- 13 Aug, 2015 6 commits
-
-
Soby Mathew authored
This patch reworks the PSCI generic implementation to conform to ARM Trusted Firmware coding guidelines as described here: https://github.com/ARM-software/arm-trusted-firmware/wiki This patch also reviews the use of signed data types within PSCI Generic code and replaces them with their unsigned counterparts wherever they are not appropriate. The PSCI_INVALID_DATA macro which was defined to -1 is now replaced with PSCI_INVALID_PWR_LVL macro which is defined to PLAT_MAX_PWR_LVL + 1. Change-Id: Iaea422d0e46fc314e0b173c2b4c16e0d56b2515a
-
Soby Mathew authored
This commit does the switch to the new PSCI framework implementation replacing the existing files in PSCI folder with the ones in PSCI1.0 folder. The corresponding makefiles are modified as required for the new implementation. The platform.h header file is also is switched to the new one as required by the new frameworks. The build flag ENABLE_PLAT_COMPAT defaults to 1 to enable compatibility layer which let the existing platform ports to continue to build and run with minimal changes. The default weak implementation of platform_get_core_pos() is now removed from platform_helpers.S and is provided by the compatibility layer. Note: The Secure Payloads and their dispatchers still use the old platform and framework APIs and hence it is expected that the ENABLE_PLAT_COMPAT build flag will remain enabled in subsequent patch. The compatibility for SPDs using the older APIs on platforms migrated to the new APIs will be added in the following patch. Change-Id: I18c51b3a085b564aa05fdd98d11c9f3335712719
-
Sandrine Bailleux authored
There used to be 2 warm reset entry points: - the "on finisher", for when the core has been turned on using a PSCI CPU_ON call; - the "suspend finisher", entered upon resumption from a previous PSCI CPU_SUSPEND call. The appropriate warm reset entry point used to be programmed into the mailboxes by the power management hooks. However, it is not required to provide this information to the PSCI entry point code, as it can figure it out by itself. By querying affinity info state, a core is able to determine on which execution path it is. If the state is ON_PENDING then it means it's been turned on else it is resuming from suspend. This patch unifies the 2 warm reset entry points into a single one: psci_entrypoint(). The patch also implements the necessary logic to distinguish between the 2 types of warm resets in the power up finisher. The plat_setup_psci_ops() API now takes the secure entry point as an additional parameter to enable the platforms to configure their mailbox. The platform hooks `pwr_domain_on` and `pwr_domain_suspend` no longer take secure entry point as a parameter. Change-Id: I7d1c93787b54213aefdbc046b8cd66a555dfbfd9
-
Soby Mathew authored
The state-id field in the power-state parameter of a CPU_SUSPEND call can be used to describe composite power states specific to a platform. The current PSCI implementation does not interpret the state-id field. It relies on the target power level and the state type fields in the power-state parameter to perform state coordination and power management operations. The framework introduced in this patch allows the PSCI implementation to intepret generic global states like RUN, RETENTION or OFF from the State-ID to make global state coordination decisions and reduce the complexity of platform ports. It adds support to involve the platform in state coordination which facilitates the use of composite power states and improves the support for entering standby states at multiple power domains. The patch also includes support for extended state-id format for the power state parameter as specified by PSCIv1.0. The PSCI implementation now defines a generic representation of the power-state parameter. It depends on the platform port to convert the power-state parameter (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this representation via the `validate_power_state()` plat_psci_ops handler. It is an array where each index corresponds to a power level. Each entry contains the local power state the power domain at that power level could enter. The meaning of the local power state values is platform defined, and may vary between levels in a single platform. The PSCI implementation constrains the values only so that it can classify the state as RUN, RETENTION or OFF as required by the specification: * zero means RUN * all OFF state values at all levels must be higher than all RETENTION state values at all levels * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values to the framework The platform also must define the macros PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power domains have been requested to enter a retention or power down state. The PSCI implementation does