- 03 May, 2017 1 commit
-
-
dp-arm authored
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 06 Feb, 2017 1 commit
-
-
Douglas Raillard authored
Replace all use of memset by zeromem when zeroing moderately-sized structure by applying the following transformation: memset(x, 0, sizeof(x)) => zeromem(x, sizeof(x)) As the Trusted Firmware is compiled with -ffreestanding, it forbids the compiler from using __builtin_memset and forces it to generate calls to the slow memset implementation. Zeromem is a near drop in replacement for this use case, with a more efficient implementation on both AArch32 and AArch64. Change-Id: Ia7f3a90e888b96d056881be09f0b4d65b41aa79e Signed-off-by: Douglas Raillard <douglas.raillard@arm.com>
-
- 23 Jan, 2017 1 commit
-
-
Masahiro Yamada authored
One nasty part of ATF is some of boolean macros are always defined as 1 or 0, and the rest of them are only defined under certain conditions. For the former group, "#if FOO" or "#if !FOO" must be used because "#ifdef FOO" is always true. (Options passed by $(call add_define,) are the cases.) For the latter, "#ifdef FOO" or "#ifndef FOO" should be used because checking the value of an undefined macro is strange. Here, IMAGE_BL* is handled by make_helpers/build_macro.mk like follows: $(eval IMAGE := IMAGE_BL$(call uppercase,$(3))) $(OBJ): $(2) @echo " CC $$<" $$(Q)$$(CC) $$(TF_CFLAGS) $$(CFLAGS) -D$(IMAGE) -c $$< -o $$@ This means, IMAGE_BL* is defined when building the corresponding image, but *undefined* for the other images. So, IMAGE_BL* belongs to the latter group where we should use #ifdef or #ifndef. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
-
- 01 Dec, 2016 1 commit
-
-
David Cunado authored
This patch resets EL2 and EL3 registers that have architecturally UNKNOWN values on reset and that also provide EL2/EL3 configuration and trap controls. Specifically, the EL2 physical timer is disabled to prevent timer interrups into EL2 - CNTHP_CTL_EL2 and CNTHP_CTL for AArch64 and AArch32, respectively. Additionally, for AArch64, HSTR_EL2 is reset to avoid unexpected traps of non-secure access to certain system registers at EL1 or lower. For AArch32, the patch also reverts the reset to SDCR which was incorrectly added in a previous change. Change-Id: If00eaa23afa7dd36a922265194ccd6223187414f Signed-off-by: David Cunado <david.cunado@arm.com>
-
- 09 Nov, 2016 1 commit
-
-
David Cunado authored
In order to avoid unexpected traps into EL3/MON mode, this patch resets the debug registers, MDCR_EL3 and MDCR_EL2 for AArch64, and SDCR and HDCR for AArch32. MDCR_EL3/SDCR is zero'ed when EL3/MON mode is entered, at the start of BL1 and BL31/SMP_MIN. For MDCR_EL2/HDCR, this patch zero's the bits that are architecturally UNKNOWN values on reset. This is done when exiting from EL3/MON mode but only on platforms that support EL2/HYP mode but choose to exit to EL1/SVC mode. Fixes ARM-software/tf-issues#430 Change-Id: Idb992232163c072faa08892251b5626ae4c3a5b6 Signed-off-by: David Cunado <david.cunado@arm.com>
-
- 14 Oct, 2016 1 commit
-
-
Soby Mathew authored
The values of CP15BEN, nTWI & nTWE bits in SCTLR_EL1 are architecturally unknown if EL3 is AARCH64 whereas they reset to 1 if EL3 is AArch32. This might be a compatibility break for legacy AArch32 normal world software if these bits are not set to 1 when EL3 is AArch64. This patch enables the CP15BEN, nTWI and nTWE bits in the SCTLR_EL1 if the lower non-secure EL is AArch32. This unifies the SCTLR settings for lower non-secure EL in AArch32 mode for both AArch64 and AArch32 builds of Trusted Firmware. Fixes ARM-software/tf-issues#428 Change-Id: I3152d1580e4869c0ea745c5bd9da765f9c254947 Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 18 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch moves the PSCI services and BL31 frameworks like context management and per-cpu data into new library components `PSCI` and `el3_runtime` respectively. This enables PSCI to be built independently from BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant PSCI library sources and gets included by `bl31.mk`. Other changes which are done as part of this patch are: * The runtime services framework is now moved to the `common/` folder to enable reuse. * The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture specific folder. * The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder to `plat/common` folder. The original file location now has a stub which just includes the file from new location to maintain platform compatibility. Most of the changes wouldn't affect platform builds as they just involve changes to the generic bl1.mk and bl31.mk makefiles. NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION. Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
-