- 13 Aug, 2015 2 commits
-
-
Soby Mathew authored
This patch removes the assumption in the current PSCI implementation that MPIDR based affinity levels map directly to levels in a power domain tree. This enables PSCI generic code to support complex power domain topologies as envisaged by PSCIv1.0 specification. The platform interface for querying the power domain topology has been changed such that: 1. The generic PSCI code does not generate MPIDRs and use them to query the platform about the number of power domains at a particular power level. The platform now provides a description of the power domain tree on the SoC through a data structure. The existing platform APIs to provide the same information have been removed. 2. The linear indices returned by plat_core_pos_by_mpidr() and plat_my_core_pos() are used to retrieve core power domain nodes from the power domain tree. Power domains above the core level are accessed using a 'parent' field in the tree node descriptors. The platform describes the power domain tree in an array of 'unsigned char's. The first entry in the array specifies the number of power domains at the highest power level implemented in the system. Each susbsequent entry corresponds to a power domain and contains the number of power domains that are its direct children. This array is exported to the generic PSCI implementation via the new `plat_get_power_domain_tree_desc()` platform API. The PSCI generic code uses this array to populate its internal power domain tree using the Breadth First Search like algorithm. The tree is split into two arrays: 1. An array that contains all the core power domain nodes 2. An array that contains all the other power domain nodes A separate array for core nodes allows certain core specific optimisations to be implemented e.g. remove the bakery lock, re-use per-cpu data framework for storing some information. Entries in the core power domain array are allocated such that the array index of the domain is equal to the linear index returned by plat_core_pos_by_mpidr() and plat_my_core_pos() for the MPIDR corresponding to that domain. This relationship is key to be able to use an MPIDR to find the corresponding core power domain node, traverse to higher power domain nodes and index into arrays that contain core specific information. An introductory document has been added to briefly describe the new interface. Change-Id: I4b444719e8e927ba391cae48a23558308447da13
-
Soby Mathew authored
This patch introduces new platform APIs and context management helper APIs to support the new topology framework based on linear core position. This framework will be introduced in the follwoing patch and it removes the assumption that the MPIDR based affinity levels map directly to levels in a power domain tree. The new platforms APIs and context management helpers based on core position are as described below: * plat_my_core_pos() and plat_core_pos_by_mpidr() These 2 new mandatory platform APIs are meant to replace the existing 'platform_get_core_pos()' API. The 'plat_my_core_pos()' API returns the linear index of the calling core and 'plat_core_pos_by_mpidr()' returns the linear index of a core specified by its MPIDR. The latter API will also validate the MPIDR passed as an argument and will return an error code (-1) if an invalid MPIDR is passed as the argument. This enables the caller to safely convert an MPIDR of another core to its linear index without querying the PSCI topology tree e.g. during a call to PSCI CPU_ON. Since the 'plat_core_pos_by_mpidr()' API verifies an MPIDR, which is always platform specific, it is no longer possible to maintain a default implementation of this API. Also it might not be possible for a platform port to verify an MPIDR before the C runtime has been setup or the topology has been initialized. This would prevent 'plat_core_pos_by_mpidr()' from being callable prior to topology setup. As a result, the generic Trusted Firmware code does not call this API before the topology setup has been done. The 'plat_my_core_pos' API should be able to run without a C runtime. Since this API needs to return a core position which is equal to the one returned by 'plat_core_pos_by_mpidr()' API for the corresponding MPIDR, this too cannot have default implementation and is a mandatory API for platform ports. These APIs will be implemented by the ARM reference platform ports later in the patch stack. * plat_get_my_stack() and plat_set_my_stack() These APIs are the stack management APIs which set/return stack addresses appropriate for the calling core. These replace the 'platform_get_stack()' and 'platform_set_stack()' APIs. A default weak MP version and a global UP version of these APIs are provided for the platforms. * Context management helpers based on linear core position A set of new context management(CM) helpers viz cm_get_context_by_index(), cm_set_context_by_index(), cm_init_my_context() and cm_init_context_by_index() are defined which are meant to replace the old helpers which took MPIDR as argument. The old CM helpers are implemented based on the new helpers to allow for code consolidation and will be deprecated once the switch to the new framework is done. Change-Id: I89758632b370c2812973a4b2efdd9b81a41f9b69
