- 20 Oct, 2015 1 commit
-
-
Soby Mathew authored
This patch does the following reorganization to psci power management (PM) handler setup for ARM standard platform ports : 1. The mailbox programming required during `plat_setup_psci_ops()` is identical for all ARM platforms. Hence the implementation of this API is now moved to the common `arm_pm.c` file. Each ARM platform now must define the PLAT_ARM_TRUSTED_MAILBOX_BASE macro, which in current platforms is the same as ARM_SHARED_RAM_BASE. 2. The PSCI PM handler callback structure, `plat_psci_ops`, must now be exported via `plat_arm_psci_pm_ops`. This allows the common implementation of `plat_setup_psci_ops()` to return a platform specific `plat_psci_ops`. In the case of CSS platforms, a default weak implementation of the same is provided in `css_pm.c` which can be overridden by each CSS platform. 3. For CSS platforms, the PSCI PM handlers defined in `css_pm.c` are now made library functions and a new header file `css_pm.h` is added to export these generic PM handlers. This allows the platform to reuse the adequate CSS PM handlers and redefine others which need to be customized when overriding the default `plat_arm_psci_pm_ops` in `css_pm.c`. Change-Id: I277910f609e023ee5d5ff0129a80ecfce4356ede
-
- 30 Sep, 2015 1 commit
-
-
Varun Wadekar authored
This patch adds PM handlers to TLKD for the system suspend/resume and system poweroff/reset cases. TLK expects all SMCs through a single handler, which then fork out into multiple handlers depending on the SMC. We tap into the same single entrypoint by restoring the S-EL1 context before passing the PM event via register 'x0'. On completion of the PM event, TLK sends a completion SMC and TLKD then moves on with the PM process. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
- 28 Sep, 2015 1 commit
-
-
Sandrine Bailleux authored
The generic delay timer driver expects a pointer to a timer_ops_t structure containing the specific timer driver information. It doesn't make a copy of the structure, instead it just keeps the pointer. Therefore, this pointer must remain valid over time. The SP804 driver doesn't satisfy this requirement. The sp804_timer_init() macro creates a temporary instanciation of the timer_ops_t structure on the fly and passes it to the generic delay timer. When this temporary instanciation gets deallocated, the generic delay timer is left with a pointer to invalid data. This patch fixes this bug by statically allocating the SP804 timer_ops_t structure. Change-Id: I8fbf75907583aef06701e3fd9fabe0b2c9bc95bf
-
- 14 Sep, 2015 2 commits
-
-
Achin Gupta authored
This patch adds a device driver which can be used to program the following aspects of ARM CCN IP: 1. Specify the mapping between ACE/ACELite/ACELite+DVM/CHI master interfaces and Request nodes. 2. Add and remove master interfaces from the snoop and dvm domains. 3. Place the L3 cache in a given power state. 4. Configuring system adress map and enabling 3 SN striping mode of memory controller operation. Change-Id: I0f665c6a306938e5b66f6a92f8549b529aa8f325
-
Achin Gupta authored
On the ARMv8 architecture, cache maintenance operations by set/way on the last level of integrated cache do not affect the system cache. This means that such a flush or clean operation could result in the data being pushed out to the system cache rather than main memory. Another CPU could access this data before it enables its data cache or MMU. Such accesses could be serviced from the main memory instead of the system cache. If the data in the sysem cache has not yet been flushed or evicted to main memory then there could be a loss of coherency. The only mechanism to guarantee that the main memory will be updated is to use cache maintenance operations to the PoC by MVA(See section D3.4.11 (System level caches) of ARMv8-A Reference Manual (Issue A.g/ARM DDI0487A.G). This patch removes the reliance of Trusted Firmware on the flush by set/way operation to ensure visibility of data in the main memory. Cache maintenance operations by MVA are now used instead. The following are the broad category of changes: 1. The RW areas of BL2/BL31/BL32 are invalidated by MVA before the C runtime is initialised. This ensures that any stale cache lines at any level of cache are removed. 2. Updates to global data in runtime firmware (BL31) by the primary CPU are made visible to secondary CPUs using a cache clean operation by MVA. 3. Cache maintenance by set/way operations are only used prior to power down. NOTE: NON-UPSTREAM TRUSTED FIRMWARE CODE SHOULD MAKE EQUIVALENT CHANGES IN ORDER TO FUNCTION CORRECTLY ON PLATFORMS WITH SUPPORT FOR SYSTEM CACHES. Fixes ARM-software/tf-issues#205 Change-Id: I64f1b398de0432813a0e0881d70f8337681f6e9a
-
- 11 Sep, 2015 5 commits
-
-
Vikram Kanigiri authored
