1. 14 Mar, 2016 1 commit
    • Antonio Nino Diaz's avatar
      Remove all non-configurable dead loops · 1c3ea103
      Antonio Nino Diaz authored
      Added a new platform porting function plat_panic_handler, to allow
      platforms to handle unexpected error situations. It must be
      implemented in assembly as it may be called before the C environment
      is initialized. A default implementation is provided, which simply
      spins.
      
      Corrected all dead loops in generic code to call this function
      instead. This includes the dead loop that occurs at the end of the
      call to panic().
      
      All unnecesary wfis from bl32/tsp/aarch64/tsp_exceptions.S have
      been removed.
      
      Change-Id: I67cb85f6112fa8e77bd62f5718efcef4173d8134
      1c3ea103
  2. 22 Feb, 2016 2 commits
    • Yatharth Kochar's avatar
      Fix the inconsistencies in bl1_tbbr_image_descs[] · 843ddee4
      Yatharth Kochar authored
      This patch fixes inconsistencies in bl1_tbbr_image_descs[]
      and miscellaneous fixes in Firmware Update code.
      
      Following are the changes:
      * As part of the original FWU changes, a `copied_size`
        field was added to `image_info_t`. This was a subtle binary
        compatibility break because it changed the size of the
        `bl31_params_t` struct, which could cause problems if
        somebody used different versions of BL2 or BL31, one with
        the old `image_info_t` and one with the new version.
        This patch put the `copied_size` within the `image_desc_t`.
      * EXECUTABLE flag is now stored in `ep_info.h.attr` in place
        of `image_info.h.attr`, associating it to an entrypoint.
      * The `image_info.image_base` is only relevant for secure
        images that are copied from non-secure memory into secure
        memory. This patch removes initializing `image_base` for
        non secure images in the bl1_tbbr_image_descs[].
      * A new macro `SET_STATIC_PARAM_HEAD` is added for populating
        bl1_tbbr_image_descs[].ep_info/image_info.h members statically.
        The version, image_type and image attributes are now
        populated using this new macro.
      * Added PLAT_ARM_NVM_BASE and PLAT_ARM_NVM_SIZE to avoid direct
        usage of V2M_FLASH0_XXX in plat/arm/common/arm_bl1_fwu.c.
      * Refactoring of code/macros related to SECURE and EXECUTABLE flags.
      
      NOTE: PLATFORM PORTS THAT RELY ON THE SIZE OF `image_info_t`
            OR USE the "EXECUTABLE" BIT WITHIN `image_info_t.h.attr`
            OR USE THEIR OWN `image_desc_t` ARRAY IN BL1, MAY BE
            BROKEN BY THIS CHANGE. THIS IS CONSIDERED UNLIKELY.
      
      Change-Id: Id4e5989af7bf0ed263d19d3751939da1169b561d
      843ddee4
    • Vikram Kanigiri's avatar
      Rationalise MMU and Page table related constants on ARM platforms · c64a0448
      Vikram Kanigiri authored
      `board_arm_def.h` contains multiple definitions of
      `PLAT_ARM_MMAP_ENTRIES` and `MAX_XLAT_TABLES` that are optimised for
      memory usage depending upon the chosen build configuration. To ease
      maintenance of these constants, this patch replaces their multiple
      definitions with a single set of definitions that will work on all ARM
      platforms.
      
      Platforms can override the defaults with optimal values by enabling the
      `ARM_BOARD_OPTIMISE_MMAP` build option. An example has been provided in
      the Juno ADP port.
      
      Additionally, `PLAT_ARM_MMAP_ENTRIES` is increased by one to accomodate
      future ARM platforms.
      
      Change-Id: I5ba6490fdd1e118cc9cc2d988ad7e9c38492b6f0
      c64a0448
  3. 19 Feb, 2016 1 commit
    • Soby Mathew's avatar
      Allow multi cluster topology definitions for ARM platforms · 0108047a
      Soby Mathew authored
      The common topology description helper funtions and macros for
      ARM Standard platforms assumed a dual cluster system. This is not
      flexible enough to scale to multi cluster platforms. This patch does
      the following changes for more flexibility in defining topology:
      
      1. The `plat_get_power_domain_tree_desc()` definition is moved from
         `arm_topology.c` to platform specific files, that is `fvp_topology.c`
         and `juno_topology.c`. Similarly the common definition of the porting
         macro `PLATFORM_CORE_COUNT` in `arm_def.h` is moved to platform
         specific `platform_def.h` header.
      
      2. The ARM common layer porting macros which were dual cluster specific
         are now removed and a new macro PLAT_ARM_CLUSTER_COUNT is introduced
         which must be defined by each ARM standard platform.
      
      3. A new mandatory ARM common layer porting API
         `plat_arm_get_cluster_core_count()` is introduced to enable the common
         implementation of `arm_check_mpidr()` to validate MPIDR.
      
      4. For the FVP platforms, a new build option `FVP_NUM_CLUSTERS` has been
         introduced which allows the user to specify the cluster count to be
         used to build the topology tree within Trusted Firmare. This enables
         Trusted Firmware to be built for multi cluster FVP models.
      
      Change-Id: Ie7a2e38e5661fe2fdb2c8fdf5641d2b2614c2b6b
      0108047a
  4. 18 Feb, 2016 1 commit
    • Juan Castillo's avatar
      ARM platforms: rationalise memory attributes of shared memory · 74eb26e4
      Juan Castillo authored
      The shared memory region on ARM platforms contains the mailboxes and,
      on Juno, the payload area for communication with the SCP. This shared
      memory may be configured as normal memory or device memory at build
      time by setting the platform flag 'PLAT_ARM_SHARED_RAM_CACHED' (on
      Juno, the value of this flag is defined by 'MHU_PAYLOAD_CACHED').
      When set as normal memory, the platform port performs the corresponding
      cache maintenance operations. From a functional point of view, this is
      the equivalent of setting the shared memory as device memory, so there
      is no need to maintain both options.
      
