- 28 Sep, 2018 1 commit
-
-
Roberto Vargas authored
Change-Id: I40d040aa05bcbf11536a96ce59827711456b93a8 Co-authored-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com> Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 19 Jul, 2018 3 commits
-
-
Jeenu Viswambharan authored
External Aborts while executing in EL3 is fatal in nature. This patch allows for the platform to define a handler for External Aborts received while executing in EL3. A default implementation is added which falls back to platform unhandled exception. Change-Id: I466f2c8113a33870f2c7d2d8f2bf20437d9fd354 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
Jeenu Viswambharan authored
Double fault is when the PE receives another error whilst one is being handled. To detect double fault condition, a per-CPU flag is introduced to track the status of error handling. The flag is checked/modified while temporarily masking external aborts on the PE. This patch routes double faults to a separate platform-defined handler. Change-Id: I70e9b7ba4c817273c55a0af978d9755ff32cc702 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
Jeenu Viswambharan authored
Uncontainable errors are the most severe form of errors, which typically mean that the system state can't be trusted any more. This further means that normal error recovery process can't be followed, and an orderly shutdown of the system is often desirable. This patch allows for the platform to define a handler for Uncontainable errors received. Due to the nature of Uncontainable error, the handler is expected to initiate an orderly shutdown of the system, and therefore is not expected to return. A default implementation is added which falls back to platform unhandled exception. Also fix ras_arch.h header guards. Change-Id: I072e336a391a0b382e77e627eb9e40729d488b55 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 27 Jun, 2018 1 commit
-
-
Jeenu Viswambharan authored
Having an active stack while enabling MMU has shown coherency problems. This patch builds on top of translation library changes that introduces MMU-enabling without using stacks. Previously, with HW_ASSISTED_COHERENCY, data caches were disabled while enabling MMU only because of active stack. Now that we can enable MMU without using stack, we can enable both MMU and data caches at the same time. NOTE: Since this feature depends on using translation table library v2, disallow using translation table library v1 with HW_ASSISTED_COHERENCY. Fixes ARM-software/tf-issues#566 Change-Id: Ie55aba0c23ee9c5109eb3454cb8fa45d74f8bbb2 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 15 May, 2018 1 commit
-
-
Jeenu Viswambharan authored
Change-Id: I11c12b113c4975efd3ac7ac2e8b93e6771a7e7ff Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 04 May, 2018 2 commits
-
-
Jeenu Viswambharan authored
Previous patches added frameworks for handling RAS errors. This patch introduces features that the platform can use to enumerate and iterate RAS nodes: - The REGISTER_RAS_NODES() can be used to expose an array of ras_node_info_t structures. Each ras_node_info_t describes a RAS node, along with handlers for probing the node for error, and if did record an error, another handler to handle it. - The macro for_each_ras_node() can be used to iterate over the registered RAS nodes, probe for, and handle any errors. The common platform EA handler has been amended using error handling primitives introduced by both this and previous patches. Change-Id: I2e13f65a88357bc48cd97d608db6c541fad73853 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
Jeenu Viswambharan authored
At present, any External Abort routed to EL3 is reported as an unhandled exception and cause a panic. This patch enables ARM Trusted Firmware to handle External Aborts routed to EL3. With this patch, when an External Abort is received at EL3, its handling is delegated to plat_ea_handler() function. Platforms can provide their own implementation of this function. This patch adds a weak definition of the said function that prints out a message and just panics. In order to support handling External Aborts at EL3, the build option HANDLE_EA_EL3_FIRST must be set to 1. Before this patch, HANDLE_EA_EL3_FIRST wasn't passed down to compilation; this patch fixes that too. Change-Id: I4d07b7e65eb191ff72d63b909ae9512478cd01a1 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 27 Apr, 2018 1 commit
-
-
Masahiro Yamada authored
