `ARM_TSP_RAM_LOCATION`.
-
- 15 Dec, 2015 1 commit
-
-
Soby Mathew authored
This patch updates the relevant documentation in ARM Trusted Firmware for the new GIC drivers. The user-guide.md and porting-guide.md have been updated as follows: * The build option to compile Trusted Firmware with different GIC drivers for FVP has been explained in the user-guide.md. * The implementation details of interrupt management framework porting APIs for GICv3 have been added in porting-guide.md. * The Linaro tracking kernel release does not work OOB in GICv3 mode. The instructions for changing UEFI configuration in order to run with the new GICv3 driver in ARM TF have been added to user-guide.md. The interrupt-framework-design.md has been updated as follows: * Describes support for registering and handling interrupts targeted to EL3 e.g. Group 0 interrupts in GICv3. * Describes the build option `TSP_NS_INTR_ASYNC_PREEMPT` in detail. * Describes preemption of TSP in S-EL1 by non secure interrupts and also possibly by higher priority EL3 interrupts. * Describes the normal world sequence for issuing `standard` SMC calls. * Modifies the document to correspond to the current state of interrupt handling in TSPD and TSP. * Modifies the various functions names in the document to reflect the current names used in code. Change-Id: I78c9514b5be834f193405aad3c1752a4a9e27a6c
-
- 14 Dec, 2015 2 commits
-
-
Juan Castillo authored
This patch removes the dash character from the image name, to follow the image terminology in the Trusted Firmware Wiki page: https://github.com/ARM-software/arm-trusted-firmware/wiki Changes apply to output messages, comments and documentation. non-ARM platform files have been left unmodified. Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
-
Juan Castillo authored
This patch replaces all references to the SCP Firmware (BL0, BL30, BL3-0, bl30) with the image terminology detailed in the TF wiki (https://github.com/ARM-software/arm-trusted-firmware/wiki): BL0 --> SCP_BL1 BL30, BL3-0 --> SCP_BL2 bl30 --> scp_bl2 This change affects code, documentation, build system, tools and platform ports that load SCP firmware. ARM plaforms have been updated to the new porting API. IMPORTANT: build option to specify the SCP FW image has changed: BL30 --> SCP_BL2 IMPORTANT: This patch breaks compatibility for platforms that use BL2 to load SCP firmware. Affected platforms must be updated as follows: BL30_IMAGE_ID --> SCP_BL2_IMAGE_ID BL30_BASE --> SCP_BL2_BASE bl2_plat_get_bl30_meminfo() --> bl2_plat_get_scp_bl2_meminfo() bl2_plat_handle_bl30() --> bl2_plat_handle_scp_bl2() Change-Id: I24c4c1a4f0e4b9f17c9e4929da815c4069549e58
-
- 10 Dec, 2015 3 commits
-
-
Juan Castillo authored
The mbed TLS library has introduced some changes in the API from the 1.3.x to the 2.x releases. Using the 2.x releases requires some changes to the crypto and transport modules. This patch updates both modules to the mbed TLS 2.x API. All references to the mbed TLS library in the code or documentation have been updated to 'mbed TLS'. Old references to PolarSSL have been updated to 'mbed TLS'. User guide updated to use mbed TLS 2.2.0. NOTE: moving up to mbed TLS 2.x from 1.3.x is not backward compatible. Applying this patch will require an mbed TLS 2.x release to be used. Also note that the mbed TLS license changed to Apache version 2.0. Change-Id: Iba4584408653cf153091f2ca2ee23bc9add7fda4
-
Sandrine Bailleux authored
Move up the version numbers in the user guide of: * DS-5 (to v5.22) * Base FVP (to 7.0) * Foundation FVP (to 9.4) * Linaro release (to 15.10) Note that, starting from Linaro release 15.10, the related release instructions have migrated from http://releases.linaro.org to the ARM Connected Community website. The URLs in the User Guide have been updated accordingly. The 'libssl-dev' package has been removed from the list of prerequisite tools, as it is already referenced on the ARM Connected Community page. Also, the 'device-tree-compiler' package has been marked as an optional dependency, since the Trusted Firmware repository provides the prebuilt DTB files. Hence, this tool is needed only when the user wants to rebuild the DTS files. Change-Id: I4a172ece60bf90437131c6b96e73a9f1e9b40117
-
Juan Castillo authored