not interpret the local power states defined by the platform. The only constraint is that the PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE. For a power domain tree, the generic implementation maintains an array of local power states. These are the states requested for each power domain by all the cores contained within the domain. During a request to place multiple power domains in a low power state, the platform is passed an array of requested power-states for each power domain through the plat_get_target_pwr_state() API. It coordinates amongst these states to determine a target local power state for the power domain. A default weak implementation of this API is provided in the platform layer which returns the minimum of the requested power-states back to the PSCI state coordination. Finally, the plat_psci_ops power management handlers are passed the target local power states for each affected power domain using the generic representation described above. The platform executes operations specific to these target states. The platform power management handler for placing a power domain in a standby state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for placing a core power domain into a standby or retention state should now be used to only place the core power domain in a standby or retention state. The extended state-id power state format can be enabled by setting the build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default. Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
-
Soby Mathew authored
This patch removes the assumption in the current PSCI implementation that MPIDR based affinity levels map directly to levels in a power domain tree. This enables PSCI generic code to support complex power domain topologies as envisaged by PSCIv1.0 specification. The platform interface for querying the power domain topology has been changed such that: 1. The generic PSCI code does not generate MPIDRs and use them to query the platform about the number of power domains at a particular power level. The platform now provides a description of the power domain tree on the SoC through a data structure. The existing platform APIs to provide the same information have been removed. 2. The linear indices returned by plat_core_pos_by_mpidr() and plat_my_core_pos() are used to retrieve core power domain nodes from the power domain tree. Power domains above the core level are accessed using a 'parent' field in the tree node descriptors. The platform describes the power domain tree in an array of 'unsigned char's. The first entry in the array specifies the number of power domains at the highest power level implemented in the system. Each susbsequent entry corresponds to a power domain and contains the number of power domains that are its direct children. This array is exported to the generic PSCI implementation via the new `plat_get_power_domain_tree_desc()` platform API. The PSCI generic code uses this array to populate its internal power domain tree using the Breadth First Search like algorithm. The tree is split into two arrays: 1. An array that contains all the core power domain nodes 2. An array that contains all the other power domain nodes A separate array for core nodes allows certain core specific optimisations to be implemented e.g. remove the bakery lock, re-use per-cpu data framework for storing some information. Entries in the core power domain array are allocated such that the array index of the domain is equal to the linear index returned by plat_core_pos_by_mpidr() and plat_my_core_pos() for the MPIDR corresponding to that domain. This relationship is key to be able to use an MPIDR to find the corresponding core power domain node, traverse to higher power domain nodes and index into arrays that contain core specific information. An introductory document has been added to briefly describe the new interface. Change-Id: I4b444719e8e927ba391cae48a23558308447da13
-
Soby Mathew authored
This patch introduces new platform APIs and context management helper APIs to support the new topology framework based on linear core position. This framework will be introduced in the follwoing patch and it removes the assumption that the MPIDR based affinity levels map directly to levels in a power domain tree. The new platforms APIs and context management helpers based on core position are as described below: * plat_my_core_pos() and plat_core_pos_by_mpidr() These 2 new mandatory platform APIs are meant to replace the existing 'platform_get_core_pos()' API. The 'plat_my_core_pos()' API returns the linear index of the calling core and 'plat_core_pos_by_mpidr()' returns the linear index of a core specified by its MPIDR. The latter API will also validate the MPIDR passed as an argument and will return an error code (-1) if an invalid MPIDR is