- 27 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch fixes the offset of GICD_IROUTER register defined in gicv3.h. Although the GICv3 documention mentions that the offset for this register is 0x6100-0x7FD8, the offset calculation for an interrupt id `n` is : 0x6000 + 8n, where n >= 32 This requires the offset for GICD_IROUTER to be defined as 0x6000. Fixes ARM-software/tf-issues#410 Change-Id: If9e91e30d946afe7f1f60fea4f065c7567093fa8
-
- 18 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch reworks type usage in generic code, drivers and ARM platform files to make it more portable. The major changes done with respect to type usage are as listed below: * Use uintptr_t for storing address instead of uint64_t or unsigned long. * Review usage of unsigned long as it can no longer be assumed to be 64 bit. * Use u_register_t for register values whose width varies depending on whether AArch64 or AArch32. * Use generic C types where-ever possible. In addition to the above changes, this patch also modifies format specifiers in print invocations so that they are AArch64/AArch32 agnostic. Only files related to upcoming feature development have been reworked. Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
-
- 25 May, 2016 1 commit
-
-
Soby Mathew authored
This patch adds the API `ccn_get_part0_id` to query the PART0 ID from the PERIPHERAL_ID 0 register in the CCN driver. This ID allows to distinguish the variant of CCN present on the system and possibly enable dynamic configuration of the IP based on the variant. Also added an assert in `ccn_master_to_rn_id_map()` to ensure that the master map bitfield provided by the platform is within the expected interface id. Change-Id: I92d2db7bd93a9be8a7fbe72a522cbcba0aba2d0e
-
- 12 Apr, 2016 1 commit
-
-
Yatharth Kochar authored
Currently the `tzc400_configure_region` and `tzc_dmc500_configure_region` functions uses uintptr_t as the data type for `region_top` and `region_base` variables, which will be converted to 32/64 bits for AArch32/AArch64 respectively. But the expectation is to keep these addresses at least 64 bit. This patch modifies the data types to make it at least 64 bit by using unsigned long long instead of uintptr_t for the `region_top` and `region_base` variables. It also modifies the associated macros `_tzc##fn_name##_write_region_xxx` accordingly. Change-Id: I4e3c6a8a39ad04205cf0f3bda336c3970b15a28b
-
- 31 Mar, 2016 2 commits
-
-
Vikram Kanigiri authored
The ARM CoreLink DMC-500 Dynamic Memory Controller provides the programmable address region control of a TrustZone Address Space Controller. The access permissions can be defined for eight separate address regions plus a background or default region. This patch adds a DMC-500 driver to define address regions and program their access permissions as per ARM 100131_0000_02_en (r0p0) document. Change-Id: I9d33120f9480d742bcf7937e4b876f9d40c727e6
-
Vikram Kanigiri authored
TrustZone protection can be programmed by both memory and TrustZone address space controllers like DMC-500 and TZC-400. These peripherals share a similar programmer's view. Furthermore, it is possible to have multiple instances of each type of peripheral in a system resulting in multiple programmer's views. For example, on the TZC-400 each of the 4 filter units can be enabled or disabled for each region. There is a single set of registers to program the region attributes. On the DMC-500, each filter unit has its own programmer's view resulting in multiple sets of registers to program the region attributes. The layout of the registers is almost the same across all these variations. Hence the existing driver in `tzc400\tzc400.c` is refactored into the new driver in `tzc\tzc400.c`. The previous driver file is still maintained for compatibility and it is now deprecated. Change-Id: Ieabd0528e244582875bc7e65029a00517671216d
-
- 12 Feb, 2016 1 commit
-
-
Haojian Zhuang authored
Add PL061 GPIO driver that is depend on gpio framework. Signed-off-by: Haojian Zhuang <haojian.zhuang@linaro.org>
-
- 09 Feb, 2016 2 commits
-
-
Soby Mathew authored