Since commit 031dbb12 ("AArch32: Add essential Arch helpers"), it is difficult to use consistent format strings for printf() family between aarch32 and aarch64. For example, uint64_t is defined as 'unsigned long long' for aarch32 and as 'unsigned long' for aarch64. Likewise, uintptr_t is defined as 'unsigned int' for aarch32, and as 'unsigned long' for aarch64. A problem typically arises when you use printf() in common code. One solution could be, to cast the arguments to a type long enough for both architectures. For example, if 'val' is uint64_t type, like this: printf("val = %llx\n", (unsigned long long)val); Or, somebody may suggest to use a macro provided by <inttypes.h>, like this: printf("val = %" PRIx64 "\n", val); But, both would make the code ugly. The solution adopted in Linux kernel is to use the same typedefs for all architectures. The fixed integer types in the kernel-space have been unified into int-ll64, like follows: typedef signed char int8_t; typedef unsigned char uint8_t; typedef signed short int16_t; typedef unsigned short uint16_t; typedef signed int int32_t; typedef unsigned int uint32_t; typedef signed long long int64_t; typedef unsigned long long uint64_t; [ Linux commit: 0c79a8e29b5fcbcbfd611daf9d500cfad8370fcf ] This gets along with the codebase shared between 32 bit and 64 bit, with the data model called ILP32, LP64, respectively. The width for primitive types is defined as follows: ILP32 LP64 int 32 32 long 32 64 long long 64 64 pointer 32 64 'long long' is 64 bit for both, so it is used for defining uint64_t. 'long' has the same width as pointer, so for uintptr_t. We still need an ifdef conditional for (s)size_t. All 64 bit architectures use "unsigned long" size_t, and most 32 bit architectures use "unsigned int" size_t. H8/300, S/390 are known as exceptions; they use "unsigned long" size_t despite their architecture is 32 bit. One idea for simplification might be to define size_t as 'unsigned long' across architectures, then forbid the use of "%z" string format. However, this would cause a distortion between size_t and sizeof() operator. We have unknowledge about the native type of sizeof(), so we need a guess of it anyway. I want the following formula to always return 1: __builtin_types_compatible_p(size_t, typeof(sizeof(int))) Fortunately, ARM is probably a majority case. As far as I know, all 32 bit ARM compilers use "unsigned int" size_t. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
-
- 01 Mar, 2018 1 commit
-
-
Dan Handley authored
Some generic compatibility functions emit deprecated declaration warnings even when platforms do not use the deprecated functions directly. This can be confusing. Suppress these warnings by using: `#pragma GCC diagnostic ignored "-Wdeprecated-declarations"` Also emit a runtime warning if the weak plat/common implemntation of plat_get_syscnt_freq2() is used, as this implies the platform has not migrated from plat_get_syscnt_freq(). The deprecated declaration warnings only help detect when platforms are calling deprecated functions, not when they are defining deprecated functions. Fixes ARM-software/tf-issues#550 Change-Id: Id14a92279c2634c1e76db8ef210da8affdbb2a5d Signed-off-by: Dan Handley <dan.handley@arm.com>
-
- 26 Feb, 2018 1 commit
-
-
Soby Mathew authored
This patch introduces a new BL handover interface. It essentially allows passing 4 arguments between the different BL stages. Effort has been made so as to be compatible with the previous handover interface. The previous blx_early_platform_setup() platform API is now deprecated and the new blx_early_platform_setup2() variant is introduced. The weak compatiblity implementation for the new API is done in the `plat_bl_common.c` file. Some of the new arguments in the new API will be reserved for generic code use when dynamic configuration support is implemented. Otherwise the other registers are available for platform use. Change-Id: Ifddfe2ea8e32497fe1beb565cac155ad9d50d404 Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 01 Feb, 2018 1 commit
-
-
Masahiro Yamada authored
When we add a new callback, we need to duplicate fallbacks among plat/common/{aarch32,aarch64}/platform_helpers.S This is tedious. I created a new C file, then moved 3 functions: plat_error_handler bl2_plat_preload_setup plat_try_next_boot_source They are called from C, so I do not see a good reason to implement them in assembly. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
-
- 19 Jan, 2018 1 commit
-
-
Julius Werner authored