passed as the argument. This enables the caller to safely convert an MPIDR of another core to its linear index without querying the PSCI topology tree e.g. during a call to PSCI CPU_ON. Since the 'plat_core_pos_by_mpidr()' API verifies an MPIDR, which is always platform specific, it is no longer possible to maintain a default implementation of this API. Also it might not be possible for a platform port to verify an MPIDR before the C runtime has been setup or the topology has been initialized. This would prevent 'plat_core_pos_by_mpidr()' from being callable prior to topology setup. As a result, the generic Trusted Firmware code does not call this API before the topology setup has been done. The 'plat_my_core_pos' API should be able to run without a C runtime. Since this API needs to return a core position which is equal to the one returned by 'plat_core_pos_by_mpidr()' API for the corresponding MPIDR, this too cannot have default implementation and is a mandatory API for platform ports. These APIs will be implemented by the ARM reference platform ports later in the patch stack. * plat_get_my_stack() and plat_set_my_stack() These APIs are the stack management APIs which set/return stack addresses appropriate for the calling core. These replace the 'platform_get_stack()' and 'platform_set_stack()' APIs. A default weak MP version and a global UP version of these APIs are provided for the platforms. * Context management helpers based on linear core position A set of new context management(CM) helpers viz cm_get_context_by_index(), cm_set_context_by_index(), cm_init_my_context() and cm_init_context_by_index() are defined which are meant to replace the old helpers which took MPIDR as argument. The old CM helpers are implemented based on the new helpers to allow for code consolidation and will be deprecated once the switch to the new framework is done. Change-Id: I89758632b370c2812973a4b2efdd9b81a41f9b69
-
- 05 Aug, 2015 3 commits
-
-
Soby Mathew authored
As per Section 4.2.2. in the PSCI specification, the term "affinity" is used in the context of describing the hierarchical arrangement of cores. This often, but not always, maps directly to the processor power domain topology of the system. The current PSCI implementation assumes that this is always the case i.e. MPIDR based levels of affinity always map to levels in a power domain topology tree. This patch is the first in a series of patches which remove this assumption. It removes all occurences of the terms "affinity instances and levels" when used to describe the power domain topology. Only the terminology is changed in this patch. Subsequent patches will implement functional changes to remove the above mentioned assumption. Change-Id: Iee162f051b228828310610c5a320ff9d31009b4e
-
Soby Mathew authored
This patch optimizes the invocation of the platform power management hooks for ON, OFF and SUSPEND such that they are called only for the highest affinity level which will be powered off/on. Earlier, the hooks were being invoked for all the intermediate levels as well. This patch requires that the platforms migrate to the new semantics of the PM hooks. It also removes the `state` parameter from the pm hooks as the `afflvl` parameter now indicates the highest affinity level for which power management operations are required. Change-Id: I57c87931d8a2723aeade14acc710e5b78ac41732
-
Soby Mathew authored
This patch creates a copy of the existing PSCI files and related psci.h and platform.h header files in a new `PSCI1.0` directory. The changes for the new PSCI power domain topology and extended state-ID frameworks will be added incrementally to these files. This incremental approach will aid in review and in understanding the changes better. Once all the changes have been introduced, these files will replace the existing PSCI files. Change-Id: Ibb8a52e265daa4204e34829ed050bddd7e3316ff
-
- 05 Mar, 2015 1 commit
-
-
Sandrine Bailleux authored
All coding style violations have been fixed in a previous patch and since then, each individual patch has been checked in this regard. However, the latest version of the checkpatch.pl script from the Linux kernel is more advanced and it is able to flag new errors in the Trusted Firmware codebase. This patch fixes them. Change-Id: I1f332f2440984be85d36b231bb83260368987077
-
- 26 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch implements conditional checks in psci_smc_handler() to verify that the psci function invoked by the caller is supported by the platform or SPD implementation. The level of support is saved in the 'psci_caps' variable. This check allows the PSCI implementation to return an error early. As a result of the above verification, the checks performed within the psci handlers for the pm hooks are now removed and replaced with assertions. Change-Id: I9b5b646a01d8566dc28c4d77dd3aa54e9bf3981a
