- 26 Oct, 2018 1 commit
-
-
Chandni Cherukuri authored
Some of the SGx platforms use System Identification (SID) registers for platform identification. Add support for these registers in css. Change-Id: If00b18744a31ff2cf14338f18c8c680eb69c9027 Signed-off-by: Chandni Cherukuri <chandni.cherukuri@arm.com>
-
- 22 Aug, 2018 1 commit
-
-
Antonio Nino Diaz authored
The codebase was using non-standard headers. It is needed to replace them by the correct ones so that we can use the new libc headers. Change-Id: I530f71d9510cb036e69fe79823c8230afe890b9d Acked-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 24 Jul, 2018 1 commit
-
-
Daniel Boulby authored
Change arm_setup_page_tables() to take a variable number of memory regions. Remove coherent memory region from BL1, BL2 and BL2U as their coherent memory region doesn't contain anything and therefore has a size of 0. Add check to ensure this doesn't change without us knowing. Change-Id: I790054e3b20b056dda1043a4a67bd7ac2d6a3bc0 Signed-off-by: Daniel Boulby <daniel.boulby@arm.com>
-
- 23 Jun, 2018 1 commit
-
-
Nariman Poushin authored
This is to fix a number of Coverity Scan DEADCODE defects, CID numbers listed below, as reported from https://scan.coverity.com/projects/arm-software-arm-trusted-firmware CID 267023 CID 267022 CID 267020 Change-Id: I2963a799b210149e84ccab5c5b9082267ddfe337 Signed-off-by: Nariman Poushin <nariman.poushin@linaro.org>
-
- 07 Jun, 2018 1 commit
-
-
Soby Mathew authored
The patch changes the layout of BL images in memory to enable more efficient use of available space. Previously BL31 was loaded with the expectation that BL2 memory would be reclaimed by BL32 loaded in SRAM. But with increasing memory requirements in the firmware, we can no longer fit BL32 in SRAM anymore which means the BL2 memory is not reclaimed by any runtime image. Positioning BL2 below BL1-RW and above BL31 means that the BL31 NOBITS can be overlaid on BL2 and BL1-RW. This patch also propogates the same memory layout to BL32 for AArch32 mode. The reset addresses for the following configurations are also changed : * When RESET_TO_SP_MIN=1 for BL32 in AArch32 mode * When BL2_AT_EL3=1 for BL2 The restriction on BL31 to be only in DRAM when SPM is enabled is now removed with this change. The update to the firmware design guide for the BL memory layout is done in the following patch. Change-Id: Icca438e257abe3e4f5a8215f945b9c3f9fbf29c9 Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 11 May, 2018 2 commits
-
-
Chris Kay authored
Change-Id: I7e73c0ab134da11c49f990b739245110c59eac2b Signed-off-by: Chris Kay <chris.kay@arm.com>
-
Chris Kay authored
SGI-575's NSRAM is neither in the same place nor the same size as Juno's. Change-Id: Id6d692e9c7e9c1360014bb525eda966ebe29c823 Signed-off-by: Chris Kay <chris.kay@arm.com>
-
- 01 May, 2018 1 commit
-
-
Roberto Vargas authored
Previously mem_protect used to be only supported from BL2. This is not helpful in the case when ARM TF-A BL2 is not used. This patch demonstrates mem_protect from el3_runtime firmware on ARM Platforms specifically when RESET_TO_BL31 or RESET_TO_SP_MIN flag is set as BL2 may be absent in these cases. The Non secure DRAM is dynamically mapped into EL3 mmap tables temporarily and then the protected regions are then cleared. This avoids the need to map the non secure DRAM permanently to BL31/sp_min. The stack size is also increased, because DYNAMIC_XLAT_TABLES require a bigger stack. Change-Id: Ia44c594192ed5c5adc596c0cff2c7cc18c001fde Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
-
- 28 Feb, 2018 1 commit
-
-
Roberto Vargas authored
Rule 8.4: A compatible declaration shall be visible when an object or function with external linkage is defined Fixed for: make DEBUG=1 PLAT=juno LOG_LEVEL=50 all Change-Id: Ic8f611da734f356566e8208053296e6c62b54709 Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
-
- 16 Oct, 2017 1 commit
-
-
Jeenu Viswambharan authored