      This patch removes the option to specify the shared memory as normal
      memory on ARM platforms. Shared memory is always treated as device
      memory. Cache maintenance operations are no longer needed and have
      been replaced by data memory barriers to guarantee that payload and
      MHU are accessed in the right order.
      
      Change-Id: I7f958621d6a536dd4f0fa8768385eedc4295e79f
      74eb26e4
  5. 16 Feb, 2016 2 commits
    • Vikram Kanigiri's avatar
      Rework use of interconnect drivers · 6355f234
      Vikram Kanigiri authored
      ARM Trusted Firmware supports 2 different interconnect peripheral
      drivers: CCI and CCN. ARM platforms are implemented using either of the
      interconnect peripherals.
      
      This patch adds a layer of abstraction to help ARM platform ports to
      choose the right interconnect driver and corresponding platform support.
      This is as described below:
      
      1. A set of ARM common functions have been implemented to initialise an
      interconnect and for entering/exiting a cluster from coherency. These
      functions are prefixed as "plat_arm_interconnect_". Weak definitions of
      these functions have been provided for each type of driver.
      
      2.`plat_print_interconnect_regs` macro used for printing CCI registers is
      moved from a common arm_macros.S to cci_macros.S.
      
      3. The `ARM_CONFIG_HAS_CCI` flag used in `arm_config_flags` structure
      is renamed to `ARM_CONFIG_HAS_INTERCONNECT`.
      
      Change-Id: I02f31184fbf79b784175892d5ce1161b65a0066c
      6355f234
    • Vikram Kanigiri's avatar
      Make SCP_BL2(U) image loading configurable on CSS platforms · 7fb9a32d
      Vikram Kanigiri authored
      Current code mandates loading of SCP_BL2/SCP_BL2U images for all
      CSS platforms. On future ARM CSS platforms, the Application
      Processor (AP) might not need to load these images. So, these
      items can be removed from the FIP on those platforms.
      
      BL2 tries to load  SCP_BL2/SCP_BL2U images if their base
      addresses are defined causing boot error if the images are not
      found in FIP.
      
      This change adds a make flag `CSS_LOAD_SCP_IMAGES` which if set
      to `1` does:
      1. Adds SCP_BL2, SCP_BL2U images to FIP.
      2. Defines the base addresses of these images so that AP loads
         them.
      
      And vice-versa if it is set to `0`. The default value is set to
      `1`.
      
      Change-Id: I5abfe22d5dc1e9d80d7809acefc87b42a462204a
      7fb9a32d
  6. 15 Feb, 2016 2 commits
    • Vikram Kanigiri's avatar
      Support for varying BOM/SCPI protocol base addresses in ARM platforms · 8e083ecd
      Vikram Kanigiri authored
      Current code assumes `SCP_COM_SHARED_MEM_BASE` as the base address
      for BOM/SCPI protocol between AP<->SCP on all CSS platforms. To
      cater for future ARM platforms this is made platform specific.
      Similarly, the bit shifts of `SCP_BOOT_CONFIG_ADDR` are also made
      platform specific.
      
      Change-Id: Ie8866c167abf0229a37b3c72576917f085c142e8
      8e083ecd
    • Vikram Kanigiri's avatar
      Add API to return memory map on ARM platforms · 65cb1c4c
      Vikram Kanigiri authored
      Functions to configure the MMU in S-EL1 and EL3 on ARM platforms
      expect each platform to export its memory map in the `plat_arm_mmap`
      data structure. This approach does not scale well in case the memory
      map cannot be determined until runtime. To cater for this possibility,
      this patch introduces the plat_arm_get_mmap() API. It returns a
      reference to the `plat_arm_mmap` by default but can be overridden
      by a platform if required.
      
      Change-Id: Idae6ad8fdf40cdddcd8b992abc188455fa047c74
      65cb1c4c
  7. 11 Feb, 2016 2 commits
    • Vikram Kanigiri's avatar
      Add support for SSC_VERSION register on CSS platforms · 421295a0
      Vikram Kanigiri authored
      Each ARM Compute Subsystem based platform implements a System Security
      Control (SSC) Registers Unit. The SSC_VERSION register inside it carries
      information to identify the platform. This enables ARM Trusted Firmware
      to compile in support for multiple ARM platforms and choose one at
      runtime. This patch adds macros to enable access to this register.
      Each platform is expected to export its PART_NUMBER separately.
      
      Additionally, it also adds juno part number.
      
      Change-Id: I2b1d5f5b65a9c7b76c6f64480cc7cf0aef019422
      421295a0
    • Vikram Kanigiri's avatar
      Re-factor definition of some macros on ARM platforms · ecf70f7b
      Vikram Kanigiri authored
      This patch moves the definition of some macros used only on
      ARM platforms from common headers to platform specific headers.
      It also forces all ARM standard platforms to have distinct
      definitions (even if they are usually the same).
       1. `PLAT_ARM_TZC_BASE` and `PLAT_ARM_NSTIMER_FRAME_ID` have been
           moved from `css_def.h` to `platform_def.h`.
       2. `MHU_BASE` used in CSS platforms is moved from common css_def.h
          to platform specific header `platform_def.h` on Juno and
          renamed as `PLAT_ARM_MHU_BASE`.
       3. To cater for different sizes of BL images, new macros like
          `PLAT_ARM_MAX_BL31_SIZE` have been created for each BL image. All
          ARM platforms need to define them for each image.
      
