- 03 May, 2017 1 commit
-
-
dp-arm authored
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 23 Jan, 2017 2 commits
-
-
Masahiro Yamada authored
One nasty part of ATF is some of boolean macros are always defined as 1 or 0, and the rest of them are only defined under certain conditions. For the former group, "#if FOO" or "#if !FOO" must be used because "#ifdef FOO" is always true. (Options passed by $(call add_define,) are the cases.) For the latter, "#ifdef FOO" or "#ifndef FOO" should be used because checking the value of an undefined macro is strange. For AARCH32/AARCH64, these macros are defined in the top-level Makefile as follows: ifeq (${ARCH},aarch32) $(eval $(call add_define,AARCH32)) else $(eval $(call add_define,AARCH64)) endif This means only one of the two is defined. So, AARCH32/AARCH64 belongs to the latter group where we should use #ifdef or #ifndef. The conditionals are mostly coded correctly, but I see some mistakes. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
-
Masahiro Yamada authored
One nasty part of ATF is some of boolean macros are always defined as 1 or 0, and the rest of them are only defined under certain conditions. For the former group, "#if FOO" or "#if !FOO" must be used because "#ifdef FOO" is always true. (Options passed by $(call add_define,) are the cases.) For the latter, "#ifdef FOO" or "#ifndef FOO" should be used because checking the value of an undefined macro is strange. Here, IMAGE_BL* is handled by make_helpers/build_macro.mk like follows: $(eval IMAGE := IMAGE_BL$(call uppercase,$(3))) $(OBJ): $(2) @echo " CC $$<" $$(Q)$$(CC) $$(TF_CFLAGS) $$(CFLAGS) -D$(IMAGE) -c $$< -o $$@ This means, IMAGE_BL* is defined when building the corresponding image, but *undefined* for the other images. So, IMAGE_BL* belongs to the latter group where we should use #ifdef or #ifndef. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
-
- 15 Dec, 2016 1 commit
-
-
Jeenu Viswambharan authored
As with other ARM platform GIC APIs, these directly invoke the GICv3 driver APIs for Redistributor power management. For the sake of uniform GIC API, empty stubs are placed for those GIC drivers that lack Redistributor component. Change-Id: Iad0d760d4dbca790998f7768cda621ff3b15a864 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 10 Aug, 2016 1 commit
-
-
Soby Mathew authored
This patch adds AArch32 support for FVP and implements common platform APIs like `plat_get_my_stack`, `plat_set_my_stack`, `plat_my_core_cos` for AArch32. Only Multi Processor(MP) implementations of these functions are considered in this patch. The ARM Standard platform layer helpers are implemented for AArch32 and the common makefiles are modified to cater for both AArch64 and AArch32 builds. Compatibility with the deprecated platform API is not supported for AArch32. Change-Id: Iad228400613eec91abf731b49e21a15bcf2833ea
-
- 27 Apr, 2016 1 commit
-
-
Soby Mathew authored
This patch removes support for legacy Versatile Express memory map for the GIC peripheral in the FVP platform. The user guide is also updated for the same. Change-Id: Ib8cfb819083aca359e5b46b5757cb56cb0ea6533
-
- 09 Dec, 2015 1 commit
-
-
Achin Gupta authored
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three separate drivers instead of providing a single driver that can work on both versions of the GIC architecture. These drivers correspond to the following software use cases: 1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations e.g. GIC-400 2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features 3. A deprecated GICv3 driver that operates in legacy mode. This driver can operate only in the GICv2 mode in the secure world. On a GICv3 system, this driver allows normal world to run in either GICv3 mode (asymmetric mode) or in the GICv2 mode. Both modes of operation are deprecated on GICv3 systems. ARM platforms implement both versions of the GIC architecture. This patch adds a layer of abstraction to help ARM platform ports chose the right GIC driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been introduced to initialise the GIC and the driver during cold and warm boot. These functions are prefixed as "plat_arm_gic_". Weak definitions of these functions have been provided for each type of driver. 2. Each platform includes the sources that implement the right functions directly into the its makefile. The FVP can be instantiated with different versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option to specify which of the three drivers should be included in the build. 3. A list of secure interrupts has to be provided to initialise each of the three GIC drivers. For GIC v3.0 the interrupt ids have to be further categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two types are merged and treated as Group 0 interrupts. The two lists of interrupts are exported from the platform_def.h. The lists are constructed by adding a list of board specific interrupt ids to a list of ids common to all ARM platforms and Compute sub-systems. This patch also makes some fields of `arm_config` data structure in FVP redundant and these unused fields are removed. Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
-