This patch expands the weak stubs for the plat_crash_console_xxx functions in common platform code to use the new console API for crash output. This should make crash console output "just work" for most cases without the need for the platform to explicitly set up a crash console. For cases where the normal console framework doesn't work (e.g. very early crashes, before the platform can register any consoles), platforms are still able to override the functions just like before. This feature requires the MULTI_CONSOLE_API compile-time flag to work. For builds which don't have it set, this patch has no practical effect. Change-Id: I80dd161cb43f9db59a0bad2dae33c6560cfac584 Signed-off-by: Julius Werner <jwerner@chromium.org>
-
- 12 Dec, 2017 1 commit
-
-
Julius Werner authored
This patch overhauls the console API to allow for multiple console instances of different drivers that are active at the same time. Instead of binding to well-known function names (like console_core_init), consoles now provide a register function (e.g. console_16550_register()) that will hook them into the list of active consoles. All console operations will be dispatched to all consoles currently in the list. The new API will be selected by the build-time option MULTI_CONSOLE_API, which defaults to ${ERROR_DEPRECATED} for now. The old console API code will be retained to stay backwards-compatible to older platforms, but should no longer be used for any newly added platforms and can hopefully be removed at some point in the future. The new console API is intended to be used for both normal (bootup) and crash use cases, freeing platforms of the need to set up the crash console separately. Consoles can be individually configured to be active active at boot (until first handoff to EL2), at runtime (after first handoff to EL2), and/or after a crash. Console drivers should set a sane default upon registration that can be overridden with the console_set_scope() call. Code to hook up the crash reporting mechanism to this framework will be added with a later patch. This patch only affects AArch64, but the new API could easily be ported to AArch32 as well if desired. Change-Id: I35c5aa2cb3f719cfddd15565eb13c7cde4162549 Signed-off-by: Julius Werner <jwerner@chromium.org>
-
- 13 Nov, 2017 1 commit
-
-
Jeenu Viswambharan authored
The implementation currently supports only interrupt-based SDEI events, and supports all interfaces as defined by SDEI specification version 1.0 [1]. Introduce the build option SDEI_SUPPORT to include SDEI dispatcher in BL31. Update user guide and porting guide. SDEI documentation to follow. [1] http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf Change-Id: I758b733084e4ea3b27ac77d0259705565842241a Co-authored-by: Yousuf A <yousuf.sait@arm.com> Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 24 Oct, 2017 1 commit
-
-
Roberto Vargas authored
These hooks are intended to allow one platform to try load images from alternative places. There is a hook to initialize the sequence of boot locations and a hook to pass to the next sequence. Change-Id: Ia0f84c415208dc4fa4f9d060d58476db23efa5b2 Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
-
- 03 May, 2017 1 commit
-
-
dp-arm authored
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 20 Apr, 2017 1 commit
-
-
Antonio Nino Diaz authored
The build option `ENABLE_ASSERTIONS` should be used instead. That way both C and ASM assertions can be enabled or disabled together. All occurrences of `ASM_ASSERTION` in common code and ARM platforms have been replaced by `ENABLE_ASSERTIONS`. ASM_ASSERTION has been removed from the user guide. Change-Id: I51f1991f11b9b7ff83e787c9a3270c274748ec6f Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 31 Mar, 2017 1 commit
-
-
Antonio Nino Diaz authored
This API makes sure that all the characters sent to the crash console are output before returning from it. Porting guide updated. Change-Id: I1785f970a40f6aacfbe592b6a911b1f249bb2735 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 20 Mar, 2017 1 commit
-
-
dp-arm authored
These source file definitions should be defined in generic Makefiles so that all platforms can benefit. Ensure that the symbols are properly marked as weak so they can be overridden by platforms. NOTE: This change is a potential compatibility break for non-upstream platforms. Change-Id: I7b892efa9f2d6d216931360dc6c436e1d10cffed Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 08 Mar, 2017 1 commit
-
-
Antonio Nino Diaz authored
The files affected by this patch don't really depend on `xlat_tables.h`. By changing the included file it becomes easier to switch between the two versions of the translation tables library. Change-Id: Idae9171c490e0865cb55883b19eaf942457c4ccc Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 24 Oct, 2016 1 commit