      Change-Id: I9255448bddfad734b387922aa9e68d2117338c3f
      ecf70f7b
  8. 01 Feb, 2016 1 commit
    • Soby Mathew's avatar
      Use tf_printf() for debug logs from xlat_tables.c · d30ac1c3
      Soby Mathew authored
      The debug prints used to debug translation table setup in xlat_tables.c
      used the `printf()` standard library function instead of the stack
      optimized `tf_printf()` API. DEBUG_XLAT_TABLE option was used to enable
      debug logs within xlat_tables.c and it configured a much larger stack
      size for the platform in case it was enabled. This patch modifies these
      debug prints within xlat_tables.c to use tf_printf() and modifies the format
      specifiers to be compatible with tf_printf(). The debug prints are now enabled
      if the VERBOSE prints are enabled in Trusted Firmware via LOG_LEVEL build
      option.
      
      The much larger stack size definition when DEBUG_XLAT_TABLE is defined
      is no longer required and the platform ports are modified to remove this
      stack size definition.
      
      Change-Id: I2f7d77ea12a04b827fa15e2adc3125b1175e4c23
      d30ac1c3
  9. 14 Jan, 2016 1 commit
  10. 15 Dec, 2015 1 commit
    • Dan Handley's avatar
      FWU: Pass client cookie to FWU_SMC_UPDATE_DONE · 1f37b944
      Dan Handley authored
      The current FWU_SMC_UPDATE_DONE implementation incorrectly passes
      an unused framework cookie through to the 1st argument in the
      platform function `bl1_plat_fwu_done`. The intent is to allow
      the SMC caller to pass a cookie through to this function.
      
      This patch fixes FWU_SMC_UPDATE_DONE to pass x1 from the caller
      through to `bl1_plat_fwu_done`. The argument names are updated
      for clarity.
      
      Upstream platforms currently do not use this argument so no
      impact is expected.
      
      Change-Id: I107f4b51eb03e7394f66d9a534ffab1cbc09a9b2
      1f37b944
  11. 14 Dec, 2015 3 commits
    • Juan Castillo's avatar
      Remove dashes from image names: 'BL3-x' --> 'BL3x' · d178637d
      Juan Castillo authored
      This patch removes the dash character from the image name, to
      follow the image terminology in the Trusted Firmware Wiki page:
      
          https://github.com/ARM-software/arm-trusted-firmware/wiki
      
      Changes apply to output messages, comments and documentation.
      
      non-ARM platform files have been left unmodified.
      
      Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
      d178637d
    • Juan Castillo's avatar
      Replace all SCP FW (BL0, BL3-0) references · f59821d5
      Juan Castillo authored
      This patch replaces all references to the SCP Firmware (BL0, BL30,
      BL3-0, bl30) with the image terminology detailed in the TF wiki
      (https://github.com/ARM-software/arm-trusted-firmware/wiki):
      
          BL0          -->  SCP_BL1
          BL30, BL3-0  -->  SCP_BL2
          bl30         -->  scp_bl2
      
      This change affects code, documentation, build system, tools and
      platform ports that load SCP firmware. ARM plaforms have been
      updated to the new porting API.
      
      IMPORTANT: build option to specify the SCP FW image has changed:
      
          BL30 --> SCP_BL2
      
      IMPORTANT: This patch breaks compatibility for platforms that use BL2
      to load SCP firmware. Affected platforms must be updated as follows:
      
          BL30_IMAGE_ID --> SCP_BL2_IMAGE_ID
          BL30_BASE --> SCP_BL2_BASE
          bl2_plat_get_bl30_meminfo() --> bl2_plat_get_scp_bl2_meminfo()
          bl2_plat_handle_bl30() --> bl2_plat_handle_scp_bl2()
      
      Change-Id: I24c4c1a4f0e4b9f17c9e4929da815c4069549e58
      f59821d5
    • Juan Castillo's avatar
      TBB: apply TBBR naming convention to certificates and extensions · 516beb58
      Juan Castillo authored
      This patch applies the TBBR naming convention to the certificates
      and the corresponding extensions defined by the CoT:
      
          * Certificate UUID names
          * Certificate identifier names
          * OID names
      
      Changes apply to:
      
          * Generic code (variables and defines)
          * The default certificate identifiers provided in the generic
            code
          * Build system
          * ARM platforms port
          * cert_create tool internal definitions
          * fip_create and cert_create tools command line options
          * Documentation
      
      IMPORTANT: this change breaks the compatibility with platforms
      that use TBBR. The platform will need to adapt the identifiers
      and OIDs to the TBBR naming convention introduced by this patch:
      
      Certificate UUIDs:
      
          UUID_TRUSTED_BOOT_FIRMWARE_BL2_CERT --> UUID_TRUSTED_BOOT_FW_CERT
          UUID_SCP_FIRMWARE_BL30_KEY_CERT --> UUID_SCP_FW_KEY_CERT
          UUID_SCP_FIRMWARE_BL30_CERT --> UUID_SCP_FW_CONTENT_CERT
          UUID_EL3_RUNTIME_FIRMWARE_BL31_KEY_CERT --> UUID_SOC_FW_KEY_CERT
          UUID_EL3_RUNTIME_FIRMWARE_BL31_CERT --> UUID_SOC_FW_CONTENT_CERT
          UUID_SECURE_PAYLOAD_BL32_KEY_CERT --> UUID_TRUSTED_OS_FW_KEY_CERT
          UUID_SECURE_PAYLOAD_BL32_CERT --> UUID_TRUSTED_OS_FW_CONTENT_CERT
          UUID_NON_TRUSTED_FIRMWARE_BL33_KEY_CERT --> UUID_NON_TRUSTED_FW_KEY_CERT
          UUID_NON_TRUSTED_FIRMWARE_BL33_CERT --> UUID_NON_TRUSTED_FW_CONTENT_CERT
      