This patch updates ARM platform ports to use the new unified bakery locks API. The caller does not have to use a different bakery lock API depending upon the value of the USE_COHERENT_MEM build option. NOTE: THIS PATCH CAN BE USED AS A REFERENCE TO UPDATE OTHER PLATFORM PORTS. Change-Id: I1b26afc7c9a9808a6040eb22f603d30192251da7
-
Andrew Thoelke authored
This patch unifies the bakery lock api's across coherent and normal memory implementation of locks by using same data type `bakery_lock_t` and similar arguments to functions. A separate section `bakery_lock` has been created and used to allocate memory for bakery locks using `DEFINE_BAKERY_LOCK`. When locks are allocated in normal memory, each lock for a core has to spread across multiple cache lines. By using the total size allocated in a separate cache line for a single core at compile time, the memory for other core locks is allocated at link time by multiplying the single core locks size with (PLATFORM_CORE_COUNT - 1). The normal memory lock algorithm now uses lock address instead of the `id` in the per_cpu_data. For locks allocated in coherent memory, it moves locks from tzfw_coherent_memory to bakery_lock section. The bakery locks are allocated as part of bss or in coherent memory depending on usage of coherent memory. Both these regions are initialised to zero as part of run_time_init before locks are used. Hence, bakery_lock_init() is made an empty function as the lock memory is already initialised to zero. The above design lead to the removal of psci bakery locks from non_cpu_power_pd_node to psci_locks. NOTE: THE BAKERY LOCK API WHEN USE_COHERENT_MEM IS NOT SET HAS CHANGED. THIS IS A BREAKING CHANGE FOR ALL PLATFORM PORTS THAT ALLOCATE BAKERY LOCKS IN NORMAL MEMORY. Change-Id: Ic3751c0066b8032dcbf9d88f1d4dc73d15f61d8b
-
Vikram Kanigiri authored
Currently, on ARM platforms(ex. Juno) non-secure access to specific peripheral regions, config registers which are inside and outside CSS is done in the soc_css_security_setup(). This patch separates the CSS security setup from the SOC security setup in the css_security_setup(). The CSS security setup involves programming of the internal NIC to provide access to regions inside the CSS. This is needed only in Juno, hence Juno implements it in its board files as css_init_nic400(). Change-Id: I95a1fb9f13f9b18fa8e915eb4ae2f15264f1b060
-
Vikram Kanigiri authored
On Juno and FVP platforms, the Non-Secure System timer corresponds to frame 1. However, this is a platform-specific decision and it shouldn't be hard-coded. Hence, this patch introduces PLAT_ARM_NSTIMER_FRAME_ID which should be used by all ARM platforms to specify the correct non-secure timer frame. Change-Id: I6c3a905d7d89200a2f58c20ce5d1e1d166832bba
-
Vikram Kanigiri authored
This patch replaces the `ARM_TZC_BASE` constant with `PLAT_ARM_TZC_BASE` to support different TrustZone Controller base addresses across ARM platforms. Change-Id: Ie4e1c7600fd7a5875323c7cc35e067de0c6ef6dd
-
- 10 Sep, 2015 1 commit
-
-
Achin Gupta authored
In certain Trusted OS implementations it is a requirement to pass them the highest power level which will enter a power down state during a PSCI CPU_SUSPEND or SYSTEM_SUSPEND API invocation. This patch passes this power level to the SPD in the "max_off_pwrlvl" parameter of the svc_suspend() hook. Currently, the highest power level which was requested to be placed in a low power state (retention or power down) is passed to the SPD svc_suspend_finish() hook. This hook is called after emerging from the low power state. It is more useful to pass the highest power level which was powered down instead. This patch does this by changing the semantics of the parameter passed to an SPD's svc_suspend_finish() hook. The name of the parameter has been changed from "suspend_level" to "max_off_pwrlvl" as well. Same changes have been made to the parameter passed to the tsp_cpu_resume_main() function. NOTE: THIS PATCH CHANGES THE SEMANTICS OF THE EXISTING "svc_suspend_finish()" API BETWEEN THE PSCI AND SPD/SP IMPLEMENTATIONS. THE LATTER MIGHT NEED UPDATES TO ENSURE CORRECT BEHAVIOUR. Change-Id: If3a9d39b13119bbb6281f508a91f78a2f46a8b90
-
- 02 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
BL2 loads secure runtime code(BL3-1, BL3-2) and hence it has to run in secure world otherwise BL3-1/BL3-2 have to execute from non-secure memory. Hence, This patch removes the change_security_state() call in bl1_run_bl2() and replaces it with an assert to confirm the BL2 as secure. Fixes ARM-software/tf-issues#314 Change-Id: I611b83f5c4090e58a76a2e950b0d797b46df3c29
-
- 01 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
ARM TF configures all interrupts as non-secure except those which are present in irq_sec_array. This patch updates the irq_sec_array with the missing secure interrupts for ARM platforms. It also updates the documentation to be inline with the latest implementation. Fixes ARM-software/tf-issues#312 Change-Id: I39956c56a319086e3929d1fa89030b4ec4b01fcc