-
-
Masahiro Yamada authored
As described in the Porting Guide, plat_reset_handler should preserve x19 to x29. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
-
- 19 Aug, 2016 1 commit
-
-
Sandrine Bailleux authored
This patch adds a WFI instruction in the default implementations of plat_error_handler() and plat_panic_handler(). This potentially reduces power consumption by allowing the hardware to enter a low-power state. The same change has been made to the FVP and Juno platform ports. Change-Id: Ia4e6e1e5bf1ed42efbba7d0ebbad7be8d5f9f173
-
- 18 Jul, 2016 2 commits
-
-
Soby Mathew authored
This patch moves the PSCI services and BL31 frameworks like context management and per-cpu data into new library components `PSCI` and `el3_runtime` respectively. This enables PSCI to be built independently from BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant PSCI library sources and gets included by `bl31.mk`. Other changes which are done as part of this patch are: * The runtime services framework is now moved to the `common/` folder to enable reuse. * The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture specific folder. * The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder to `plat/common` folder. The original file location now has a stub which just includes the file from new location to maintain platform compatibility. Most of the changes wouldn't affect platform builds as they just involve changes to the generic bl1.mk and bl31.mk makefiles. NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION. Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
-
Soby Mathew authored
This patch reworks type usage in generic code, drivers and ARM platform files to make it more portable. The major changes done with respect to type usage are as listed below: * Use uintptr_t for storing address instead of uint64_t or unsigned long. * Review usage of unsigned long as it can no longer be assumed to be 64 bit. * Use u_register_t for register values whose width varies depending on whether AArch64 or AArch32. * Use generic C types where-ever possible. In addition to the above changes, this patch also modifies format specifiers in print invocations so that they are AArch64/AArch32 agnostic. Only files related to upcoming feature development have been reworked. Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
-
- 08 Jul, 2016 1 commit
-
-
Soby Mathew authored
The per-cpu stacks should be aligned to the cache-line size and the `declare_stack` helper in asm_macros.S macro assumed a cache-line size of 64 bytes. The platform defines the cache-line size via CACHE_WRITEBACK_GRANULE macro. This patch modifies `declare_stack` helper macro to derive stack alignment from the platform defined macro. Change-Id: I1e1b00fc8806ecc88190ed169f4c8d3dd25fe95b
-
- 20 May, 2016 1 commit
-
-
Antonio Nino Diaz authored
Added plat_get_syscnt_freq2, which is a 32 bit variant of the 64 bit plat_get_syscnt_freq. The old one has been flagged as deprecated. Common code has been updated to use this new version. Porting guide has been updated. Change-Id: I9e913544926c418970972bfe7d81ee88b4da837e
-
- 14 Mar, 2016 1 commit
-
-
Antonio Nino Diaz authored
Added a new platform porting function plat_panic_handler, to allow platforms to handle unexpected error situations. It must be implemented in assembly as it may be called before the C environment is initialized. A default implementation is provided, which simply spins. Corrected all dead loops in generic code to call this function instead. This includes the dead loop that occurs at the end of the call to panic(). All unnecesary wfis from bl32/tsp/aarch64/tsp_exceptions.S have been removed. Change-Id: I67cb85f6112fa8e77bd62f5718efcef4173d8134
-
- 09 Dec, 2015 1 commit
-
-
Soby Mathew authored
It is not ideal for BL31 to continue to use boot console at runtime which could be potentially uninitialized. This patch introduces a new optional platform porting API `bl31_plat_runtime_setup()` which allows the platform to perform any BL31 runtime setup just prior to BL31 exit during cold boot. The default weak implementation of this function will invoke `console_uninit()` which will suppress any BL31 runtime logs. On the ARM Standard platforms, there is an anomaly that the boot console will be reinitialized on resumption from system suspend in `arm_system_pwr_domain_resume()`. This will be resolved in the following patch. NOTE: The default weak definition of `bl31_plat_runtime_setup()` disables the BL31 console. To print the BL31 runtime messages, platforms must override this API and initialize a runtime console. Fixes ARM-software/tf-issues#328 Change-Id: Ibaf8346fcceb447fe1a5674094c9f8eb4c09ac4a