      Certificate identifiers:
      
          BL2_CERT_ID --> TRUSTED_BOOT_FW_CERT_ID
          BL30_KEY_CERT_ID --> SCP_FW_KEY_CERT_ID
          BL30_CERT_ID --> SCP_FW_CONTENT_CERT_ID
          BL31_KEY_CERT_ID --> SOC_FW_KEY_CERT_ID
          BL31_CERT_ID --> SOC_FW_CONTENT_CERT_ID
          BL32_KEY_CERT_ID --> TRUSTED_OS_FW_KEY_CERT_ID
          BL32_CERT_ID --> TRUSTED_OS_FW_CONTENT_CERT_ID
          BL33_KEY_CERT_ID --> NON_TRUSTED_FW_KEY_CERT_ID
          BL33_CERT_ID --> NON_TRUSTED_FW_CONTENT_CERT_ID
      
      OIDs:
      
          TZ_FW_NVCOUNTER_OID --> TRUSTED_FW_NVCOUNTER_OID
          NTZ_FW_NVCOUNTER_OID --> NON_TRUSTED_FW_NVCOUNTER_OID
          BL2_HASH_OID --> TRUSTED_BOOT_FW_HASH_OID
          TZ_WORLD_PK_OID --> TRUSTED_WORLD_PK_OID
          NTZ_WORLD_PK_OID --> NON_TRUSTED_WORLD_PK_OID
          BL30_CONTENT_CERT_PK_OID --> SCP_FW_CONTENT_CERT_PK_OID
          BL30_HASH_OID --> SCP_FW_HASH_OID
          BL31_CONTENT_CERT_PK_OID --> SOC_FW_CONTENT_CERT_PK_OID
          BL31_HASH_OID --> SOC_AP_FW_HASH_OID
          BL32_CONTENT_CERT_PK_OID --> TRUSTED_OS_FW_CONTENT_CERT_PK_OID
          BL32_HASH_OID --> TRUSTED_OS_FW_HASH_OID
          BL33_CONTENT_CERT_PK_OID --> NON_TRUSTED_FW_CONTENT_CERT_PK_OID
          BL33_HASH_OID --> NON_TRUSTED_WORLD_BOOTLOADER_HASH_OID
          BL2U_HASH_OID --> AP_FWU_CFG_HASH_OID
          SCP_BL2U_HASH_OID --> SCP_FWU_CFG_HASH_OID
          NS_BL2U_HASH_OID --> FWU_HASH_OID
      
      Change-Id: I1e047ae046299ca913911c39ac3a6e123bd41079
      516beb58
  12. 09 Dec, 2015 9 commits
    • Yatharth Kochar's avatar
      FWU: Add Firmware Update support in BL2U for ARM platforms · dcda29f6
      Yatharth Kochar authored
      This patch adds support for Firmware update in BL2U for ARM
      platforms such that TZC initialization is performed on all
      ARM platforms and (optionally) transfer of SCP_BL2U image on
      ARM CSS platforms.
      
      BL2U specific functions are added to handle early_platform and
      plat_arch setup. The MMU is configured to map in the BL2U
      code/data area and other required memory.
      
      Change-Id: I57863295a608cc06e6cbf078b7ce34cbd9733e4f
      dcda29f6
    • Yatharth Kochar's avatar
      FWU: Add Generic BL2U FWU image support in BL2 · 9003fa0b
      Yatharth Kochar authored
      The Firmware Update (FWU) feature needs support for an optional
      secure world image, BL2U, to allow additional secure world
      initialization required by FWU, for example DDR initialization.
      
      This patch adds generic framework support to create BL2U.
      
      NOTE: A platform makefile must supply additional `BL2U_SOURCES`
            to build the bl2u target. A subsequent patch adds bl2u
            support for ARM platforms.
      
      Change-Id: If2ce036199bb40b39b7f91a9332106bcd4e25413
      9003fa0b
    • Yatharth Kochar's avatar
      FWU: Add Firmware Update support in BL1 for ARM platforms · 436223de
      Yatharth Kochar authored
      This patch adds Firmware Update support for ARM platforms.
      
      New files arm_bl1_fwu.c and juno_bl1_setup.c were added to provide
      platform specific Firmware update code.
      
      BL1 now includes mmap entry for `ARM_MAP_NS_DRAM1` to map DRAM for
      authenticating NS_BL2U image(For both FVP and JUNO platform).
      
      Change-Id: Ie116cd83f5dc00aa53d904c2f1beb23d58926555
      436223de
    • Yatharth Kochar's avatar
      FWU: Add Generic Firmware Update framework support in BL1 · 48bfb88e
      Yatharth Kochar authored
      Firmware update(a.k.a FWU) feature is part of the TBB architecture.
      BL1 is responsible for carrying out the FWU process if platform
      specific code detects that it is needed.
      
      This patch adds support for FWU feature support in BL1 which is
      included by enabling `TRUSTED_BOARD_BOOT` compile time flag.
      
      This patch adds bl1_fwu.c which contains all the core operations
      of FWU, which are; SMC handler, image copy, authentication, execution
      and resumption. It also adds bl1.h introducing #defines for all
      BL1 SMCs.
      
      Following platform porting functions are introduced:
      
      int bl1_plat_mem_check(uintptr_t mem_base, unsigned int mem_size,
      unsigned int flags);
      	This function can be used to add platform specific memory checks
      	for the provided base/size for the given security state.
      	The weak definition will invoke `assert()` and return -ENOMEM.
      