-
- 23 Jan, 2015 5 commits
-
-
Soby Mathew authored
This patch adds support to return SUCCESS if a pending interrupt is detected during a CPU_SUSPEND call to a power down state. The check is performed as late as possible without losing the ability to return to the caller. This reduces the overhead incurred by a CPU in undergoing a complete power cycle when a wakeup interrupt is already pending. Fixes ARM-Software/tf-issues#102 Change-Id: I1aff04a74b704a2f529734428030d1d10750fd4b
-
Soby Mathew authored
This patch allows the platform to validate the power_state and entrypoint information from the normal world early on in PSCI calls so that we can return the error safely. New optional pm_ops hooks `validate_power_state` and `validate_ns_entrypoint` are introduced to do this. As a result of these changes, all the other pm_ops handlers except the PSCI_ON handler are expected to be successful. Also, the PSCI implementation will now assert if a PSCI API is invoked without the corresponding pm_ops handler being registered by the platform. NOTE : PLATFORM PORTS WILL BREAK ON MERGE OF THIS COMMIT. The pm hooks have 2 additional optional callbacks and the return type of the other hooks have changed. Fixes ARM-Software/tf-issues#229 Change-Id: I036bc0cff2349187c7b8b687b9ee0620aa7e24dc
-
Soby Mathew authored
This patch adds support to save the "power state" parameter before the affinity level specific handlers are called in a CPU_SUSPEND call. This avoids the need to pass the power_state as a parameter to the handlers and Secure Payload Dispatcher (SPD) suspend spd_pm_ops. The power_state arguments in the spd_pm_ops operations are now reserved and must not be used. The SPD can query the relevant power_state fields by using the psci_get_suspend_afflvl() & psci_get_suspend_stateid() APIs. NOTE: THIS PATCH WILL BREAK THE SPD_PM_OPS INTERFACE. HENCE THE SECURE PAYLOAD DISPATCHERS WILL NEED TO BE REWORKED TO USE THE NEW INTERFACE. Change-Id: I1293d7dc8cf29cfa6a086a009eee41bcbf2f238e
-
Soby Mathew authored
This patch replaces the internal psci_save_ns_entry() API with a psci_get_ns_ep_info() API. The new function splits the work done by the previous one such that it populates and returns an 'entry_point_info_t' structure with the information to enter the normal world upon completion of the CPU_SUSPEND or CPU_ON call. This information is used to populate the non-secure context structure separately. This allows the new internal API `psci_get_ns_ep_info` to return error and enable the code to return safely. Change-Id: Ifd87430a4a3168eac0ebac712f59c93cbad1b231
-
Soby Mathew authored
This patch removes the non-secure entry point information being passed to the platform pm_ops which is not needed. Also, it removes the `mpidr` parameter for platform pm hooks which are meant to do power management operations only on the current cpu. NOTE: PLATFORM PORTS MUST BE UPDATED AFTER MERGING THIS COMMIT. Change-Id: If632376a990b7f3b355f910e78771884bf6b12e7
-
- 19 Aug, 2014 4 commits
-
-
Achin Gupta authored
This patch implements the following cleanups in PSCI generic code: 1. It reworks the affinity level specific handlers in the PSCI implementation such that. a. Usage of the 'rc' local variable is restricted to only where it is absolutely needed b. 'plat_state' local variable is defined only when a direct invocation of plat_get_phys_state() does not suffice. c. If a platform handler is not registered then the level specific handler returns early. 2. It limits the use of the mpidr_aff_map_nodes_t typedef to declaration of arrays of the type instead of using it in function prototypes as well. 3. It removes dangling declarations of __psci_cpu_off() and __psci_cpu_suspend(). The definitions of these functions were removed in earlier patches. Change-Id: I51e851967c148be9c2eeda3a3c41878f7b4d6978
-
Achin Gupta authored
This patch adds APIs to find, save and retrieve the highest affinity level which will enter or exit from the physical OFF state during a PSCI power management operation. The level is stored in per-cpu data. It then reworks the PSCI implementation to perform cache maintenance only when the handler for the highest affinity level to enter/exit the OFF state is called. For example. during a CPU_SUSPEND operation, state management is done prior to calling the affinity level specific handlers. The highest affinity level which will be turned off is determined using the psci_find_max_phys_off_afflvl() API. This level is saved using the psci_set_max_phys_off_afflvl() API. In the code that does generic handling for each level, prior to performing cache maintenance it is first determined if the current affinity level matches the value returned by psci_get_max_phys_off_afflvl(). Cache maintenance is done if the values match. This change allows the last CPU in a cluster to perform cache maintenance independently. Earlier, cache maintenance was started in the level 0 handler and finished in the level 1 handler. This change in approach will facilitate implementation of tf-issues#98. Change-Id: I57233f0a27b3ddd6ddca6deb6a88b234525b0ae6