The Server Base System Architecture document (ARM-DEN-0029) specifies a generic UART device. The programmer's view of this generic UART is a subset of the ARM PL011 UART. However, the current PL011 driver in Trusted Firmware uses some features that are outside the generic UART specification. This patch modifies the PL011 driver to exclude features outside the SBSA generic UART specification by setting the boolean build option 'PL011_GENERIC_UART=1'. Default value is 0 (use full PL011 features). User guide updated. Fixes ARM-software/tf-issues#216 Change-Id: I6e0eb86f9d69569bc3980fb57e70d6da5d91a737
-
- 04 Dec, 2015 1 commit
-
-
Soby Mathew authored
On a GICv2 system, interrupts that should be handled in the secure world are typically signalled as FIQs. On a GICv3 system, these interrupts are signalled as IRQs instead. The mechanism for handling both types of interrupts is the same in both cases. This patch enables the TSP to run on a GICv3 system by: 1. adding support for handling IRQs in the exception handling code. 2. removing use of "fiq" in the names of data structures, macros and functions. The build option TSPD_ROUTE_IRQ_TO_EL3 is deprecated and is replaced with a new build flag TSP_NS_INTR_ASYNC_PREEMPT. For compatibility reasons, if the former build flag is defined, it will be used to define the value for the new build flag. The documentation is also updated accordingly. Change-Id: I1807d371f41c3656322dd259340a57649833065e
-
- 02 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch adds watchdog support on ARM platforms (FVP and Juno). A secure instance of SP805 is used as Trusted Watchdog. It is entirely managed in BL1, being enabled in the early platform setup hook and disabled in the exit hook. By default, the watchdog is enabled in every build (even when TBB is disabled). A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG` has been introduced to allow the user to disable the watchdog at build time. This feature may be used for testing or debugging purposes. Specific error handlers for Juno and FVP are also provided in this patch. These handlers will be called after an image load or authentication error. On FVP, the Table of Contents (ToC) in the FIP is erased. On Juno, the corresponding error code is stored in the V2M Non-Volatile flags register. In both cases, the CPU spins until a watchdog reset is generated after 256 seconds (as specified in the TBBR document). Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
-
- 26 Nov, 2015 5 commits
-
-
Sandrine Bailleux authored
The implications of the 'PROGRAMMABLE_RESET_ADDRESS' build option on the platform porting layer are simple enough to be described in the User Guide directly. This patch removes the reference to the Porting Guide. Change-Id: I7f753b18abd20effc4fd30836609e1fd51d9221d
-
Sandrine Bailleux authored
This patch introduces a new build option named COLD_BOOT_SINGLE_CPU, which allows platforms that only release a single CPU out of reset to slightly optimise their cold boot code, both in terms of code size and performance. COLD_BOOT_SINGLE_CPU defaults to 0, which assumes that the platform may release several CPUs out of reset. In this case, the cold reset code needs to coordinate all CPUs via the usual primary/secondary CPU distinction. If a platform guarantees that only a single CPU will ever be released out of reset, there is no need to arbitrate execution ; the notion of primary and secondary CPUs itself no longer exists. Such platforms may set COLD_BOOT_SINGLE_CPU to 1 in order to compile out the primary/secondary CPU identification in the cold reset code. All ARM standard platforms can release several CPUs out of reset so they use COLD_BOOT_SINGLE_CPU=0. However, on CSS platforms like Juno, bringing up more than one CPU at reset should only be attempted when booting an EL3 payload, as it is not fully supported in the normal boot flow. For platforms using COLD_BOOT_SINGLE_CPU=1, the following 2 platform APIs become optional: - plat_secondary_cold_boot_setup(); - plat_is_my_cpu_primary(). The Porting Guide has been updated to reflect that. User Guide updated as well. Change-Id: Ic5b474e61b7aec1377d1e0b6925d17dfc376c46b
-
Sandrine Bailleux authored
- Document the new build option EL3_PAYLOAD_BASE - Document the EL3 payload boot flow - Document the FVP model parameters to boot an EL3 payload Change-Id: Ie6535914a9a68626e4401659bee4fcfd53d4bd37
-
Sandrine Bailleux authored