      __dead2 void bl1_plat_fwu_done(void *cookie, void *reserved);
      	This function can be used to initiate platform specific procedure
      	to mark completion of the FWU process.
      	The weak definition waits forever calling `wfi()`.
      
      plat_bl1_common.c contains weak definitions for above functions.
      
      FWU process starts when platform detects it and return the image_id
      other than BL2_IMAGE_ID by using `bl1_plat_get_next_image_id()` in
      `bl1_main()`.
      
      NOTE: User MUST provide platform specific real definition for
      bl1_plat_mem_check() in order to use it for Firmware update.
      
      Change-Id: Ice189a0885d9722d9e1dd03f76cac1aceb0e25ed
      48bfb88e
    • Yatharth Kochar's avatar
      Add descriptor based image management support in BL1 · 7baff11f
      Yatharth Kochar authored
      As of now BL1 loads and execute BL2 based on hard coded information
      provided in BL1. But due to addition of support for upcoming Firmware
      Update feature, BL1 now require more flexible approach to load and
      run different images using information provided by the platform.
      
      This patch adds new mechanism to load and execute images based on
      platform provided image id's. BL1 now queries the platform to fetch
      the image id of the next image to be loaded and executed. In order
      to achieve this, a new struct image_desc_t was added which holds the
      information about images, such as: ep_info and image_info.
      
      This patch introduces following platform porting functions:
      
      unsigned int bl1_plat_get_next_image_id(void);
      	This is used to identify the next image to be loaded
      	and executed by BL1.
      
      struct image_desc *bl1_plat_get_image_desc(unsigned int image_id);
      	This is used to retrieve the image_desc for given image_id.
      
      void bl1_plat_set_ep_info(unsigned int image_id,
      struct entry_point_info *ep_info);
      	This function allows platforms to update ep_info for given
      	image_id.
      
      The plat_bl1_common.c file provides default weak implementations of
      all above functions, the `bl1_plat_get_image_desc()` always return
      BL2 image descriptor, the `bl1_plat_get_next_image_id()` always return
      BL2 image ID and `bl1_plat_set_ep_info()` is empty and just returns.
      These functions gets compiled into all BL1 platforms by default.
      
      Platform setup in BL1, using `bl1_platform_setup()`, is now done
      _after_ the initialization of authentication module. This change
      provides the opportunity to use authentication while doing the
      platform setup in BL1.
      
      In order to store secure/non-secure context, BL31 uses percpu_data[]
      to store context pointer for each core. In case of BL1 only the
      primary CPU will be active hence percpu_data[] is not required to
      store the context pointer.
      
      This patch introduce bl1_cpu_context[] and bl1_cpu_context_ptr[] to
      store the context and context pointers respectively. It also also
      re-defines cm_get_context() and cm_set_context() for BL1 in
      bl1/bl1_context_mgmt.c.
      
      BL1 now follows the BL31 pattern of using SP_EL0 for the C runtime
      environment, to support resuming execution from a previously saved
      context.
      
      NOTE: THE `bl1_plat_set_bl2_ep_info()` PLATFORM PORTING FUNCTION IS
            NO LONGER CALLED BY BL1 COMMON CODE. PLATFORMS THAT OVERRIDE
            THIS FUNCTION MAY NEED TO IMPLEMENT `bl1_plat_set_ep_info()`
            INSTEAD TO MAINTAIN EXISTING BEHAVIOUR.
      
      Change-Id: Ieee4c124b951c2e9bc1c1013fa2073221195d881
      7baff11f
    • Soby Mathew's avatar
      Specify BL31 runtime console for ARM Standard platforms · 080225da
      Soby Mathew authored
      This patch overrides the default weak definition of
      `bl31_plat_runtime_setup()` for ARM Standard platforms to
      specify a BL31 runtime console. ARM Standard platforms are
      now expected to define `PLAT_ARM_BL31_RUN_UART_BASE` and
      `PLAT_ARM_BL31_RUN_UART_CLK_IN_HZ` macros which is required
      by `arm_bl31_plat_runtime_setup()` to initialize the runtime
      console.
      
      The system suspend resume helper `arm_system_pwr_domain_resume()`
      is fixed to initialize the runtime console rather than the boot
      console on resumption from system suspend.
      
      Fixes ARM-software/tf-issues#220
      
      Change-Id: I80eafe5b6adcfc7f1fdf8b99659aca1c64d96975
      080225da
    • Soby Mathew's avatar
      Ensure BL31 does not print to boot console by default · 78e61613
      Soby Mathew authored
      It is not ideal for BL31 to continue to use boot console at
      runtime which could be potentially uninitialized. This patch
      introduces a new optional platform porting API
      `bl31_plat_runtime_setup()` which allows the platform to perform
      any BL31 runtime setup just prior to BL31 exit during cold boot.
      The default weak implementation of this function will invoke
      `console_uninit()` which will suppress any BL31 runtime logs.
      
      On the ARM Standard platforms, there is an anomaly that
      the boot console will be reinitialized on resumption from
      system suspend in `arm_system_pwr_domain_resume()`. This
      will be resolved in the following patch.
      
      NOTE: The default weak definition of `bl31_plat_runtime_setup()`
      disables the BL31 console. To print the BL31 runtime
      messages, platforms must override this API and initialize a
      runtime console.
      