-
- 24 Aug, 2015 1 commit
-
-
Varun Wadekar authored
This patch adds macros suitable for programming the Advanced SIMD/Floating-point (only Cortex-A53), CPU and L2 dynamic retention control policy in the CPUECTLR_EL1 and L2ECTLR registers. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
- 20 Aug, 2015 1 commit
-
-
Juan Castillo authored
BL3-2 image (Secure Payload) is optional. If the image cannot be loaded a warning message is printed and the boot process continues. According to the TBBR document, this behaviour should not apply in case of an authentication error, where the boot process should be aborted. This patch modifies the load_auth_image() function to distinguish between a load error and an authentication error. The caller uses the return value to abort the boot process or continue. In case of authentication error, the memory region used to store the image is wiped clean. Change-Id: I534391d526d514b2a85981c3dda00de67e0e7992
-
- 13 Aug, 2015 15 commits
-
-
Soby Mathew authored
This patch reworks the PSCI generic implementation to conform to ARM Trusted Firmware coding guidelines as described here: https://github.com/ARM-software/arm-trusted-firmware/wiki This patch also reviews the use of signed data types within PSCI Generic code and replaces them with their unsigned counterparts wherever they are not appropriate. The PSCI_INVALID_DATA macro which was defined to -1 is now replaced with PSCI_INVALID_PWR_LVL macro which is defined to PLAT_MAX_PWR_LVL + 1. Change-Id: Iaea422d0e46fc314e0b173c2b4c16e0d56b2515a
-
Soby Mathew authored
This patch adds the necessary documentation updates to porting_guide.md for the changes in the platform interface mandated as a result of the new PSCI Topology and power state management frameworks. It also adds a new document `platform-migration-guide.md` to aid the migration of existing platform ports to the new API. The patch fixes the implementation and callers of plat_is_my_cpu_primary() to use w0 as the return parameter as implied by the function signature rather than x0 which was used previously. Change-Id: Ic11e73019188c8ba2bd64c47e1729ff5acdcdd5b
-
Soby Mathew authored
This patch implements the platform power managment handler to verify non secure entrypoint for ARM platforms. The handler ensures that the entry point specified by the normal world during CPU_SUSPEND, CPU_ON or SYSTEM_SUSPEND PSCI API is a valid address within the non secure DRAM. Change-Id: I4795452df99f67a24682b22f0e0967175c1de429
-
Soby Mathew authored
As per PSCI1.0 specification, the error code to be returned when an invalid non secure entrypoint address is specified by the PSCI client for CPU_SUSPEND, CPU_ON or SYSTEM_SUSPEND must be PSCI_E_INVALID_ADDRESS. The current PSCI implementation returned PSCI_E_INVAL_PARAMS. This patch rectifies this error and also implements a common helper function to validate the entrypoint information to be used across these PSCI API implementations. Change-Id: I52d697d236c8bf0cd3297da4008c8e8c2399b170
-
Sandrine Bailleux authored
Since there is a unique warm reset entry point, the FVP and Juno port can use a single mailbox instead of maintaining one per core. The mailbox gets programmed only once when plat_setup_psci_ops() is invoked during PSCI initialization. This means mailbox is not zeroed out during wakeup. Change-Id: Ieba032a90b43650f970f197340ebb0ce5548d432
-
Soby Mathew authored
This patch adds support to the Juno and FVP ports for composite power states with both the original and extended state-id power-state formats. Both the platform ports use the recommended state-id encoding as specified in Section 6.5 of the PSCI specification (ARM DEN 0022C). The platform build flag ARM_RECOM_STATE_ID_ENC is used to include this support. By default, to maintain backwards compatibility, the original power state parameter format is used and the state-id field is expected to be zero. Change-Id: Ie721b961957eaecaca5bf417a30952fe0627ef10
-
Soby Mathew authored
This patch migrates ARM reference platforms, Juno and FVP, to the new platform API mandated by the new PSCI power domain topology and composite power state frameworks. The platform specific makefiles now exports the build flag ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer. Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
-
Soby Mathew authored
This patch migrates the rest of Trusted Firmware excluding Secure Payload and the dispatchers to the new platform and context management API. The per-cpu data framework APIs which took MPIDRs as their arguments are deleted and only the ones which take core index as parameter are retained. Change-Id: I839d05ad995df34d2163a1cfed6baa768a5a595d