This patch moves the private GIC common accessors from `gic_common.h` to a new private header file `gic_common_private.h`. This patch also adds additional comments to GIC register accessors to highlight the fact that some of them access register values that correspond to multiple interrupt IDs. The convention used is that the `set`, `get` and `clr` accessors access and modify the values corresponding to a single interrupt ID whereas the `read` and `write` GIC register accessors access the raw GIC registers and it could correspond to multiple interrupt IDs depending on the register accessed. Change-Id: I2643ecb2533f01e3d3219fcedfb5f80c120622f9
-
Soby Mathew authored
The code to set the interrupt priority for secure interrupts in the new GICv2 and GICv3 drivers is incorrect. The setup code to configure interrupt priorities of secure interrupts, one interrupt at a time, used gicd_write_ipriorityr()/gicr_write_ipriority() function affecting 4 interrupts at a time. This bug did not manifest itself because all the secure interrupts were configured to the highest secure priority(0) during cold boot and the adjacent non secure interrupt priority would be configured later by the normal world. This patch introduces new accessors, gicd_set_ipriorityr() and gicr_set_ipriorityr(), for configuring priority one interrupt at a time and fixes the the setup code to use the new accessors. Fixes ARM-software/tf-issues#344 Change-Id: I470fd74d2b7fce7058b55d83f604be05a27e1341
-
- 21 Jan, 2016 1 commit
-
-
Juan Castillo authored
The PL011 TRM (ARM DDI 0183G) specifies that the UART must be disabled before any of the control registers are programmed. The PL011 driver included in TF does not disable the UART, so the initialization in BL2 and BL31 is violating this requirement (and potentially in BL1 if the UART is enabled after reset). This patch modifies the initialization function in the PL011 console driver to disable the UART before programming the control registers. Register clobber list and documentation updated. Fixes ARM-software/tf-issues#300 Change-Id: I839b2d681d48b03f821ac53663a6a78e8b30a1a1
-
- 14 Jan, 2016 1 commit
-
-
Soren Brinkmann authored
Use the new __deprecated macro from the generic cdefs header and remove the deprecated __warn_deprecated. Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
-
- 10 Dec, 2015 1 commit
-
-
Juan Castillo authored
The Server Base System Architecture document (ARM-DEN-0029) specifies a generic UART device. The programmer's view of this generic UART is a subset of the ARM PL011 UART. However, the current PL011 driver in Trusted Firmware uses some features that are outside the generic UART specification. This patch modifies the PL011 driver to exclude features outside the SBSA generic UART specification by setting the boolean build option 'PL011_GENERIC_UART=1'. Default value is 0 (use full PL011 features). User guide updated. Fixes ARM-software/tf-issues#216 Change-Id: I6e0eb86f9d69569bc3980fb57e70d6da5d91a737
-
- 08 Dec, 2015 1 commit
-
-
Vikram Kanigiri authored
Add compile time `__warn_deprecated` flag to public api's in CCI-400 specific driver so that user is aware of the driver being deprecated. Similarly, it also adds an error message when `ERROR_DEPRECATED` is set to prevent succesful compilation if CCI-400 specific driver is used. Change-Id: Id7e61a560262abc01cbbd432ca85b9bf448a194d
-
- 04 Dec, 2015 1 commit
-
-
Soby Mathew authored
This patch renames the GICv3 interrupt group macros from INT_TYPE_G0, INT_TYPE_G1S and INT_TYPE_G1NS to INTR_GROUP0, INTR_GROUP1S and INTR_GROUP1NS respectively. Change-Id: I40c66f589ce6234fa42205adcd91f7d6ad8f33d4
-
- 27 Nov, 2015 2 commits
-
-
Vikram Kanigiri authored
The TZC-400 driver implementation incorrectly uses the component ID registers to detect the TZC-400 peripheral. As all ARM peripherals share the same component ID, it doesn't allow to uniquely identify the TZC-400 peripheral. This patch fixes the TZC-400 driver by relying on the `part_number_0` and `part_number_1` fields in the `PID` registers instead. The `tzc_read_component_id` function has been replaced by `tzc_read_peripheral_id`, which reads the 'part_number' values and compares them with the TZC-400 peripheral ID. Also, it adds a debug assertion to detect when the TZC driver initialisation function is called multiple times. Change-Id: I35949f6501a51c0a794144cd1c3a6db62440dce6