An earlier patch added provision for the platform to provide secure interrupt properties. ARM platforms already has a list of interrupts that fall into different secure groups. This patch defines macros that enumerate interrupt properties in the same fashion, and points the driver driver data to a list of interrupt properties rather than list of secure interrupts on ARM platforms. The deprecated interrupt list definitions are however retained to support legacy builds. Configuration applied to individual interrupts remain unchanged, so no runtime behaviour change expected. NOTE: Platforms that use the arm/common function plat_arm_gic_driver_init() must replace their PLAT_ARM_G1S_IRQS and PLAT_ARM_G0_IRQS macro definitions with PLAT_ARM_G1S_IRQ_PROPS and PLAT_ARM_G0_IRQ_PROPS macros respectively, using the provided INTR_PROP_DESC macro. Change-Id: I24d643b83e3333753a3ba97d4b6fb71e16bb0952 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 06 Sep, 2017 1 commit
-
-
Soby Mathew authored
This patch does the required changes to enable CSS platforms to build and use the SDS framework. Since SDS is always coupled with SCMI protocol, the preexisting SCMI build flag is now renamed to `CSS_USE_SCMI_SDS_DRIVER` which will enable both SCMI and SDS on CSS platforms. Also some of the workarounds applied for SCMI are now removed with SDS in place. Change-Id: I94e8b93f05e3fe95e475c5501c25bec052588a9c Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 20 Jul, 2017 1 commit
-
-
Soby Mathew authored
On ARM CSS platforms, the SCP_BL2/2U image is loaded below BL1 read-write data. This same memory is used to load BL31 later on. But sufficient checks were not done to ensure that the SCP_BL2 would not overwrite BL1 rw data. This patch adds the required CASSERT checks to prevent overwrite into BL1 or BL2 memory by load of SCP_BL2/2U. Also the size of BL31 is increased and SCP_BL2/2U size is decreased to accomodate it within the allocated region. Change-Id: I23b28b5e1589e91150852a06452bd52b273216ee Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 05 Jun, 2017 2 commits
-
-
Soby Mathew authored
This patch adds the memory map region for the SCMI payload memory and maps the Juno core indices to SCMI power domains via the `plat_css_core_pos_to_scmi_dmn_id_map` array. Change-Id: I0d2bb2a719ff5b6a9d8e22e91e1625ab14453665 Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
Soby Mathew authored
This patch adds the SCMI driver for communicating with SCP. The power domain management and system power management protocol of the SCMI specification[1] is implemented in the driver. The SCP power management abstraction layer for SCMI for CSS power management is also added. A new buid option `CSS_USE_SCMI_DRIVER` is introduced to select SCMI driver over SCPI. [1] ARM System Control and Management Interface v1.0 (SCMI) Document number: ARM DEN 0056A Change-Id: I67265615a17e679a2afe810b9b0043711ba09dbb Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 03 May, 2017 1 commit
-
-
dp-arm authored
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 24 Apr, 2017 1 commit
-
-
Soby Mathew authored
The CSS power management layer previously allowed to suspend system power domain level via both PSCI CPU_SUSPEND and PSCI SYSTEM_SUSPEND APIs. System suspend via PSCI CPU_SUSPEND was always problematic to support because of issues with targeting wakeup interrupts to suspended cores before the per-cpu GIC initialization is done. This is not the case for PSCI SYSTEM_SUSPEND API because all the other cores are expected to be offlined prior to issuing system suspend and PSCI CPU_ON explicit calls will be made to power them on. Hence the Juno platform used to downgrade the PSCI CPU_SUSPEND request for system power domain level to cluster level by overriding the default `plat_psci_pm_ops` exported by CSS layer. Given the direction the new CSS platforms are evolving, it is best to limit the system suspend only via PSCI SYSTEM_SUSPEND API for all CSS platforms. This patch makes changes to allow system suspend only via PSCI SYSTEM_SUSPEND API. The override of `plat_psci_ops` for Juno is removed. Change-Id: Idb30eaad04890dd46074e9e888caeedc50a4b533 Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 15 Feb, 2017 1 commit