-
Soby Mathew authored
This patch defines deprecated platform APIs to enable Trusted Firmware components like Secure Payload and their dispatchers(SPD) to continue to build and run when platform compatibility is disabled. This decouples the migration of platform ports to the new platform API from SPD and enables them to be migrated independently. The deprecated platform APIs defined in this patch are : platform_get_core_pos(), platform_get_stack() and platform_set_stack(). The patch also deprecates MPIDR based context management helpers like cm_get_context_by_mpidr(), cm_set_context_by_mpidr() and cm_init_context(). A mechanism to deprecate APIs and identify callers of these APIs during build is introduced, which is controlled by the build flag WARN_DEPRECATED. If WARN_DEPRECATED is defined to 1, the users of the deprecated APIs will be flagged either as a link error for assembly files or compile time warning for C files during build. Change-Id: Ib72c7d5dc956e1a74d2294a939205b200f055613
-
Soby Mathew authored
This commit does the switch to the new PSCI framework implementation replacing the existing files in PSCI folder with the ones in PSCI1.0 folder. The corresponding makefiles are modified as required for the new implementation. The platform.h header file is also is switched to the new one as required by the new frameworks. The build flag ENABLE_PLAT_COMPAT defaults to 1 to enable compatibility layer which let the existing platform ports to continue to build and run with minimal changes. The default weak implementation of platform_get_core_pos() is now removed from platform_helpers.S and is provided by the compatibility layer. Note: The Secure Payloads and their dispatchers still use the old platform and framework APIs and hence it is expected that the ENABLE_PLAT_COMPAT build flag will remain enabled in subsequent patch. The compatibility for SPDs using the older APIs on platforms migrated to the new APIs will be added in the following patch. Change-Id: I18c51b3a085b564aa05fdd98d11c9f3335712719
-
Soby Mathew authored
The new PSCI topology framework and PSCI extended State framework introduces a breaking change in the platform port APIs. To ease the migration of the platform ports to the new porting interface, a compatibility layer is introduced which essentially defines the new platform API in terms of the old API. The old PSCI helpers to retrieve the power-state, its associated fields and the highest coordinated physical OFF affinity level of a core are also implemented for compatibility. This allows the existing platform ports to work with the new PSCI framework without significant rework. This layer will be enabled by default once the switch to the new PSCI framework is done and is controlled by the build flag ENABLE_PLAT_COMPAT. Change-Id: I4b17cac3a4f3375910a36dba6b03d8f1700d07e3
-
Sandrine Bailleux authored
There used to be 2 warm reset entry points: - the "on finisher", for when the core has been turned on using a PSCI CPU_ON call; - the "suspend finisher", entered upon resumption from a previous PSCI CPU_SUSPEND call. The appropriate warm reset entry point used to be programmed into the mailboxes by the power management hooks. However, it is not required to provide this information to the PSCI entry point code, as it can figure it out by itself. By querying affinity info state, a core is able to determine on which execution path it is. If the state is ON_PENDING then it means it's been turned on else it is resuming from suspend. This patch unifies the 2 warm reset entry points into a single one: psci_entrypoint(). The patch also implements the necessary logic to distinguish between the 2 types of warm resets in the power up finisher. The plat_setup_psci_ops() API now takes the secure entry point as an additional parameter to enable the platforms to configure their mailbox. The platform hooks `pwr_domain_on` and `pwr_domain_suspend` no longer take secure entry point as a parameter. Change-Id: I7d1c93787b54213aefdbc046b8cd66a555dfbfd9
-
Soby Mathew authored
The state-id field in the power-state parameter of a CPU_SUSPEND call can be used to describe composite power states specific to a platform. The current PSCI implementation does not interpret the state-id field. It relies on the target power level and the state type fields in the power-state parameter to perform state coordination and power management operations. The framework introduced in this patch allows the PSCI implementation to intepret generic global states like RUN, RETENTION or OFF from the State-ID to make global state coordination decisions and reduce the complexity of platform ports. It adds support to involve the platform in state coordination which facilitates the use of composite power states and improves the support for entering standby