-
- 05 Aug, 2015 3 commits
-
-
Soby Mathew authored
As per Section 4.2.2. in the PSCI specification, the term "affinity" is used in the context of describing the hierarchical arrangement of cores. This often, but not always, maps directly to the processor power domain topology of the system. The current PSCI implementation assumes that this is always the case i.e. MPIDR based levels of affinity always map to levels in a power domain topology tree. This patch is the first in a series of patches which remove this assumption. It removes all occurences of the terms "affinity instances and levels" when used to describe the power domain topology. Only the terminology is changed in this patch. Subsequent patches will implement functional changes to remove the above mentioned assumption. Change-Id: Iee162f051b228828310610c5a320ff9d31009b4e
-
Soby Mathew authored
This patch optimizes the invocation of the platform power management hooks for ON, OFF and SUSPEND such that they are called only for the highest affinity level which will be powered off/on. Earlier, the hooks were being invoked for all the intermediate levels as well. This patch requires that the platforms migrate to the new semantics of the PM hooks. It also removes the `state` parameter from the pm hooks as the `afflvl` parameter now indicates the highest affinity level for which power management operations are required. Change-Id: I57c87931d8a2723aeade14acc710e5b78ac41732
-
Soby Mathew authored
This patch creates a copy of the existing PSCI files and related psci.h and platform.h header files in a new `PSCI1.0` directory. The changes for the new PSCI power domain topology and extended state-ID frameworks will be added incrementally to these files. This incremental approach will aid in review and in understanding the changes better. Once all the changes have been introduced, these files will replace the existing PSCI files. Change-Id: Ibb8a52e265daa4204e34829ed050bddd7e3316ff
-
- 22 Jun, 2015 1 commit
-
-
Soby Mathew authored
This patch adds support for SYSTEM_SUSPEND API as mentioned in the PSCI 1.0 specification. This API, on being invoked on the last running core on a supported platform, will put the system into a low power mode with memory retention. The psci_afflvl_suspend() internal API has been reused as most of the actions to suspend a system are the same as invoking the PSCI CPU_SUSPEND API with the target affinity level as 'system'. This API needs the 'power state' parameter for the target low power state. This parameter is not passed by the caller of the SYSTEM_SUSPEND API. Hence, the platform needs to implement the get_sys_suspend_power_state() platform function to provide this information. Also, the platform also needs to add support for suspending the system to the existing 'plat_pm_ops' functions: affinst_suspend() and affinst_suspend_finish(). Change-Id: Ib6bf10809cb4e9b92f463755608889aedd83cef5
-
- 12 Feb, 2015 1 commit
-
-
Soby Mathew authored
This patch removes the plat_get_max_afflvl() platform API and instead replaces it with a platform macro PLATFORM_MAX_AFFLVL. This is done because the maximum affinity level for a platform is a static value and it is more efficient for it to be defined as a platform macro. NOTE: PLATFORM PORTS NEED TO BE UPDATED ON MERGE OF THIS COMMIT Fixes ARM-Software/tf-issues#265 Change-Id: I31d89b30c2ccda30d28271154d869060d50df7bf
-
- 26 Jan, 2015 3 commits
-
-
Soby Mathew authored
This patch implements conditional checks in psci_smc_handler() to verify that the psci function invoked by the caller is supported by the platform or SPD implementation. The level of support is saved in the 'psci_caps' variable. This check allows the PSCI implementation to return an error early. As a result of the above verification, the checks performed within the psci handlers for the pm hooks are now removed and replaced with assertions. Change-Id: I9b5b646a01d8566dc28c4d77dd3aa54e9bf3981a
-
Soby Mathew authored
This patch implements the PSCI_FEATURES function which is a mandatory API in the PSCI 1.0 specification. A capability variable is constructed during initialization by examining the plat_pm_ops and spd_pm_ops exported by the platform and the Secure Payload Dispatcher. This is used by the PSCI FEATURES function to determine which PSCI APIs are supported by the platform. Change-Id: I147ffc1bd5d90b469bd3cc4bbe0a20e95c247df7
-
Soby Mathew authored