-
-
dp-arm authored
On Juno, the secure privileged invasive debug authentication signal (SPIDEN) is controlled by board SCC registers, which by default enable SPIDEN. Disable secure privileged external debug in release builds by programming the appropriate Juno SoC registers. Change-Id: I61045f09a47dc647bbe95e1b7a60e768f5499f49 Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 14 Dec, 2016 1 commit
-
-
Yatharth Kochar authored
This patch enables TRUSTED_BOARD_BOOT (Authentication and FWU) support, for AArch64, when LOAD_IMAGE_V2 is enabled. This patch also enables LOAD_IMAGE_V2 for ARM platforms. Change-Id: I294a2eebce7a30b6784c80c9d4ac7752808ee3ad Signed-off-by: Yatharth Kochar <yatharth.kochar@arm.com>
-
- 07 Dec, 2016 1 commit
-
-
Soby Mathew authored
This patch introduces an additional layer of abstraction between CSS power management hooks and the SCPI driver. A new set of APIs are introduced in order to abstract out power management operations from underlying communication mechanism with the SCP. The SCPI and the associated MHU drivers are moved into a `drivers` folder in CSS. The new SCP communication abstraction layer is added in the `drivers/scp` folder. The existing CSS power management uses the new APIs to reflect this abstraction. Change-Id: I7d775129fc0558e9703c2724523fb8f0a916838c Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 15 Sep, 2016 1 commit
-
-
Jeenu Viswambharan authored
This patch implements CSS platform hook to support NODE_HW_STATE PSCI API. The platform hook queries SCP to obtain CSS power state. Power states returned by SCP are then converted to expected PSCI return codes. Juno's PSCI operation structure is modified to use the CSS implementation. Change-Id: I4a5edac0e5895dd77b51398cbd78f934831dafc0
-
- 14 Apr, 2016 1 commit
-
-
Gerald Lejeune authored
It is up to the platform to implement the new plat_crash_print_regs macro to report all relevant platform registers helpful for troubleshooting. plat_crash_print_regs merges or calls previously defined plat_print_gic_regs and plat_print_interconnect_regs macros for each existing platforms. NOTE: THIS COMMIT REQUIRES ALL PLATFORMS THAT ENABLE THE `CRASH_REPORTING` BUILD FLAG TO MIGRATE TO USE THE NEW `plat_crash_print_regs()` MACRO. BY DEFAULT, `CRASH_REPORTING` IS ENABLED IN DEBUG BUILDS FOR ALL PLATFORMS. Fixes: arm-software/tf-issues#373 Signed-off-by: Gerald Lejeune <gerald.lejeune@st.com>
-
- 31 Mar, 2016 1 commit
-
-
Soby Mathew authored
This patch migrates ARM Standard platforms to the refactored TZC driver. Change-Id: I2a2f60b645f73e14d8f416740c4551cec87cb1fb
-
- 18 Feb, 2016 1 commit
-
-
Juan Castillo authored
The shared memory region on ARM platforms contains the mailboxes and, on Juno, the payload area for communication with the SCP. This shared memory may be configured as normal memory or device memory at build time by setting the platform flag 'PLAT_ARM_SHARED_RAM_CACHED' (on Juno, the value of this flag is defined by 'MHU_PAYLOAD_CACHED'). When set as normal memory, the platform port performs the corresponding cache maintenance operations. From a functional point of view, this is the equivalent of setting the shared memory as device memory, so there is no need to maintain both options. This patch removes the option to specify the shared memory as normal memory on ARM platforms. Shared memory is always treated as device memory. Cache maintenance operations are no longer needed and have been replaced by data memory barriers to guarantee that payload and MHU are accessed in the right order. Change-Id: I7f958621d6a536dd4f0fa8768385eedc4295e79f
-
- 16 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