states at multiple power domains. The patch also includes support for extended state-id format for the power state parameter as specified by PSCIv1.0. The PSCI implementation now defines a generic representation of the power-state parameter. It depends on the platform port to convert the power-state parameter (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this representation via the `validate_power_state()` plat_psci_ops handler. It is an array where each index corresponds to a power level. Each entry contains the local power state the power domain at that power level could enter. The meaning of the local power state values is platform defined, and may vary between levels in a single platform. The PSCI implementation constrains the values only so that it can classify the state as RUN, RETENTION or OFF as required by the specification: * zero means RUN * all OFF state values at all levels must be higher than all RETENTION state values at all levels * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values to the framework The platform also must define the macros PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power domains have been requested to enter a retention or power down state. The PSCI implementation does not interpret the local power states defined by the platform. The only constraint is that the PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE. For a power domain tree, the generic implementation maintains an array of local power states. These are the states requested for each power domain by all the cores contained within the domain. During a request to place multiple power domains in a low power state, the platform is passed an array of requested power-states for each power domain through the plat_get_target_pwr_state() API. It coordinates amongst these states to determine a target local power state for the power domain. A default weak implementation of this API is provided in the platform layer which returns the minimum of the requested power-states back to the PSCI state coordination. Finally, the plat_psci_ops power management handlers are passed the target local power states for each affected power domain using the generic representation described above. The platform executes operations specific to these target states. The platform power management handler for placing a power domain in a standby state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for placing a core power domain into a standby or retention state should now be used to only place the core power domain in a standby or retention state. The extended state-id power state format can be enabled by setting the build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default. Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
-
Soby Mathew authored
This patch removes the assumption in the current PSCI implementation that MPIDR based affinity levels map directly to levels in a power domain tree. This enables PSCI generic code to support complex power domain topologies as envisaged by PSCIv1.0 specification. The platform interface for querying the power domain topology has been changed such that: 1. The generic PSCI code does not generate MPIDRs and use them to query the platform about the number of power domains at a particular power level. The platform now provides a description of the power domain tree on the SoC through a data structure. The existing platform APIs to provide the same information have been removed. 2. The linear indices returned by plat_core_pos_by_mpidr() and plat_my_core_pos() are used to retrieve core power domain nodes from the power domain tree. Power domains above the core level are accessed using a 'parent' field in the tree node descriptors. The platform describes the power domain tree in an array of 'unsigned char's. The first entry in the array specifies the number of power domains at the highest power level implemented in the system. Each susbsequent entry corresponds to a power domain and contains the number of power domains that are its direct children. This array is exported to the generic PSCI implementation via the new `plat_get_power_domain_tree_desc()` platform API. The PSCI generic code uses this array to populate its internal power domain tree using the Breadth First Search like algorithm. The tree is split into two arrays: 1. An array that contains all the core power domain nodes 2. An array that contains all the other power domain nodes A separate array for core nodes allows certain core specific optimisations to be implemented e.g. remove the bakery lock, re-use per-cpu data framework for storing some information. Entries in the core power domain array are allocated such that the array index of the domain is equal to the linear index returned by plat_core_pos_by_mpidr() and plat_my_core_pos() for the MPIDR corresponding to that domain. This relationship is key to be able to use an MPIDR to find the corresponding core power domain node, traverse to higher power domain nodes and index into arrays that contain core specific information. An introductory document has been added to briefly describe the new interface. Change-Id: I4b444719e8e927ba391cae48a23558308447da13