This patch introduces a new build flag, SPIN_ON_BL1_EXIT, which puts an infinite loop in BL1. It is intended to help debugging the post-BL2 phase of the Trusted Firmware by stopping execution in BL1 just before handing over to BL31. At this point, the developer may take control of the target using a debugger. This feature is disabled by default and can be enabled by rebuilding BL1 with SPIN_ON_BL1_EXIT=1. User Guide updated accordingly. Change-Id: I6b6779d5949c9e5571dd371255520ef1ac39685c
-
Soby Mathew authored
The IMF_READ_INTERRUPT_ID build option enables a feature where the interrupt ID of the highest priority pending interrupt is passed as a parameter to the interrupt handler registered for that type of interrupt. This additional read of highest pending interrupt id from GIC is problematic as it is possible that the original interrupt may get deasserted and another interrupt of different type maybe become the highest pending interrupt. Hence it is safer to prevent such behaviour by removing the IMF_READ_INTERRUPT_ID build option. The `id` parameter of the interrupt handler `interrupt_type_handler_t` is now made a reserved parameter with this patch. It will always contain INTR_ID_UNAVAILABLE. Fixes ARM-software/tf-issues#307 Change-Id: I2173aae1dd37edad7ba6bdfb1a99868635fa34de
-
- 24 Nov, 2015 1 commit
-
-
Soby Mathew authored
This patch changes the build time behaviour when using deprecated API within Trusted Firmware. Previously the use of deprecated APIs would only trigger a build warning (which was always treated as a build error), when WARN_DEPRECATED = 1. Now, the use of deprecated C declarations will always trigger a build time warning. Whether this warning is treated as error or not is determined by the build flag ERROR_DEPRECATED which is disabled by default. When the build flag ERROR_DEPRECATED=1, the invocation of deprecated API or inclusion of deprecated headers will result in a build error. Also the deprecated context management helpers in context_mgmt.c are now conditionally compiled depending on the value of ERROR_DEPRECATED flag so that the APIs themselves do not result in a build error when the ERROR_DEPRECATED flag is set. NOTE: Build systems that use the macro WARN_DEPRECATED must migrate to using ERROR_DEPRECATED, otherwise deprecated API usage will no longer trigger a build error. Change-Id: I843bceef6bde979af7e9b51dddf861035ec7965a
-
- 30 Oct, 2015 1 commit
-
-
Soby Mathew authored
This patch adds instructions to the user-guide.md to test SYSTEM SUSPEND on Juno. Change-Id: Icd01d10e1c1fb14b0db880d0ff134e505f097d2b
-
- 13 Aug, 2015 4 commits
-
-
Soby Mathew authored
This patch adds the necessary documentation updates to porting_guide.md for the changes in the platform interface mandated as a result of the new PSCI Topology and power state management frameworks. It also adds a new document `platform-migration-guide.md` to aid the migration of existing platform ports to the new API. The patch fixes the implementation and callers of plat_is_my_cpu_primary() to use w0 as the return parameter as implied by the function signature rather than x0 which was used previously. Change-Id: Ic11e73019188c8ba2bd64c47e1729ff5acdcdd5b
-
Soby Mathew authored
This patch adds support to the Juno and FVP ports for composite power states with both the original and extended state-id power-state formats. Both the platform ports use the recommended state-id encoding as specified in Section 6.5 of the PSCI specification (ARM DEN 0022C). The platform build flag ARM_RECOM_STATE_ID_ENC is used to include this support. By default, to maintain backwards compatibility, the original power state parameter format is used and the state-id field is expected to be zero. Change-Id: Ie721b961957eaecaca5bf417a30952fe0627ef10
-
Soby Mathew authored
This patch defines deprecated platform APIs to enable Trusted Firmware components like Secure Payload and their dispatchers(SPD) to continue to build and run when platform compatibility is disabled. This decouples the migration of platform ports to the new platform API from SPD and enables them to be migrated independently. The deprecated platform APIs defined in this patch are : platform_get_core_pos(), platform_get_stack() and platform_set_stack(). The patch also deprecates MPIDR based context management helpers like cm_get_context_by_mpidr(), cm_set_context_by_mpidr() and cm_init_context(). A mechanism to deprecate APIs and identify callers of these APIs during build is introduced, which is controlled by the build flag WARN_DEPRECATED. If WARN_DEPRECATED is defined to 1, the users of the deprecated APIs will be flagged either as a link error for assembly files or compile time warning for C files during build. Change-Id: Ib72c7d5dc956e1a74d2294a939205b200f055613