This patch reworks the PSCI MIGRATE, MIGRATE_INFO_TYPE and MIGRATE_INFO_UP_CPU support for Trusted Firmware. The implementation does the appropriate validation of parameters and invokes the appropriate hook exported by the SPD. The TSP is a MP Trusted OS. Hence the ability to actually migrate a Trusted OS has not been implemented. The corresponding function is not populated in the spd_pm_hooks structure for the TSPD. The `spd_pm_ops_t` has undergone changes with this patch. SPD PORTS MAY NEED TO BE UPDATED. Fixes ARM-software/tf-issues#249 Change-Id: Iabd87521bf7c530a5e4506b6d3bfd4f1bf87604f
-
- 23 Jan, 2015 4 commits
-
-
Soby Mathew authored
This patch adds support to return SUCCESS if a pending interrupt is detected during a CPU_SUSPEND call to a power down state. The check is performed as late as possible without losing the ability to return to the caller. This reduces the overhead incurred by a CPU in undergoing a complete power cycle when a wakeup interrupt is already pending. Fixes ARM-Software/tf-issues#102 Change-Id: I1aff04a74b704a2f529734428030d1d10750fd4b
-
Soby Mathew authored
This patch allows the platform to validate the power_state and entrypoint information from the normal world early on in PSCI calls so that we can return the error safely. New optional pm_ops hooks `validate_power_state` and `validate_ns_entrypoint` are introduced to do this. As a result of these changes, all the other pm_ops handlers except the PSCI_ON handler are expected to be successful. Also, the PSCI implementation will now assert if a PSCI API is invoked without the corresponding pm_ops handler being registered by the platform. NOTE : PLATFORM PORTS WILL BREAK ON MERGE OF THIS COMMIT. The pm hooks have 2 additional optional callbacks and the return type of the other hooks have changed. Fixes ARM-Software/tf-issues#229 Change-Id: I036bc0cff2349187c7b8b687b9ee0620aa7e24dc
-
Soby Mathew authored
This patch adds support to save the "power state" parameter before the affinity level specific handlers are called in a CPU_SUSPEND call. This avoids the need to pass the power_state as a parameter to the handlers and Secure Payload Dispatcher (SPD) suspend spd_pm_ops. The power_state arguments in the spd_pm_ops operations are now reserved and must not be used. The SPD can query the relevant power_state fields by using the psci_get_suspend_afflvl() & psci_get_suspend_stateid() APIs. NOTE: THIS PATCH WILL BREAK THE SPD_PM_OPS INTERFACE. HENCE THE SECURE PAYLOAD DISPATCHERS WILL NEED TO BE REWORKED TO USE THE NEW INTERFACE. Change-Id: I1293d7dc8cf29cfa6a086a009eee41bcbf2f238e
-
Soby Mathew authored
This patch replaces the internal psci_save_ns_entry() API with a psci_get_ns_ep_info() API. The new function splits the work done by the previous one such that it populates and returns an 'entry_point_info_t' structure with the information to enter the normal world upon completion of the CPU_SUSPEND or CPU_ON call. This information is used to populate the non-secure context structure separately. This allows the new internal API `psci_get_ns_ep_info` to return error and enable the code to return safely. Change-Id: Ifd87430a4a3168eac0ebac712f59c93cbad1b231
-
- 12 Dec, 2014 1 commit
-
-
Soby Mathew authored
This patch fixes the assertion failure when CPU_SUSPEND is invoked with an affinity level higher than supported by the platform by adding suitable checks for affinity level within `psci_cpu_suspend`. Also added suitable bound checks within `psci_aff_map_get_idx` to prevent indexing beyond array limits. Fixes ARM-software/tf-issues#260 Change-Id: I04b75c49729e6c6d1983add590f60146c8fc3630
-
- 19 Aug, 2014 1 commit
-
-
Juan Castillo authored
This patch adds support for SYSTEM_OFF and SYSTEM_RESET PSCI operations. A platform should export handlers to complete the requested operation. The FVP port exports fvp_system_off() and fvp_system_reset() as an example. If the SPD provides a power management hook for system off and system reset, then the SPD is notified about the corresponding operation so it can do some bookkeeping. The TSPD exports tspd_system_off() and tspd_system_reset() for that purpose. Versatile Express shutdown and reset methods have been removed from the FDT as new PSCI sys_poweroff and sys_reset services have been added. For those kernels that do not support yet these PSCI services (i.e. GICv3 kernel), the original dtsi files have been renamed to *-no_psci.dtsi. Fixes ARM-software/tf-issues#218 Change-Id: Ic8a3bf801db979099ab7029162af041c4e8330c8
-
- 19 Jul, 2014 1 commit
-
-
Achin Gupta authored
This patch uses stacks allocated in normal memory to enable the MMU early in the warm boot path thus removing the dependency on stacks allocated in coherent memory. Necessary cache and stack maintenance is performed when a cpu is being powered down and up. This avoids any coherency issues that can arise from reading speculatively fetched stale stack memory from another CPUs cache. These changes affect the warm boot path in both BL3-1 and BL3-2. The EL3 system registers responsible for preserving the MMU state are not saved and restored any longer. Static values are used to program these system registers when a cpu is powered on or resumed from suspend. Change-Id: I8357e2eb5eb6c5f448492c5094b82b8927603784