-
Juan Castillo authored
Based on SP805 Programmer's model (ARM DDI 0270B). This driver provides three public APIs: void sp805_start(uintptr_t base, unsigned long ticks); void sp805_stop(uintptr_t base); void sp805_refresh(uintptr_t base, unsigned long ticks); Upon start, the watchdog starts counting down from the number of ticks specified. When the count reaches 0 an interrupt is triggered. The watchdog restarts counting down from the number of ticks specified. If the count reaches 0 again, the system is reset. A mechanism to handle the interrupt has not been implemented. Instead, the API to refresh the watchdog should be used instead to prevent a system reset. Change-Id: I799d53f8d1213b10b341a4a67fde6486e89a3dab
-
- 26 Nov, 2015 3 commits
-
-
Soby Mathew authored
This patch deprecates the legacy ARM GIC driver and related header files (arm_gic.h, gic_v2.h, gic_v3.h). For GICv2 systems, platform ports should use the GICv2 driver in include/drivers/arm/gicv2.h and for GICv3 systems, platform ports should use the GICv3 driver in include/drivers/arm/gicv3.h NOTE: The ARM Legacy GIC drivers have been deprecated with this patch. Platform ports are encouraged to migrate to the new GIC drivers. Change-Id: Ic0460ef0427b54a6aac476279a7f29b81943e942
-
Soby Mathew authored
This patch adds a driver for ARM GICv2 systems, example GIC-400. Unlike the existing GIC driver in `include/drivers/arm/arm_gic.h`, this driver is optimised for GICv2 and does not support GICv3 systems in GICv2 compatibility mode. The driver interface has been implemented in `drivers/arm/gic/v2/gicv2_main.c`. The corresponding header is in `include/drivers/arm/gicv2.h`. Helper functions are implemented in `drivers/arm/gic/v2/gicv2_helpers.c` and are accessible through the `drivers/arm/gic/v2/gicv2_private.h` header. Change-Id: I09fffa4e621fb99ba3c01204839894816cd89a2a
-
Achin Gupta authored
This patch adds a driver for ARM GICv3 systems that need to run software stacks where affinity routing is enabled across all privileged exception levels for both security states. This driver is a partial implementation of the ARM Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069A). The driver does not cater for legacy support of interrupts and asymmetric configurations. The existing GIC driver has been preserved unchanged. The common code for GICv2 and GICv3 systems has been refactored into a new file, `drivers/arm/gic/common/gic_common.c`. The corresponding header is in `include/drivers/arm/gic_common.h`. The driver interface is implemented in `drivers/arm/gic/v3/gicv3_main.c`. The corresponding header is in `include/drivers/arm/gicv3.h`. Helper functions are implemented in `drivers/arm/gic/v3/arm_gicv3_helpers.c` and are accessible through the `drivers/arm/gic/v3/gicv3_private.h` header. Change-Id: I8c3c834a1d049d05b776b4dcb76b18ccb927444a
-
- 28 Sep, 2015 1 commit
-
-
Sandrine Bailleux authored
The generic delay timer driver expects a pointer to a timer_ops_t structure containing the specific timer driver information. It doesn't make a copy of the structure, instead it just keeps the pointer. Therefore, this pointer must remain valid over time. The SP804 driver doesn't satisfy this requirement. The sp804_timer_init() macro creates a temporary instanciation of the timer_ops_t structure on the fly and passes it to the generic delay timer. When this temporary instanciation gets deallocated, the generic delay timer is left with a pointer to invalid data. This patch fixes this bug by statically allocating the SP804 timer_ops_t structure. Change-Id: I8fbf75907583aef06701e3fd9fabe0b2c9bc95bf
-
- 14 Sep, 2015 1 commit
-
-
Achin Gupta authored
This patch adds a device driver which can be used to program the following aspects of ARM CCN IP: 1. Specify the mapping between ACE/ACELite/ACELite+DVM/CHI master interfaces and Request nodes. 2. Add and remove master interfaces from the snoop and dvm domains. 3. Place the L3 cache in a given power state. 4. Configuring system adress map and enabling 3 SN striping mode of memory controller operation. Change-Id: I0f665c6a306938e5b66f6a92f8549b529aa8f325
-
- 11 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