-
Soby Mathew authored
This patch introduces new platform APIs and context management helper APIs to support the new topology framework based on linear core position. This framework will be introduced in the follwoing patch and it removes the assumption that the MPIDR based affinity levels map directly to levels in a power domain tree. The new platforms APIs and context management helpers based on core position are as described below: * plat_my_core_pos() and plat_core_pos_by_mpidr() These 2 new mandatory platform APIs are meant to replace the existing 'platform_get_core_pos()' API. The 'plat_my_core_pos()' API returns the linear index of the calling core and 'plat_core_pos_by_mpidr()' returns the linear index of a core specified by its MPIDR. The latter API will also validate the MPIDR passed as an argument and will return an error code (-1) if an invalid MPIDR is passed as the argument. This enables the caller to safely convert an MPIDR of another core to its linear index without querying the PSCI topology tree e.g. during a call to PSCI CPU_ON. Since the 'plat_core_pos_by_mpidr()' API verifies an MPIDR, which is always platform specific, it is no longer possible to maintain a default implementation of this API. Also it might not be possible for a platform port to verify an MPIDR before the C runtime has been setup or the topology has been initialized. This would prevent 'plat_core_pos_by_mpidr()' from being callable prior to topology setup. As a result, the generic Trusted Firmware code does not call this API before the topology setup has been done. The 'plat_my_core_pos' API should be able to run without a C runtime. Since this API needs to return a core position which is equal to the one returned by 'plat_core_pos_by_mpidr()' API for the corresponding MPIDR, this too cannot have default implementation and is a mandatory API for platform ports. These APIs will be implemented by the ARM reference platform ports later in the patch stack. * plat_get_my_stack() and plat_set_my_stack() These APIs are the stack management APIs which set/return stack addresses appropriate for the calling core. These replace the 'platform_get_stack()' and 'platform_set_stack()' APIs. A default weak MP version and a global UP version of these APIs are provided for the platforms. * Context management helpers based on linear core position A set of new context management(CM) helpers viz cm_get_context_by_index(), cm_set_context_by_index(), cm_init_my_context() and cm_init_context_by_index() are defined which are meant to replace the old helpers which took MPIDR as argument. The old CM helpers are implemented based on the new helpers to allow for code consolidation and will be deprecated once the switch to the new framework is done. Change-Id: I89758632b370c2812973a4b2efdd9b81a41f9b69
-
- 05 Aug, 2015 6 commits
-
-
Soby Mathew authored
As per Section 4.2.2. in the PSCI specification, the term "affinity" is used in the context of describing the hierarchical arrangement of cores. This often, but not always, maps directly to the processor power domain topology of the system. The current PSCI implementation assumes that this is always the case i.e. MPIDR based levels of affinity always map to levels in a power domain topology tree. This patch is the first in a series of patches which remove this assumption. It removes all occurences of the terms "affinity instances and levels" when used to describe the power domain topology. Only the terminology is changed in this patch. Subsequent patches will implement functional changes to remove the above mentioned assumption. Change-Id: Iee162f051b228828310610c5a320ff9d31009b4e
-
Soby Mathew authored
This patch optimizes the invocation of the platform power management hooks for ON, OFF and SUSPEND such that they are called only for the highest affinity level which will be powered off/on. Earlier, the hooks were being invoked for all the intermediate levels as well. This patch requires that the platforms migrate to the new semantics of the PM hooks. It also removes the `state` parameter from the pm hooks as the `afflvl` parameter now indicates the highest affinity level for which power management operations are required. Change-Id: I57c87931d8a2723aeade14acc710e5b78ac41732
-
Soby Mathew authored