-
- 26 Nov, 2015 1 commit
-
-
Sandrine Bailleux authored
This patch modifies the prototype of the bl1_plat_prepare_exit() platform API to pass the address of the entry point info structure received from BL2. The structure contains information that can be useful, depending on the kind of clean up or bookkeeping operations to perform. The weak implementation of this function ignores this argument to preserve platform backwards compatibility. NOTE: THIS PATCH MAY BREAK PLATFORM PORTS THAT ARE RELYING ON THE FORMER PROTOTYPE OF THE BL1_PLAT_PREPARE_EXIT() API. Change-Id: I3fc18f637de06c85719c4ee84c85d6a4572a0fdb
-
- 28 Oct, 2015 1 commit
-
-
Juan Castillo authored
This patch adds an optional API to the platform port: void plat_error_handler(int err) __dead2; The platform error handler is called when there is a specific error condition after which Trusted Firmware cannot continue. While panic() simply prints the crash report (if enabled) and spins, the platform error handler can be used to hand control over to the platform port so it can perform specific bookeeping or post-error actions (for example, reset the system). This function must not return. The parameter indicates the type of error using standard codes from errno.h. Possible errors reported by the generic code are: -EAUTH : a certificate or image could not be authenticated (when Trusted Board Boot is enabled) -ENOENT : the requested image or certificate could not be found or an IO error was detected -ENOMEM : resources exhausted. Trusted Firmware does not use dynamic memory, so this error is usually an indication of an incorrect array size A default weak implementation of this function has been provided. It simply implements an infinite loop. Change-Id: Iffaf9eee82d037da6caa43b3aed51df555e597a3
-
- 20 Oct, 2015 1 commit
-
-
Juan Castillo authored
This patch adds an optional API to the platform port: void bl1_plat_prepare_exit(void); This function is called prior to exiting BL1 in response to the RUN_IMAGE_SMC request raised by BL2. It should be used to perform platform specific clean up or bookkeeping operations before transferring control to the next image. A weak empty definition of this function has been provided to preserve platform backwards compatibility. Change-Id: Iec09697de5c449ae84601403795cdb6aca166ba1
-
- 13 Aug, 2015 5 commits
-
-
Soby Mathew authored
This patch defines deprecated platform APIs to enable Trusted Firmware components like Secure Payload and their dispatchers(SPD) to continue to build and run when platform compatibility is disabled. This decouples the migration of platform ports to the new platform API from SPD and enables them to be migrated independently. The deprecated platform APIs defined in this patch are : platform_get_core_pos(), platform_get_stack() and platform_set_stack(). The patch also deprecates MPIDR based context management helpers like cm_get_context_by_mpidr(), cm_set_context_by_mpidr() and cm_init_context(). A mechanism to deprecate APIs and identify callers of these APIs during build is introduced, which is controlled by the build flag WARN_DEPRECATED. If WARN_DEPRECATED is defined to 1, the users of the deprecated APIs will be flagged either as a link error for assembly files or compile time warning for C files during build. Change-Id: Ib72c7d5dc956e1a74d2294a939205b200f055613
-
Soby Mathew authored
This commit does the switch to the new PSCI framework implementation replacing the existing files in PSCI folder with the ones in PSCI1.0 folder. The corresponding makefiles are modified as required for the new implementation. The platform.h header file is also is switched to the new one as required by the new frameworks. The build flag ENABLE_PLAT_COMPAT defaults to 1 to enable compatibility layer which let the existing platform ports to continue to build and run with minimal changes. The default weak implementation of platform_get_core_pos() is now removed from platform_helpers.S and is provided by the compatibility layer. Note: The Secure Payloads and their dispatchers still use the old platform and framework APIs and hence it is expected that the ENABLE_PLAT_COMPAT build flag will remain enabled in subsequent patch. The compatibility for SPDs using the older APIs on platforms migrated to the new APIs will be added in the following patch. Change-Id: I18c51b3a085b564aa05fdd98d11c9f3335712719