Current code mandates loading of SCP_BL2/SCP_BL2U images for all CSS platforms. On future ARM CSS platforms, the Application Processor (AP) might not need to load these images. So, these items can be removed from the FIP on those platforms. BL2 tries to load SCP_BL2/SCP_BL2U images if their base addresses are defined causing boot error if the images are not found in FIP. This change adds a make flag `CSS_LOAD_SCP_IMAGES` which if set to `1` does: 1. Adds SCP_BL2, SCP_BL2U images to FIP. 2. Defines the base addresses of these images so that AP loads them. And vice-versa if it is set to `0`. The default value is set to `1`. Change-Id: I5abfe22d5dc1e9d80d7809acefc87b42a462204a
-
- 15 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
Current code assumes `SCP_COM_SHARED_MEM_BASE` as the base address for BOM/SCPI protocol between AP<->SCP on all CSS platforms. To cater for future ARM platforms this is made platform specific. Similarly, the bit shifts of `SCP_BOOT_CONFIG_ADDR` are also made platform specific. Change-Id: Ie8866c167abf0229a37b3c72576917f085c142e8
-
- 11 Feb, 2016 2 commits
-
-
Vikram Kanigiri authored
Each ARM Compute Subsystem based platform implements a System Security Control (SSC) Registers Unit. The SSC_VERSION register inside it carries information to identify the platform. This enables ARM Trusted Firmware to compile in support for multiple ARM platforms and choose one at runtime. This patch adds macros to enable access to this register. Each platform is expected to export its PART_NUMBER separately. Additionally, it also adds juno part number. Change-Id: I2b1d5f5b65a9c7b76c6f64480cc7cf0aef019422
-
Vikram Kanigiri authored
This patch moves the definition of some macros used only on ARM platforms from common headers to platform specific headers. It also forces all ARM standard platforms to have distinct definitions (even if they are usually the same). 1. `PLAT_ARM_TZC_BASE` and `PLAT_ARM_NSTIMER_FRAME_ID` have been moved from `css_def.h` to `platform_def.h`. 2. `MHU_BASE` used in CSS platforms is moved from common css_def.h to platform specific header `platform_def.h` on Juno and renamed as `PLAT_ARM_MHU_BASE`. 3. To cater for different sizes of BL images, new macros like `PLAT_ARM_MAX_BL31_SIZE` have been created for each BL image. All ARM platforms need to define them for each image. Change-Id: I9255448bddfad734b387922aa9e68d2117338c3f
-
- 14 Dec, 2015 2 commits
-
-
Juan Castillo authored
This patch removes the dash character from the image name, to follow the image terminology in the Trusted Firmware Wiki page: https://github.com/ARM-software/arm-trusted-firmware/wiki Changes apply to output messages, comments and documentation. non-ARM platform files have been left unmodified. Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
-
Juan Castillo authored
This patch replaces all references to the SCP Firmware (BL0, BL30, BL3-0, bl30) with the image terminology detailed in the TF wiki (https://github.com/ARM-software/arm-trusted-firmware/wiki): BL0 --> SCP_BL1 BL30, BL3-0 --> SCP_BL2 bl30 --> scp_bl2 This change affects code, documentation, build system, tools and platform ports that load SCP firmware. ARM plaforms have been updated to the new porting API. IMPORTANT: build option to specify the SCP FW image has changed: BL30 --> SCP_BL2 IMPORTANT: This patch breaks compatibility for platforms that use BL2 to load SCP firmware. Affected platforms must be updated as follows: BL30_IMAGE_ID --> SCP_BL2_IMAGE_ID BL30_BASE --> SCP_BL2_BASE bl2_plat_get_bl30_meminfo() --> bl2_plat_get_scp_bl2_meminfo() bl2_plat_handle_bl30() --> bl2_plat_handle_scp_bl2() Change-Id: I24c4c1a4f0e4b9f17c9e4929da815c4069549e58
-
- 09 Dec, 2015 2 commits
-
-
Yatharth Kochar authored
This patch adds Firmware Update support for ARM platforms. New files arm_bl1_fwu.c and juno_bl1_setup.c were added to provide platform specific Firmware update code. BL1 now includes mmap entry for `ARM_MAP_NS_DRAM1` to map DRAM for authenticating NS_BL2U image(For both FVP and JUNO platform). Change-Id: Ie116cd83f5dc00aa53d904c2f1beb23d58926555