This patch creates a copy of the existing PSCI files and related psci.h and platform.h header files in a new `PSCI1.0` directory. The changes for the new PSCI power domain topology and extended state-ID frameworks will be added incrementally to these files. This incremental approach will aid in review and in understanding the changes better. Once all the changes have been introduced, these files will replace the existing PSCI files. Change-Id: Ibb8a52e265daa4204e34829ed050bddd7e3316ff
-
Jimmy Huang authored
- Apply a53 errata #826319 to revision <= r0p2 - Apply a53 errata #836870 to revision <= r0p3 - Update docs/cpu-specific-build-macros.md for newly added errata build flags Change-Id: I44918e36b47dca1fa29695b68700ff9bf888865e Signed-off-by: Jimmy Huang <jimmy.huang@mediatek.com>
-
Jimmy Huang authored
- Add mmio 16 bits read/write functions. - Add clear/set/clear-and-set utility functions. Change-Id: I00fdbdf24af537424f8666b1cadaa5f77a2a46ed Signed-off-by: Jimmy Huang <jimmy.huang@mediatek.com>
-
Juan Castillo authored
If Trusted Firmware is built with optimizations disabled (-O0), the linker throws the following error: undefined reference to 'xxx' Where 'xxx' is a raw inline function defined in a header file. The reason is that, with optimizations disabled, GCC may decide to skip the inlining. If that is the case, an external definition to the compilation unit must be provided. Because no external definition is present, the linker throws the error. This patch fixes the problem by declaring the following inline functions static, so the internal definition is used: inline void soc_css_security_setup(void) inline const arm_config_t *get_arm_config(void) Change-Id: Id650d6be1b1396bdb48af1ac8a4c7900d212e95f
-
- 24 Jul, 2015 1 commit
-
-
Varun Wadekar authored
Denver is NVIDIA's own custom-designed, 64-bit, dual-core CPU which is fully ARMv8 architecture compatible. Each of the two Denver cores implements a 7-way superscalar microarchitecture (up to 7 concurrent micro-ops can be executed per clock), and includes a 128KB 4-way L1 instruction cache, a 64KB 4-way L1 data cache, and a 2MB 16-way L2 cache, which services both cores. Denver implements an innovative process called Dynamic Code Optimization, which optimizes frequently used software routines at runtime into dense, highly tuned microcode-equivalent routines. These are stored in a dedicated, 128MB main-memory-based optimization cache. After being read into the instruction cache, the optimized micro-ops are executed, re-fetched and executed from the instruction cache as long as needed and capacity allows. Effectively, this reduces the need to re-optimize the software routines. Instead of using hardware to extract the instruction-level parallelism (ILP) inherent in the code, Denver extracts the ILP once via software techniques, and then executes those routines repeatedly, thus amortizing the cost of ILP extraction over the many execution instances. Denver also features new low latency power-state transitions, in addition to extensive power-gating and dynamic voltage and clock scaling based on workloads. Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
- 09 Jul, 2015 1 commit
-
-
Juan Castillo authored
This patch changes the type of the base address parameter in the ARM device driver APIs to uintptr_t (GIC, CCI, TZC400, PL011). The uintptr_t type allows coverage of the whole memory space and to perform arithmetic operations on the addresses. ARM platform code has also been updated to use uintptr_t as GIC base address in the configuration. Fixes ARM-software/tf-issues#214 Change-Id: I1b87daedadcc8b63e8f113477979675e07d788f1
-
- 25 Jun, 2015 2 commits
-
-
Juan Castillo authored
The authentication framework deprecates plat_match_rotpk() in favour of plat_get_rotpk_info(). This patch removes plat_match_rotpk() from the platform port. Change-Id: I2250463923d3ef15496f9c39678b01ee4b33883b
-
Juan Castillo authored
This patch modifies the Trusted Board Boot implementation to use the new authentication framework, making use of the authentication module, the cryto module and the image parser module to authenticate the images in the Chain of Trust. A new function 'load_auth_image()' has been implemented. When TBB is enabled, this function will call the authentication module to authenticate parent images following the CoT up to the root of trust to finally load and authenticate the requested image. The platform is responsible for picking up the right makefiles to build the corresponding cryptographic and image parser libraries. ARM platforms use the mbedTLS based libraries. The platform may also specify what key algorithm should be used to sign the certificates. This is done by declaring the 'KEY_ALG' variable in the platform makefile. FVP and Juno use ECDSA keys. On ARM platforms, BL2 and BL1-RW regions have been increased 4KB each to accommodate the ECDSA code. REMOVED BUILD OPTIONS: * 'AUTH_MOD' Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
-