-
- 25 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
Many of the interfaces internal to PSCI pass the current CPU MPIDR_EL1 value from function to function. This is not required, and with inline access to the system registers is less efficient than requiring the code to read that register whenever required. This patch remove the mpidr parameter from the affected interfaces and reduces code in FVP BL3-1 size by 160 bytes. Change-Id: I16120a7c6944de37232016d7e109976540775602
-
- 10 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
The SMC handler for PSCI was not correctly handling calls from secure states, or from AArch32. This patch completes the handler implementation to correctly detect secure callers and to clear the top bits in parameters from AArch32 callers. The patch also reorganises the switch statement to separate SMC64 and SMC32 function IDs which allows the compiler to generate much smaller code for the function. Change-Id: I36b1ac81fb14253d257255d0477771d54fab0d11
-
- 12 May, 2014 1 commit
-
-
Achin Gupta authored
This patch fixes the broken support for entry into standby states introduced under commit-id 'd118f9f8' (tf-issues#94). Upon exit from the platform defined standby state instead of returning to the caller of the SMC, execution would get stuck in the wfi instruction meant for entering a power down state. This patch ensures that exit from a standby state and entry into a power down state do not interfere with each other. Fixes ARM-software/tf-issues#154 Change-Id: I56e5df353368e44d6eefc94ffedefe21929f5cfe
-
- 06 May, 2014 3 commits
-
-
Dan Handley authored
Reduce the number of header files included from other header files as much as possible without splitting the files. Use forward declarations where possible. This allows removal of some unnecessary "#ifndef __ASSEMBLY__" statements. Also, review the .c and .S files for which header files really need including and reorder the #include statements alphabetically. Fixes ARM-software/tf-issues#31 Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
-
Dan Handley authored
Add tag names to all unnamed structs in header files. This allows forward declaration of structs, which is necessary to reduce header file nesting (to be implemented in a subsequent commit). Also change the typedef names across the codebase to use the _t suffix to be more conformant with the Linux coding style. The coding style actually prefers us not to use typedefs at all but this is considered a step too far for Trusted Firmware. Also change the IO framework structs defintions to use typedef'd structs to be consistent with the rest of the codebase. Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
-
Dan Handley authored
Make codebase consistent in its use of #include "" syntax for user includes and #include <> syntax for system includes. Fixes ARM-software/tf-issues#65 Change-Id: If2f7c4885173b1fd05ac2cde5f1c8a07000c7a33
-
- 29 Apr, 2014 1 commit
-
-
Vikram Kanigiri authored
This patch saves the 'power_state' parameter prior to suspending a cpu and invalidates it upon its resumption. The 'affinity level' and 'state id' fields of this parameter can be read using a set of public and private apis. Validation of power state parameter is introduced which checks for SBZ bits are zero. This change also takes care of flushing the parameter from the cache to main memory. This ensures that it is available after cpu reset when the caches and mmu are turned off. The earlier support for saving only the 'affinity level' field of the 'power_state' parameter has also been reworked. Fixes ARM-Software/tf-issues#26 Fixes ARM-Software/tf-issues#130 Change-Id: Ic007ccb5e39bf01e0b67390565d3b4be33f5960a
-
- 26 Mar, 2014 1 commit
-
-
Vikram Kanigiri authored
This patch adds support in the generic PSCI implementation to call a platform specific function to enter a standby state using an example implementation in ARM FVP port Fixes ARM-software/tf-issues#94 Change-Id: Ic1263fcf25f28e09162ad29dca954125f9aa8cc9
-
- 20 Mar, 2014 1 commit
-
-
Jeenu Viswambharan authored
This patch implements ARM Standard Service as a runtime service and adds support for call count, UID and revision information SMCs. The existing PSCI implementation is subsumed by the Standard Service calls and all PSCI calls are therefore dispatched by the Standard Service to the PSCI handler. At present, PSCI is the only specification under Standard Service. Thus call count returns the number of PSCI calls implemented. As this is the initial implementation, a revision number of 0.1 is returned for call revision. Fixes ARM-software/tf-issues#62 Change-Id: I6d4273f72ad6502636efa0f872e288b191a64bc1