      Fixes ARM-software/tf-issues#328
      
      Change-Id: Ibaf8346fcceb447fe1a5674094c9f8eb4c09ac4a
      78e61613
    • Achin Gupta's avatar
      Rework use of ARM GIC drivers on ARM platforms · 27573c59
      Achin Gupta authored
      Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three
      separate drivers instead of providing a single driver that can work on both
      versions of the GIC architecture. These drivers correspond to the following
      software use cases:
      
      1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations
         e.g. GIC-400
      
      2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations
         e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features
      
      3. A deprecated GICv3 driver that operates in legacy mode. This driver can
         operate only in the GICv2 mode in the secure world. On a GICv3 system, this
         driver allows normal world to run in either GICv3 mode (asymmetric mode)
         or in the GICv2 mode. Both modes of operation are deprecated on GICv3
         systems.
      
      ARM platforms implement both versions of the GIC architecture. This patch adds a
      layer of abstraction to help ARM platform ports chose the right GIC driver and
      corresponding platform support. This is as described below:
      
      1. A set of ARM common functions have been introduced to initialise the GIC and
         the driver during cold and warm boot. These functions are prefixed as
         "plat_arm_gic_". Weak definitions of these functions have been provided for
         each type of driver.
      
      2. Each platform includes the sources that implement the right functions
         directly into the its makefile. The FVP can be instantiated with different
         versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option
         to specify which of the three drivers should be included in the build.
      
      3. A list of secure interrupts has to be provided to initialise each of the
        three GIC drivers. For GIC v3.0 the interrupt ids have to be further
        categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two
        types are merged and treated as Group 0 interrupts.
      
        The two lists of interrupts are exported from the platform_def.h. The lists
        are constructed by adding a list of board specific interrupt ids to a list of
        ids common to all ARM platforms and Compute sub-systems.
      
      This patch also makes some fields of `arm_config` data structure in FVP redundant
      and these unused fields are removed.
      
      Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
      27573c59
    • Soby Mathew's avatar
      Prepare platforms to use refactored ARM GIC drivers · f14d1886
      Soby Mathew authored
      This patch adds platform helpers for the new GICv2 and GICv3 drivers in
      plat_gicv2.c and plat_gicv3.c. The platforms can include the appropriate
      file in their build according to the GIC driver to be used. The existing
      plat_gic.c is only meant for the legacy GIC driver.
      
      In the case of ARM platforms, the major changes are as follows:
      
      1. The crash reporting helper macro `arm_print_gic_regs` that prints the GIC CPU
         interface register values has been modified to detect the type of CPU
         interface being used (System register or memory mappped interface) before
         using the right interface to print the registers.
      
      2. The power management helper function that is called after a core is powered
         up has been further refactored. This is to highlight that the per-cpu
         distributor interface should be initialised only when the core was originally
         powered down using the CPU_OFF PSCI API and not when the CPU_SUSPEND PSCI API
         was used.
      
      3. In the case of CSS platforms, the system power domain restore helper
         `arm_system_pwr_domain_resume()` is now only invoked in the `suspend_finish`
         handler as the system power domain is always expected to be initialized when
         the `on_finish` handler is invoked.
      
      Change-Id: I7fc27d61fc6c2a60cea2436b676c5737d0257df6
      f14d1886
  13. 04 Dec, 2015 1 commit
    • Juan Castillo's avatar
      Fix SP804 delay timer on FVP · 540a5ba8
      Juan Castillo authored
      This patch fixes several issues with the SP804 delay timer on FVP:
      
      * By default, the SP804 dual timer on FVP runs at 32 KHz. In order
        to run the timer at 35 MHz (as specified in the FVP user manual)
        the Overwrite bit in the SP810 control register must be set.
      
      * The CLKMULT and CLKDIV definitions are mixed up:
      
            delta(us) = delta(ticks) * T(us) = delta(ticks) / f(MHz)
      
        From the delay function:
      
            delta_us = (delta * ops->clk_mult) / ops->clk_div;
      
        Matching both expressions:
      
            1 / f(MHz) = ops->clk_mult / ops->clk_div
      
        And consequently:
      
            f(MHz) = ops->clk_div / ops->clk_mult
      
        Which, for a 35 MHz timer, translates to:
      
            ops->clk_div = 35
            ops->clk_mult = 1
      
      * The comment in the delay timer header file has been corrected:
        The ratio of the multiplier and the divider is the clock period
        in microseconds, not the frequency.
      
      Change-Id: Iffd5ce0a5a28fa47c0720c0336d81b678ff8fdf1
      540a5ba8
  14. 02 Dec, 2015 2 commits
    • Juan Castillo's avatar
      TBB: add Trusted Watchdog support on ARM platforms · 7b4c1405
      Juan Castillo authored
      This patch adds watchdog support on ARM platforms (FVP and Juno).
      A secure instance of SP805 is used as Trusted Watchdog. It is
      entirely managed in BL1, being enabled in the early platform setup
      hook and disabled in the exit hook. By default, the watchdog is
      enabled in every build (even when TBB is disabled).
      
      A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG`
      has been introduced to allow the user to disable the watchdog at
      build time. This feature may be used for testing or debugging
      purposes.
      
      Specific error handlers for Juno and FVP are also provided in this
      patch. These handlers will be called after an image load or
      authentication error. On FVP, the Table of Contents (ToC) in the FIP
      is erased. On Juno, the corresponding error code is stored in the
      V2M Non-Volatile flags register. In both cases, the CPU spins until
      a watchdog reset is generated after 256 seconds (as specified in
      the TBBR document).
      
      Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
      7b4c1405
    • Juan Castillo's avatar
      TBB: add ARM OIDs · bf6863c6
      Juan Castillo authored
      This patch adds ARM specific OIDs which will be used to extract
      the extension data from the certificates. These OIDs are arranged
      as a subtree whose root node has been specifically allocated for
      ARM Ltd.
      