-
Achin Gupta authored
This patch pulls out state management from the affinity level specific handlers into the top level functions specific to the operation i.e. psci_afflvl_suspend(), psci_afflvl_on() etc. In the power down path this patch will allow an affinity instance at level X to determine the state that an affinity instance at level X+1 will enter before the level specific handlers are called. This will be useful to determine whether a CPU is the last in the cluster during a suspend/off request and so on. Similarly, in the power up path this patch will allow an affinity instance at level X to determine the state that an affinity instance at level X+1 has emerged from, even after the level specific handlers have been called. This will be useful in determining whether a CPU is the first in the cluster during a on/resume request and so on. As before, while powering down, state is updated before the level specific handlers are invoked so that they can perform actions based upon their target state. While powering up, state is updated after the level specific handlers have been invoked so that they can perform actions based upon the state they emerged from. Change-Id: I40fe64cb61bb096c66f88f6d493a1931243cfd37
-
Achin Gupta authored
This patch adds a structure defined by the PSCI service to the per-CPU data array. The structure is used to save the 'power_state' parameter specified during a 'cpu_suspend' call on the current CPU. This parameter was being saved in the cpu node in the PSCI topology tree earlier. The existing API to return the state id specified during a PSCI CPU_SUSPEND call i.e. psci_get_suspend_stateid(mpidr) has been renamed to psci_get_suspend_stateid_by_mpidr(mpidr). The new psci_get_suspend_stateid() API returns the state id of the current cpu. The psci_get_suspend_afflvl() API has been changed to return the target affinity level of the current CPU. This was specified using the 'mpidr' parameter in the old implementation. The behaviour of the get_power_on_target_afflvl() has been tweaked such that traversal of the PSCI topology tree to locate the affinity instance node for the current CPU is done only in the debug build as it is an expensive operation. Change-Id: Iaad49db75abda471f6a82d697ee6e0df554c4caf
-
- 31 Jul, 2014 1 commit
-
-
Soby Mathew authored
This patch further optimizes the EL3 register state stored in cpu_context. The 2 registers which are removed from cpu_context are: * cntfrq_el0 is the system timer register which is writable only in EL3 and it can be programmed during cold/warm boot. Hence it need not be saved to cpu_context. * cptr_el3 controls access to Trace, Floating-point, and Advanced SIMD functionality and it is programmed every time during cold and warm boot. The current BL3-1 implementation does not need to modify the access controls during normal execution and hence they are expected to remain static. Fixes ARM-software/tf-issues#197 Change-Id: I599ceee3b73a7dcfd37069fd41b60e3d397a7b18
-
- 28 Jul, 2014 1 commit
-
-
Achin Gupta authored
This patch removes the allocation of memory for coherent stacks, associated accessor function and some dead code which called the accessor function. It also updates the porting guide to remove the concept and the motivation behind using stacks allocated in coherent memory. Fixes ARM-software/tf-issues#198 Change-Id: I00ff9a04f693a03df3627ba39727e3497263fc38
-
- 19 Jul, 2014 1 commit
-
-
Achin Gupta authored
This patch uses stacks allocated in normal memory to enable the MMU early in the warm boot path thus removing the dependency on stacks allocated in coherent memory. Necessary cache and stack maintenance is performed when a cpu is being powered down and up. This avoids any coherency issues that can arise from reading speculatively fetched stale stack memory from another CPUs cache. These changes affect the warm boot path in both BL3-1 and BL3-2. The EL3 system registers responsible for preserving the MMU state are not saved and restored any longer. Static values are used to program these system registers when a cpu is powered on or resumed from suspend. Change-Id: I8357e2eb5eb6c5f448492c5094b82b8927603784
-
- 25 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
Many of the interfaces internal to PSCI pass the current CPU MPIDR_EL1 value from function to function. This is not required, and with inline access to the system registers is less efficient than requiring the code to read that register whenever required. This patch remove the mpidr parameter from the affected interfaces and reduces code in FVP BL3-1 size by 160 bytes. Change-Id: I16120a7c6944de37232016d7e109976540775602