-
Achin Gupta authored
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three separate drivers instead of providing a single driver that can work on both versions of the GIC architecture. These drivers correspond to the following software use cases: 1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations e.g. GIC-400 2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features 3. A deprecated GICv3 driver that operates in legacy mode. This driver can operate only in the GICv2 mode in the secure world. On a GICv3 system, this driver allows normal world to run in either GICv3 mode (asymmetric mode) or in the GICv2 mode. Both modes of operation are deprecated on GICv3 systems. ARM platforms implement both versions of the GIC architecture. This patch adds a layer of abstraction to help ARM platform ports chose the right GIC driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been introduced to initialise the GIC and the driver during cold and warm boot. These functions are prefixed as "plat_arm_gic_". Weak definitions of these functions have been provided for each type of driver. 2. Each platform includes the sources that implement the right functions directly into the its makefile. The FVP can be instantiated with different versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option to specify which of the three drivers should be included in the build. 3. A list of secure interrupts has to be provided to initialise each of the three GIC drivers. For GIC v3.0 the interrupt ids have to be further categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two types are merged and treated as Group 0 interrupts. The two lists of interrupts are exported from the platform_def.h. The lists are constructed by adding a list of board specific interrupt ids to a list of ids common to all ARM platforms and Compute sub-systems. This patch also makes some fields of `arm_config` data structure in FVP redundant and these unused fields are removed. Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
-
- 30 Oct, 2015 1 commit
-
-
Soby Mathew authored
This patch adds the capability to power down at system power domain level on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers are modified to add support for power management operations at system power domain level. A new helper for populating `get_sys_suspend_power_state` handler in plat_psci_ops is defined. On entering the system suspend state, the SCP powers down the SYSTOP power domain on the SoC and puts the memory into retention mode. On wakeup from the power down, the system components on the CSS will be reinitialized by the platform layer and the PSCI client is responsible for restoring the context of these system components. According to PSCI Specification, interrupts targeted to cores in PSCI CPU SUSPEND should be able to resume it. On Juno, when the system power domain is suspended, the GIC is also powered down. The SCP resumes the final core to be suspend when an external wake-up event is received. But the other cores cannot be woken up by a targeted interrupt, because GIC doesn't forward these interrupts to the SCP. Due to this hardware limitation, we down-grade PSCI CPU SUSPEND requests targeted to the system power domain level to cluster power domain level in `juno_validate_power_state()` and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c. A system power domain resume helper `arm_system_pwr_domain_resume()` is defined for ARM standard platforms which resumes/re-initializes the system components on wakeup from system suspend. The security setup also needs to be done on resume from system suspend, which means `plat_arm_security_setup()` must now be included in the BL3-1 image in addition to previous BL images if system suspend need to be supported. Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
-