-
Soby Mathew authored
The state-id field in the power-state parameter of a CPU_SUSPEND call can be used to describe composite power states specific to a platform. The current PSCI implementation does not interpret the state-id field. It relies on the target power level and the state type fields in the power-state parameter to perform state coordination and power management operations. The framework introduced in this patch allows the PSCI implementation to intepret generic global states like RUN, RETENTION or OFF from the State-ID to make global state coordination decisions and reduce the complexity of platform ports. It adds support to involve the platform in state coordination which facilitates the use of composite power states and improves the support for entering standby states at multiple power domains. The patch also includes support for extended state-id format for the power state parameter as specified by PSCIv1.0. The PSCI implementation now defines a generic representation of the power-state parameter. It depends on the platform port to convert the power-state parameter (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this representation via the `validate_power_state()` plat_psci_ops handler. It is an array where each index corresponds to a power level. Each entry contains the local power state the power domain at that power level could enter. The meaning of the local power state values is platform defined, and may vary between levels in a single platform. The PSCI implementation constrains the values only so that it can classify the state as RUN, RETENTION or OFF as required by the specification: * zero means RUN * all OFF state values at all levels must be higher than all RETENTION state values at all levels * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values to the framework The platform also must define the macros PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power domains have been requested to enter a retention or power down state. The PSCI implementation does not interpret the local power states defined by the platform. The only constraint is that the PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE. For a power domain tree, the generic implementation maintains an array of local power states. These are the states requested for each power domain by all the cores contained within the domain. During a request to place multiple power domains in a low power state, the platform is passed an array of requested power-states for each power domain through the plat_get_target_pwr_state() API. It coordinates amongst these states to determine a target local power state for the power domain. A default weak implementation of this API is provided in the platform layer which returns the minimum of the requested power-states back to the PSCI state coordination. Finally, the plat_psci_ops power management handlers are passed the target local power states for each affected power domain using the generic representation described above. The platform executes operations specific to these target states. The platform power management handler for placing a power domain in a standby state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for placing a core power domain into a standby or retention state should now be used to only place the core power domain in a standby or retention state. The extended state-id power state format can be enabled by setting the build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default. Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
-
- 15 Jul, 2015 1 commit
-
-
Sandrine Bailleux authored
Linaro produce monthly software releases for the Juno and AEMv8-FVP platforms. These provide an integrated set of software components that have been tested together on these platforms. From now on, it is recommend that Trusted Firmware developers use the Linaro releases (currently 15.06) as a baseline for the dependent software components: normal world firmware, Linux kernel and device tree, file system as well as any additional micro-controller firmware required by the platform. This patch updates the user guide to document this new process. It changes the instructions to get the source code of the full software stack (including Trusted Firmware) and updates the dependency build instructions to make use of the build scripts that the Linaro releases provide. Change-Id: Ia8bd043f4b74f1e1b10ef0d12cc8a56ed3c92b6e