-
- 23 Jun, 2014 2 commits
-
-
Andrew Thoelke authored
psci_suspend_context is an array of cache-line aligned structures containing the single power_state integer per cpu. This array is the only structure indexed by the aff_map_node.data integer. This patch saves 2KB of BL3-1 memory by placing the CPU power_state value directly in the aff_map_node structure. As a result, this value is now never cached and the cache clean when writing the value is no longer required. Fixes ARM-software/tf-issues#195 Change-Id: Ib4c70c8f79eed295ea541e7827977a588a19ef9b
-
Andrew Thoelke authored
Consolidate all BL3-1 CPU context initialization for cold boot, PSCI and SPDs into two functions: * The first uses entry_point_info to initialize the relevant cpu_context for first entry into a lower exception level on a CPU * The second populates the EL1 and EL2 system registers as needed from the cpu_context to ensure correct entry into the lower EL This patch alters the way that BL3-1 determines which exception level is used when first entering EL1 or EL2 during cold boot - this is now fully determined by the SPSR value in the entry_point_info for BL3-3, as set up by the platform code in BL2 (or otherwise provided to BL3-1). In the situation that EL1 (or svc mode) is selected for a processor that supports EL2, the context management code will now configure all essential EL2 register state to ensure correct execution of EL1. This allows the platform code to run non-secure EL1 payloads directly without requiring a small EL2 stub or OS loader. Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
-
- 17 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
The crash reporting support and early initialisation of the cpu_data allow the runtime_exception vectors to be used from the start in BL3-1, removing the need for the additional early_exception vectors and 2KB of code from BL3-1. Change-Id: I5f8997dabbaafd8935a7455910b7db174a25d871
-
- 16 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
This patch prepares the per-cpu pointer cache for wider use by: * renaming the structure to cpu_data and placing in new header * providing accessors for this CPU, or other CPUs * splitting the initialization of the TPIDR pointer from the initialization of the cpu_data content * moving the crash stack initialization to a crash stack function * setting the TPIDR pointer very early during boot Change-Id: Icef9004ff88f8eb241d48c14be3158087d7e49a3
-
- 11 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
All callers of cm_get_context() pass the calling CPU MPIDR to the function. Providing a specialised version for the current CPU results in a reduction in code size and better readability. The current function has been renamed to cm_get_context_by_mpidr() and the existing name is now used for the current-CPU version. The same treatment has been done to cm_set_context(), although only both forms are used at present in the PSCI and TSPD code. Change-Id: I91cb0c2f7bfcb950a045dbd9ff7595751c0c0ffb
-
- 16 May, 2014 1 commit
-
-
Soby Mathew authored
This patch implements the register reporting when unhandled exceptions are taken in BL3-1. Unhandled exceptions will result in a dump of registers to the console, before halting execution by that CPU. The Crash Stack, previously called the Exception Stack, is used for this activity. This stack is used to preserve the CPU context and runtime stack contents for debugging and analysis. This also introduces the per_cpu_ptr_cache, referenced by tpidr_el3, to provide easy access to some of BL3-1 per-cpu data structures. Initially, this is used to provide a pointer to the Crash stack. panic() now prints the the error file and line number in Debug mode and prints the PC value in release mode. The Exception Stack is renamed to Crash Stack with this patch. The original intention of exception stack is no longer valid since we intend to support several valid exceptions like IRQ and FIQ in the trusted firmware context. This stack is now utilized for dumping and reporting the system state when a crash happens and hence the rename. Fixes ARM-software/tf-issues#79 Improve reporting of unhandled exception Change-Id: I260791dc05536b78547412d147193cdccae7811a
-
- 07 May, 2014 1 commit
-
-
Andrew Thoelke authored
The current code does not always use data and instruction barriers as required by the architecture and frequently uses barriers excessively due to their inclusion in all of the write_*() helper functions. Barriers should be used explicitly in assembler or C code when modifying processor state that requires the barriers in order to enable review of correctness of the code. This patch removes the barriers from the helper functions and introduces them as necessary elsewhere in the code. PORTING NOTE: check any port of Trusted Firmware for use of system register helper functions for reliance on the previous barrier behaviour and add explicit barriers as necessary. Fixes ARM-software/tf-issues#92 Change-Id: Ie63e187404ff10e0bdcb39292dd9066cb84c53bf