          { iso(1) identified-organization(3) dod(6) internet(1)
            private(4) enterprise(1) 4128 }
      
      Change-Id: Ice20b3c8a31ddefe9102f3bd42f7429986f3ac34
      bf6863c6
  15. 27 Nov, 2015 1 commit
    • Juan Castillo's avatar
      Add basic NOR flash driver for ARM platforms · 9784dbda
      Juan Castillo authored
      FVP and Juno platforms include a NOR flash memory to store and
      load the FIP, the kernel or a ramdisk. This NOR flash is arranged
      as 2 x 16 bit flash devices and can be programmed using CFI
      standard commands.
      
      This patch provides a basic API to write single 32 bit words of
      data into the NOR flash. Functions to lock/unlock blocks against
      erase or write operations are also provided.
      
      Change-Id: I1da7ad3105b1ea409c976adc863954787cbd90d2
      9784dbda
  16. 26 Nov, 2015 1 commit
    • Sandrine Bailleux's avatar
      CSS: Enable booting of EL3 payloads · 4c117f6c
      Sandrine Bailleux authored
      This patch adds support for booting EL3 payloads on CSS platforms,
      for example Juno. In this scenario, the Trusted Firmware follows
      its normal boot flow up to the point where it would normally pass
      control to the BL31 image. At this point, it jumps to the EL3
      payload entry point address instead.
      
      Before handing over to the EL3 payload, the data SCP writes for AP
      at the beginning of the Trusted SRAM is restored, i.e. we zero the
      first 128 bytes and restore the SCP Boot configuration. The latter
      is saved before transferring the BL30 image to SCP and is restored
      just after the transfer (in BL2). The goal is to make it appear that
      the EL3 payload is the first piece of software to run on the target.
      
      The BL31 entrypoint info structure is updated to make the primary
      CPU jump to the EL3 payload instead of the BL31 image.
      
      The mailbox is populated with the EL3 payload entrypoint address,
      which releases the secondary CPUs out of their holding pen (if the
      SCP has powered them on). The arm_program_trusted_mailbox() function
      has been exported for this purpose.
      
      The TZC-400 configuration in BL2 is simplified: it grants secure
      access only to the whole DRAM. Other security initialization is
      unchanged.
      
      This alternative boot flow is disabled by default. A new build option
      EL3_PAYLOAD_BASE has been introduced to enable it and provide the EL3
      payload's entry point address. The build system has been modified
      such that BL31 and BL33 are not compiled and/or not put in the FIP in
      this case, as those images are not used in this boot flow.
      
      Change-Id: Id2e26fa57988bbc32323a0effd022ab42f5b5077
      4c117f6c
  17. 24 Nov, 2015 1 commit
    • Soby Mathew's avatar
      Replace build macro WARN_DEPRECATED with ERROR_DEPRECATED · 7a24cba5
      Soby Mathew authored
      This patch changes the build time behaviour when using deprecated API within
      Trusted Firmware. Previously the use of deprecated APIs would only trigger a
      build warning (which was always treated as a build error), when
      WARN_DEPRECATED = 1. Now, the use of deprecated C declarations will always
      trigger a build time warning. Whether this warning is treated as error or not
      is determined by the build flag ERROR_DEPRECATED which is disabled by default.
      When the build flag ERROR_DEPRECATED=1, the invocation of deprecated API or
      inclusion of deprecated headers will result in a build error.
      
      Also the deprecated context management helpers in context_mgmt.c are now
      conditionally compiled depending on the value of ERROR_DEPRECATED flag
      so that the APIs themselves do not result in a build error when the
      ERROR_DEPRECATED flag is set.
      
      NOTE: Build systems that use the macro WARN_DEPRECATED must migrate to
      using ERROR_DEPRECATED, otherwise deprecated API usage will no longer
      trigger a build error.
      
      Change-Id: I843bceef6bde979af7e9b51dddf861035ec7965a
      7a24cba5
  18. 30 Oct, 2015 3 commits
    • Soby Mathew's avatar
      Include xlat_tables.h in plat_arm.h · 8f6623f0
      Soby Mathew authored
      This patch fixes a compilation issue for platforms that are aligned to ARM
      Standard platforms and include the `plat_arm.h` header in their platform port.
      The compilation would fail for such a platform because `xlat_tables.h` which
      has the definition for `mmap_region_t` is not included in `plat_arm.h`. This
      patch fixes this by including `xlat_tables.h` in `plat_arm.h` header.
      
      Fixes ARM-Software/tf-issues#318
      
      Change-Id: I75f990cfb4078b3996fc353c8cd37c9de61d555e
      8f6623f0
    • Soby Mathew's avatar
      Support PSCI SYSTEM SUSPEND on Juno · c1bb8a05
      Soby Mathew authored
      This patch adds the capability to power down at system power domain level
      on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers
      are modified to add support for power management operations at system
      power domain level. A new helper for populating `get_sys_suspend_power_state`
      handler in plat_psci_ops is defined. On entering the system suspend state,
      the SCP powers down the SYSTOP power domain on the SoC and puts the memory
      into retention mode. On wakeup from the power down, the system components
      on the CSS will be reinitialized by the platform layer and the PSCI client
      is responsible for restoring the context of these system components.
      
      According to PSCI Specification, interrupts targeted to cores in PSCI CPU
      SUSPEND should be able to resume it. On Juno, when the system power domain
      is suspended, the GIC is also powered down. The SCP resumes the final core
      to be suspend when an external wake-up event is received. But the other
      cores cannot be woken up by a targeted interrupt, because GIC doesn't
      forward these interrupts to the SCP. Due to this hardware limitation,
      we down-grade PSCI CPU SUSPEND requests targeted to the system power domain
      level to cluster power domain level in `juno_validate_power_state()`
      and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c.
      