- 20 Oct, 2015 1 commit
-
-
Soby Mathew authored
This patch does the following reorganization to psci power management (PM) handler setup for ARM standard platform ports : 1. The mailbox programming required during `plat_setup_psci_ops()` is identical for all ARM platforms. Hence the implementation of this API is now moved to the common `arm_pm.c` file. Each ARM platform now must define the PLAT_ARM_TRUSTED_MAILBOX_BASE macro, which in current platforms is the same as ARM_SHARED_RAM_BASE. 2. The PSCI PM handler callback structure, `plat_psci_ops`, must now be exported via `plat_arm_psci_pm_ops`. This allows the common implementation of `plat_setup_psci_ops()` to return a platform specific `plat_psci_ops`. In the case of CSS platforms, a default weak implementation of the same is provided in `css_pm.c` which can be overridden by each CSS platform. 3. For CSS platforms, the PSCI PM handlers defined in `css_pm.c` are now made library functions and a new header file `css_pm.h` is added to export these generic PM handlers. This allows the platform to reuse the adequate CSS PM handlers and redefine others which need to be customized when overriding the default `plat_arm_psci_pm_ops` in `css_pm.c`. Change-Id: I277910f609e023ee5d5ff0129a80ecfce4356ede
-
- 11 Sep, 2015 2 commits
-
-
Vikram Kanigiri authored
On Juno and FVP platforms, the Non-Secure System timer corresponds to frame 1. However, this is a platform-specific decision and it shouldn't be hard-coded. Hence, this patch introduces PLAT_ARM_NSTIMER_FRAME_ID which should be used by all ARM platforms to specify the correct non-secure timer frame. Change-Id: I6c3a905d7d89200a2f58c20ce5d1e1d166832bba
-
Vikram Kanigiri authored
This patch replaces the `ARM_TZC_BASE` constant with `PLAT_ARM_TZC_BASE` to support different TrustZone Controller base addresses across ARM platforms. Change-Id: Ie4e1c7600fd7a5875323c7cc35e067de0c6ef6dd
-
- 01 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
ARM TF configures all interrupts as non-secure except those which are present in irq_sec_array. This patch updates the irq_sec_array with the missing secure interrupts for ARM platforms. It also updates the documentation to be inline with the latest implementation. Fixes ARM-software/tf-issues#312 Change-Id: I39956c56a319086e3929d1fa89030b4ec4b01fcc
-
- 13 Aug, 2015 1 commit
-
-
Sandrine Bailleux authored
Since there is a unique warm reset entry point, the FVP and Juno port can use a single mailbox instead of maintaining one per core. The mailbox gets programmed only once when plat_setup_psci_ops() is invoked during PSCI initialization. This means mailbox is not zeroed out during wakeup. Change-Id: Ieba032a90b43650f970f197340ebb0ce5548d432
-
- 09 Jun, 2015 2 commits
-
-
Sandrine Bailleux authored
For CSS based platforms, the constants MHU_SECURE_BASE and MHU_SECURE_SIZE used to define the extents of the Trusted Mailboxes. As such, they were misnamed because the mailboxes are completely unrelated to the MHU hardware. This patch removes the MHU_SECURE_BASE and MHU_SECURE_SIZE #defines. The address of the Trusted Mailboxes is now relative to the base of the Trusted SRAM. This patch also introduces a new constant, SCP_COM_SHARED_MEM_BASE, which is the address of the first memory region used for communication between AP and SCP. This is used by the BOM and SCPI protocols. Change-Id: Ib200f057b19816bf05e834d111271c3ea777291f
-
Sandrine Bailleux authored
Add a comment explaining what the SCP boot configuration information is on CSS based platforms like Juno. Also express its address relatively to the base of the Trusted SRAM rather than hard-coding it. Change-Id: I82cf708a284c8b8212933074ea8c37bdf48b403b
-
- 27 May, 2015 1 commit
-
-
Soby Mathew authored
This patch fixes the incorrect bit width used to extract the primary cpu id from `ap_data` exported by scp at SCP_BOOT_CFG_ADDR in platform_is_primary_cpu(). Change-Id: I14abb361685f31164ecce0755fc1a145903b27aa
-