-
Soby Mathew authored
The new PSCI topology framework and PSCI extended State framework introduces a breaking change in the platform port APIs. To ease the migration of the platform ports to the new porting interface, a compatibility layer is introduced which essentially defines the new platform API in terms of the old API. The old PSCI helpers to retrieve the power-state, its associated fields and the highest coordinated physical OFF affinity level of a core are also implemented for compatibility. This allows the existing platform ports to work with the new PSCI framework without significant rework. This layer will be enabled by default once the switch to the new PSCI framework is done and is controlled by the build flag ENABLE_PLAT_COMPAT. Change-Id: I4b17cac3a4f3375910a36dba6b03d8f1700d07e3
-
Soby Mathew authored
The state-id field in the power-state parameter of a CPU_SUSPEND call can be used to describe composite power states specific to a platform. The current PSCI implementation does not interpret the state-id field. It relies on the target power level and the state type fields in the power-state parameter to perform state coordination and power management operations. The framework introduced in this patch allows the PSCI implementation to intepret generic global states like RUN, RETENTION or OFF from the State-ID to make global state coordination decisions and reduce the complexity of platform ports. It adds support to involve the platform in state coordination which facilitates the use of composite power states and improves the support for entering standby states at multiple power domains. The patch also includes support for extended state-id format for the power state parameter as specified by PSCIv1.0. The PSCI implementation now defines a generic representation of the power-state parameter. It depends on the platform port to convert the power-state parameter (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this representation via the `validate_power_state()` plat_psci_ops handler. It is an array where each index corresponds to a power level. Each entry contains the local power state the power domain at that power level could enter. The meaning of the local power state values is platform defined, and may vary between levels in a single platform. The PSCI implementation constrains the values only so that it can classify the state as RUN, RETENTION or OFF as required by the specification: * zero means RUN * all OFF state values at all levels must be higher than all RETENTION state values at all levels * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values to the framework The platform also must define the macros PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power domains have been requested to enter a retention or power down state. The PSCI implementation does not interpret the local power states defined by the platform. The only constraint is that the PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE. For a power domain tree, the generic implementation maintains an array of local power states. These are the states requested for each power domain by all the cores contained within the domain. During a request to place multiple power domains in a low power state, the platform is passed an array of requested power-states for each power domain through the plat_get_target_pwr_state() API. It coordinates amongst these states to determine a target local power state for the power domain. A default weak implementation of this API is provided in the platform layer which returns the minimum of the requested power-states back to the PSCI state coordination. Finally, the plat_psci_ops power management handlers are passed the target local power states for each affected power domain using the generic representation described above. The platform executes operations specific to these target states. The platform power management handler for placing a power domain in a standby state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for placing a core power domain into a standby or retention state should now be used to only place the core power domain in a standby or retention state. The extended state-id power state format can be enabled by setting the build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default. Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
-
Soby Mathew authored