      A system power domain resume helper `arm_system_pwr_domain_resume()` is
      defined for ARM standard platforms which resumes/re-initializes the
      system components on wakeup from system suspend. The security setup also
      needs to be done on resume from system suspend, which means
      `plat_arm_security_setup()` must now be included in the BL3-1 image in
      addition to previous BL images if system suspend need to be supported.
      
      Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
      c1bb8a05
    • Soby Mathew's avatar
      CSS: Implement topology support for System power domain · 5f3a6030
      Soby Mathew authored
      This patch implements the necessary topology changes for supporting
      system power domain on CSS platforms. The definition of PLAT_MAX_PWR_LVL and
      PLAT_NUM_PWR_DOMAINS macros are removed from arm_def.h and are made platform
      specific. In addition, the `arm_power_domain_tree_desc[]` and
      `arm_pm_idle_states[]` are modified to support the system power domain
      at level 2. With this patch, even though the power management operations
      involving the system power domain will not return any error, the platform
      layer will silently ignore any operations to the power domain. The actual
      power management support for the system power domain will be added later.
      
      Change-Id: I791867eded5156754fe898f9cdc6bba361e5a379
      5f3a6030
  19. 28 Oct, 2015 1 commit
    • Juan Castillo's avatar
      Add optional platform error handler API · 40fc6cd1
      Juan Castillo authored
      This patch adds an optional API to the platform port:
      
          void plat_error_handler(int err) __dead2;
      
      The platform error handler is called when there is a specific error
      condition after which Trusted Firmware cannot continue. While panic()
      simply prints the crash report (if enabled) and spins, the platform
      error handler can be used to hand control over to the platform port
      so it can perform specific bookeeping or post-error actions (for
      example, reset the system). This function must not return.
      
      The parameter indicates the type of error using standard codes from
      errno.h. Possible errors reported by the generic code are:
      
          -EAUTH  : a certificate or image could not be authenticated
                    (when Trusted Board Boot is enabled)
          -ENOENT : the requested image or certificate could not be found
                    or an IO error was detected
          -ENOMEM : resources exhausted. Trusted Firmware does not use
                    dynamic memory, so this error is usually an indication
                    of an incorrect array size
      
      A default weak implementation of this function has been provided.
      It simply implements an infinite loop.
      
      Change-Id: Iffaf9eee82d037da6caa43b3aed51df555e597a3
      40fc6cd1
  20. 20 Oct, 2015 1 commit
    • Soby Mathew's avatar
      Reorganise PSCI PM handler setup on ARM Standard platforms · 785fb92b
      Soby Mathew authored
      This patch does the following reorganization to psci power management (PM)
      handler setup for ARM standard platform ports :
      
      1. The mailbox programming required during `plat_setup_psci_ops()` is identical
         for all ARM platforms. Hence the implementation of this API is now moved
         to the common `arm_pm.c` file. Each ARM platform now must define the
         PLAT_ARM_TRUSTED_MAILBOX_BASE macro, which in current platforms is the same
         as ARM_SHARED_RAM_BASE.
      
      2. The PSCI PM handler callback structure, `plat_psci_ops`, must now be
         exported via `plat_arm_psci_pm_ops`. This allows the common implementation
         of `plat_setup_psci_ops()` to return a platform specific `plat_psci_ops`.
         In the case of CSS platforms, a default weak implementation of the same is
         provided in `css_pm.c` which can be overridden by each CSS platform.
      
      3. For CSS platforms, the PSCI PM handlers defined in `css_pm.c` are now
         made library functions and a new header file `css_pm.h` is added to export
         these generic PM handlers. This allows the platform to reuse the
         adequate CSS PM handlers and redefine others which need to be customized
         when overriding the default `plat_arm_psci_pm_ops` in `css_pm.c`.
      
      Change-Id: I277910f609e023ee5d5ff0129a80ecfce4356ede
      785fb92b
  21. 11 Sep, 2015 3 commits
    • Vikram Kanigiri's avatar
      Update ARM platform ports to use new bakery lock apis. · e25e6f41
      Vikram Kanigiri authored
      This patch updates ARM platform ports to use the new unified bakery locks
      API. The caller does not have to use a different bakery lock API depending upon
      the value of the USE_COHERENT_MEM build option.
      
      NOTE: THIS PATCH CAN BE USED AS A REFERENCE TO UPDATE OTHER PLATFORM PORTS.
      
      Change-Id: I1b26afc7c9a9808a6040eb22f603d30192251da7
      e25e6f41
    • Vikram Kanigiri's avatar
      Define the Non-Secure timer frame ID for ARM platforms · 4b1439c5
      Vikram Kanigiri authored
      On Juno and FVP platforms, the Non-Secure System timer corresponds
      to frame 1. However, this is a platform-specific decision and it
      shouldn't be hard-coded. Hence, this patch introduces
      PLAT_ARM_NSTIMER_FRAME_ID which should be used by all ARM platforms
      to specify the correct non-secure timer frame.
      
      Change-Id: I6c3a905d7d89200a2f58c20ce5d1e1d166832bba
      4b1439c5
    • Vikram Kanigiri's avatar
      Re-factor definition of TZC-400 base address · e86c1ff0
      Vikram Kanigiri authored
      This patch replaces the `ARM_TZC_BASE` constant with `PLAT_ARM_TZC_BASE` to
      support different TrustZone Controller base addresses across ARM platforms.
      
      Change-Id: Ie4e1c7600fd7a5875323c7cc35e067de0c6ef6dd
      e86c1ff0