-
- 25 Jun, 2015 4 commits
-
-
Juan Castillo authored
This patch updates the user guide, adding instructions to build the Trusted Firmware with Trusted Board Support using the new framework. It also provides documentation about the framework itself, including a detailed section about the TBBR implementation using the framework. Change-Id: I0849fce9c5294cd4f52981e7a8423007ac348ec6
-
Juan Castillo authored
This patch modifies the Trusted Board Boot implementation to use the new authentication framework, making use of the authentication module, the cryto module and the image parser module to authenticate the images in the Chain of Trust. A new function 'load_auth_image()' has been implemented. When TBB is enabled, this function will call the authentication module to authenticate parent images following the CoT up to the root of trust to finally load and authenticate the requested image. The platform is responsible for picking up the right makefiles to build the corresponding cryptographic and image parser libraries. ARM platforms use the mbedTLS based libraries. The platform may also specify what key algorithm should be used to sign the certificates. This is done by declaring the 'KEY_ALG' variable in the platform makefile. FVP and Juno use ECDSA keys. On ARM platforms, BL2 and BL1-RW regions have been increased 4KB each to accommodate the ECDSA code. REMOVED BUILD OPTIONS: * 'AUTH_MOD' Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
-
Juan Castillo authored
This patch extends the platform port by adding an API that returns either the Root of Trust public key (ROTPK) or its hash. This is usually stored in ROM or eFUSE memory. The ROTPK returned must be encoded in DER format according to the following ASN.1 structure: SubjectPublicKeyInfo ::= SEQUENCE { algorithm AlgorithmIdentifier, subjectPublicKey BIT STRING } In case the platform returns a hash of the key: DigestInfo ::= SEQUENCE { digestAlgorithm AlgorithmIdentifier, keyDigest OCTET STRING } An implementation for ARM development platforms is provided in this patch. When TBB is enabled, the ROTPK hash location must be specified using the build option 'ARM_ROTPK_LOCATION'. Available options are: - 'regs' : return the ROTPK hash stored in the Trusted root-key storage registers. - 'devel_rsa' : return a ROTPK hash embedded in the BL1 and BL2 binaries. This hash has been obtained from the development RSA public key located in 'plat/arm/board/common/rotpk'. On FVP, the number of MMU tables has been increased to map and access the ROTPK registers. A new file 'board_common.mk' has been added to improve code sharing in the ARM develelopment platforms. Change-Id: Ib25862e5507d1438da10773e62bd338da8f360bf
-
Juan Castillo authored
This patch adds a boolean build option 'SAVE_KEYS' to indicate the certificate generation tool that it must save the private keys used to establish the chain of trust. This option depends on 'CREATE_KEYS' to be enabled. Default is '0' (do not save). Because the same filenames are used as outputs to save the keys, they are no longer a dependency to the cert_tool. This dependency has been removed from the Makefile. Documentation updated accordingly. Change-Id: I67ab1c2b1f8a25793f0de95e8620ce7596a6bc3b
-
- 08 Jun, 2015 1 commit
-
-
Juan Castillo authored
The 'ARM_TSP_RAM_LOCATION_ID' option specified in the user guide corresponds to the internal definition not visible to the final user. The proper build option is 'ARM_TSP_RAM_LOCATION'. This patch fixes it. Fixes ARM-software/tf-issues#308 Change-Id: Ica8cb72c0c5e8b3503f60b5357d16698e869b1bd
-
- 04 Jun, 2015 1 commit
-
-
Sandrine Bailleux authored
This patch introduces a new platform build option, called PROGRAMMABLE_RESET_ADDRESS, which tells whether the platform has a programmable or fixed reset vector address. If the reset vector address is fixed then the code relies on the platform_get_entrypoint() mailbox mechanism to figure out where it is supposed to jump. On the other hand, if it is programmable then it is assumed that the platform code will program directly the right address into the RVBAR register (instead of using the mailbox redirection) so the mailbox is ignored in this case. Change-Id: If59c3b11fb1f692976e1d8b96c7e2da0ebfba308
-