This patch introduces new platform APIs and context management helper APIs to support the new topology framework based on linear core position. This framework will be introduced in the follwoing patch and it removes the assumption that the MPIDR based affinity levels map directly to levels in a power domain tree. The new platforms APIs and context management helpers based on core position are as described below: * plat_my_core_pos() and plat_core_pos_by_mpidr() These 2 new mandatory platform APIs are meant to replace the existing 'platform_get_core_pos()' API. The 'plat_my_core_pos()' API returns the linear index of the calling core and 'plat_core_pos_by_mpidr()' returns the linear index of a core specified by its MPIDR. The latter API will also validate the MPIDR passed as an argument and will return an error code (-1) if an invalid MPIDR is passed as the argument. This enables the caller to safely convert an MPIDR of another core to its linear index without querying the PSCI topology tree e.g. during a call to PSCI CPU_ON. Since the 'plat_core_pos_by_mpidr()' API verifies an MPIDR, which is always platform specific, it is no longer possible to maintain a default implementation of this API. Also it might not be possible for a platform port to verify an MPIDR before the C runtime has been setup or the topology has been initialized. This would prevent 'plat_core_pos_by_mpidr()' from being callable prior to topology setup. As a result, the generic Trusted Firmware code does not call this API before the topology setup has been done. The 'plat_my_core_pos' API should be able to run without a C runtime. Since this API needs to return a core position which is equal to the one returned by 'plat_core_pos_by_mpidr()' API for the corresponding MPIDR, this too cannot have default implementation and is a mandatory API for platform ports. These APIs will be implemented by the ARM reference platform ports later in the patch stack. * plat_get_my_stack() and plat_set_my_stack() These APIs are the stack management APIs which set/return stack addresses appropriate for the calling core. These replace the 'platform_get_stack()' and 'platform_set_stack()' APIs. A default weak MP version and a global UP version of these APIs are provided for the platforms. * Context management helpers based on linear core position A set of new context management(CM) helpers viz cm_get_context_by_index(), cm_set_context_by_index(), cm_init_my_context() and cm_init_context_by_index() are defined which are meant to replace the old helpers which took MPIDR as argument. The old CM helpers are implemented based on the new helpers to allow for code consolidation and will be deprecated once the switch to the new framework is done. Change-Id: I89758632b370c2812973a4b2efdd9b81a41f9b69
-
- 08 Apr, 2015 1 commit
-
-
Kévin Petit authored
In order for the symbol table in the ELF file to contain the size of functions written in assembly, it is necessary to report it to the assembler using the .size directive. To fulfil the above requirements, this patch introduces an 'endfunc' macro which contains the .endfunc and .size directives. It also adds a .func directive to the 'func' assembler macro. The .func/.endfunc have been used so the assembler can fail if endfunc is omitted. Fixes ARM-Software/tf-issues#295 Change-Id: If8cb331b03d7f38fe7e3694d4de26f1075b278fc Signed-off-by: Kévin Petit <kevin.petit@arm.com>
-
- 20 Aug, 2014 2 commits
-
-
Soby Mathew authored
This patch adds CPU core and cluster power down sequences to the CPU specific operations framework introduced in a earlier patch. Cortex-A53, Cortex-A57 and generic AEM sequences have been added. The latter is suitable for the Foundation and Base AEM FVPs. A pointer to each CPU's operations structure is saved in the per-cpu data so that it can be easily accessed during power down seqeunces. An optional platform API has been introduced to allow a platform to disable the Accelerator Coherency Port (ACP) during a cluster power down sequence. The weak definition of this function (plat_disable_acp()) does not take any action. It should be overriden with a strong definition if the ACP is present on a platform. Change-Id: I8d09bd40d2f528a28d2d3f19b77101178778685d
-
Soby Mathew authored
This patch adds an optional platform API (plat_reset_handler) which allows the platform to perform any actions immediately after a cold or warm reset e.g. implement errata workarounds. The function is called with MMU and caches turned off. This API is weakly defined and does nothing by default but can be overriden by a platform with a strong definition. Change-Id: Ib0acdccbd24bc756528a8bd647df21e8d59707ff
-