-
- 06 May, 2014 4 commits
-
-
Dan Handley authored
Reduce the number of header files included from other header files as much as possible without splitting the files. Use forward declarations where possible. This allows removal of some unnecessary "#ifndef __ASSEMBLY__" statements. Also, review the .c and .S files for which header files really need including and reorder the #include statements alphabetically. Fixes ARM-software/tf-issues#31 Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
-
Dan Handley authored
Add tag names to all unnamed structs in header files. This allows forward declaration of structs, which is necessary to reduce header file nesting (to be implemented in a subsequent commit). Also change the typedef names across the codebase to use the _t suffix to be more conformant with the Linux coding style. The coding style actually prefers us not to use typedefs at all but this is considered a step too far for Trusted Firmware. Also change the IO framework structs defintions to use typedef'd structs to be consistent with the rest of the codebase. Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
-
Dan Handley authored
Move the BL function prototypes out of arch.h and into the appropriate header files to allow more efficient header file inclusion. Create new BL private header files where there is no sensible existing header file. Change-Id: I45f3e10b72b5d835254a6f25a5e47cf4cfb274c3
-
Dan Handley authored
Make codebase consistent in its use of #include "" syntax for user includes and #include <> syntax for system includes. Fixes ARM-software/tf-issues#65 Change-Id: If2f7c4885173b1fd05ac2cde5f1c8a07000c7a33
-
- 29 Apr, 2014 1 commit
-
-
Vikram Kanigiri authored
This patch saves the 'power_state' parameter prior to suspending a cpu and invalidates it upon its resumption. The 'affinity level' and 'state id' fields of this parameter can be read using a set of public and private apis. Validation of power state parameter is introduced which checks for SBZ bits are zero. This change also takes care of flushing the parameter from the cache to main memory. This ensures that it is available after cpu reset when the caches and mmu are turned off. The earlier support for saving only the 'affinity level' field of the 'power_state' parameter has also been reworked. Fixes ARM-Software/tf-issues#26 Fixes ARM-Software/tf-issues#130 Change-Id: Ic007ccb5e39bf01e0b67390565d3b4be33f5960a
-
- 21 Mar, 2014 1 commit
-
-
Vikram Kanigiri authored
Each ARM Trusted Firmware image should know in which EL it is running and it should use the corresponding register directly instead of reading currentEL and knowing which asm register to read/write Change-Id: Ief35630190b6f07c8fbb7ba6cb20db308f002945
-
- 20 Mar, 2014 1 commit
-
-
Jeenu Viswambharan authored
This patch implements ARM Standard Service as a runtime service and adds support for call count, UID and revision information SMCs. The existing PSCI implementation is subsumed by the Standard Service calls and all PSCI calls are therefore dispatched by the Standard Service to the PSCI handler. At present, PSCI is the only specification under Standard Service. Thus call count returns the number of PSCI calls implemented. As this is the initial implementation, a revision number of 0.1 is returned for call revision. Fixes ARM-software/tf-issues#62 Change-Id: I6d4273f72ad6502636efa0f872e288b191a64bc1
-
- 26 Feb, 2014 1 commit
-
-
Jeenu Viswambharan authored
At present SPD power management hooks and BL3-2 entry are implemented using weak references. This would have the handlers bound and registered with the core framework at build time, but leaves them dangling if a service fails to initialize at runtime. This patch replaces implementation by requiring runtime handlers to register power management and deferred initialization hooks with the core framework at runtime. The runtime services are to register the hooks only as the last step, after having all states successfully initialized. Change-Id: Ibe788a2a381ef39aec1d4af5ba02376e67269782
-
- 20 Feb, 2014 1 commit
-
-
Achin Gupta authored
This patch implements a set of handlers in the SPD which are called by the PSCI runtime service upon receiving a power management operation. These handlers in turn pass control to the Secure Payload image if required before returning control to PSCI. This ensures that the Secure Payload has complete visibility of all power transitions in the system and can prepare accordingly. Change-Id: I2d1dba5629b7cf2d53999d39fe807dfcf3f62fe2
-