-
- 20 Feb, 2014 2 commits
-
-
Achin Gupta authored
This patch implements a set of handlers in the SPD which are called by the PSCI runtime service upon receiving a power management operation. These handlers in turn pass control to the Secure Payload image if required before returning control to PSCI. This ensures that the Secure Payload has complete visibility of all power transitions in the system and can prepare accordingly. Change-Id: I2d1dba5629b7cf2d53999d39fe807dfcf3f62fe2
-
Achin Gupta authored
This patch creates a 'services' directory and moves the PSCI under it. Other runtime services e.g. the Secure Payload Dispatcher service will be placed under the same directory in the future. Also fixes issue ARM-software/tf-issues#12 Change-Id: I187f83dcb660b728f82155d91882e961d2255068
-
- 17 Feb, 2014 1 commit
-
-
Jeenu Viswambharan authored
This patch uses the reworked exception handling support to handle runtime service requests through SMCs following the SMC calling convention. This is a giant commit since all the changes are inter-related. It does the following: 1. Replace the old exception handling mechanism with the new one 2. Enforce that SP_EL0 is used C runtime stacks. 3. Ensures that the cold and warm boot paths use the 'cpu_context' structure to program an ERET into the next lower EL. 4. Ensures that SP_EL3 always points to the next 'cpu_context' structure prior to an ERET into the next lower EL 5. Introduces a PSCI SMC handler which completes the use of PSCI as a runtime service Change-Id: I661797f834c0803d2c674d20f504df1b04c2b852 Co-authored-by: Achin Gupta <achin.gupta@arm.com>
-
- 20 Jan, 2014 1 commit
-
-
Achin Gupta authored
The psci implementation does not track target affinity level requests specified during cpu_suspend calls correctly as per the following example. 1. cpu0.cluster0 calls cpu_suspend with the target affinity level as 0 2. Only the cpu0.cluster0 is powered down while cluster0 remains powered up 3. cpu1.cluster0 calls cpu_off to power itself down to highest possible affinity level 4. cluster0 will be powered off even though cpu0.cluster0 does not allow cluster shutdown This patch introduces reference counts at affinity levels > 0 to track the number of cpus which want an affinity instance at level X to remain powered up. This instance can be turned off only if its reference count is 0. Cpus still undergo the normal state transitions (ON, OFF, ON_PENDING, SUSPEND) but the higher levels can only be either ON or OFF depending upon their reference count. The above issue is thus fixed as follows: 1. cluster0's reference count is incremented by two when cpu0 and cpu1 are initially powered on. 2. cpu0.cluster0 calls cpu_suspend with the target affinity level as 0. This does not affect the cluster0 reference count. 3. Only the cpu0.cluster0 is powered down while cluster0 remains powered up as it has a non-zero reference count. 4. cpu1.cluster0 call cpu_off to power itself down to highest possible affinity level. This decrements the cluster0 reference count. 5. cluster0 is still not powered off since its reference count will at least be 1 due to the restriction placed by cpu0. Change-Id: I433dfe82b946f5f6985b1602c2de87800504f7a9
-
- 17 Jan, 2014 1 commit
-
-
Dan Handley authored
Change-Id: Ic7fb61aabae1d515b9e6baf3dd003807ff42da60
-
- 05 Dec, 2013 3 commits
-
-
Achin Gupta authored
This patch performs a major rework of the psci generic implementation to achieve the following: 1. replace recursion with iteration where possible to aid code readability e.g. affinity instance states are changed iteratively instead of recursively. 2. acquire pointers to affinity instance nodes at the beginning of a psci operation. All subsequent actions use these pointers instead of calling psci_get_aff_map_node() repeatedly e.g. management of locks has been abstracted under functions which use these pointers to ensure correct ordering. Helper functions have been added to create these abstractions. 3. assertions have been added to cpu level handlers to ensure correct state transition 4. the affinity level extents specified to various functions have the same meaning i.e. start level is always less than the end level. Change-Id: If0508c3a7b20ea3ddda2a66128429382afc3dfc8
-
Achin Gupta authored
This patch: 1. removes a duplicate assertion to check that the only error condition that can be returned while turning a cpu off is PSCI_E_DENIED. Having this assertion after calling psci_afflvl_off() is sufficient. 2. corrects some incorrect usage of 'its' vs 'it is' 3. removes some unwanted white spaces Change-Id: Icf014e269b54f5be5ce0b9fbe6b41258e4ebf403
-
Dan Handley authored
- Add instructions for contributing to ARM Trusted Firmware. - Update copyright text in all files to acknowledge contributors. Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5
-
- 25 Oct, 2013 1 commit
-
-
Achin Gupta authored
-