Currently, on ARM platforms(ex. Juno) non-secure access to specific peripheral regions, config registers which are inside and outside CSS is done in the soc_css_security_setup(). This patch separates the CSS security setup from the SOC security setup in the css_security_setup(). The CSS security setup involves programming of the internal NIC to provide access to regions inside the CSS. This is needed only in Juno, hence Juno implements it in its board files as css_init_nic400(). Change-Id: I95a1fb9f13f9b18fa8e915eb4ae2f15264f1b060
-
- 09 Jul, 2015 1 commit
-
-
Juan Castillo authored
This patch changes the type of the base address parameter in the ARM device driver APIs to uintptr_t (GIC, CCI, TZC400, PL011). The uintptr_t type allows coverage of the whole memory space and to perform arithmetic operations on the addresses. ARM platform code has also been updated to use uintptr_t as GIC base address in the configuration. Fixes ARM-software/tf-issues#214 Change-Id: I1b87daedadcc8b63e8f113477979675e07d788f1
-
- 18 Jun, 2015 1 commit
-
-
Ryan Harkin authored
Add a delay timer driver for the ARM SP804 dual timer. This driver only uses the first timer, called timer 1 in the SP804 Technical Reference Manual (ARM DDI 0271D). To use this driver, the BSP must provide three constants: * The base address of the SP804 dual timer * The clock multiplier * The clock divider The BSP is responsible for calling sp804_timer_init(). The SP804 driver instantiates a constant timer_ops_t and calls the generic timer_init(). Change-Id: I49ba0a52bdf6072f403d1d0a20e305151d4bc086 Co-authored-by: Dan Handley <dan.handley@arm.com>
-
- 19 May, 2015 1 commit
-
-
Achin Gupta authored
The ARM GIC driver treats the entire contents of the GICC_HPPIR as the interrupt ID instead of just bits[9:0]. This could result in an SGI being treated as a Group 1 interrupt on a GICv2 system. This patch introduces a mask to retrieve only the ID from a read of GICC_HPPIR, GICC_IAR and similar registers. The value read from these registers is masked with this constant prior to use as an interrupt ID. Fixes ARM-software/tf-issues#306 Change-Id: Ie3885157de33b71df9781a41f6ef015a30c4608d
-
- 27 Apr, 2015 1 commit
-
-
Dan Handley authored
Region 0 is special in TZC-400. It is possible to set the access permissions for this but not the address range or filters to which the permissions apply. Add a function for setting the region 0 access permissions. Also add some VERBOSE logging and allow assembly files to include the TZC header. Change-Id: I4389261ba10a6e5e2e43ee93d55318dc507b6648
-
- 16 Mar, 2015 1 commit
-
-
Vikram Kanigiri authored
Even though both CCI-400 and CCI-500 IPs have different configurations with respect to the number and types of supported interfaces, their register offsets and programming sequences are similar. This patch creates a common driver for enabling and disabling snoop transactions and DVMs with both the IPs. New platform ports which implement one of these IPs should use this common driver. Existing platform ports which implement CCI-400 should migrate to the common driver as the standalone CCI-400 will be deprecated in the future. Change-Id: I3ccd0eb7b062922d2e4a374ff8c21e79fa357556
-
- 31 Oct, 2014 1 commit
-
-
Juan Castillo authored
This patch introduces several improvements to the ARM GIC driver: * In function gicd_set_itargetsr(), target CPU is specified using the same bit mask detailed in the GICD_ITARGETSRn register instead of the CPU linear ID, removing the dependency between bit position and linear ID in the platform porting. The current CPU bit mask may be obtained by reading GICD_ITARGETSR0. * PPIs and SGIs are initialized in arm_gic_pcpu_distif_setup(). SPIs are initialized in arm_gic_distif_setup(). * By default, non secure interrupts are assigned the maximum priority allowed to a non secure interrupt (defined by GIC_HIGHEST_NS_PRIORITY). * GICR base address is allowed to be NULL for GICv1 and GICv2. Change-Id: Ie2837fe860d43b2282e582dfdb13c39c6186f232
-
- 14 Oct, 2014 1 commit
-
-
Juan Castillo authored
This patch configures the TrustZone Controller in Juno to split the 2GB DDR-DRAM memory at 0x80000000 into Secure and Non-Secure regions: - Secure DDR-DRAM: top 16 MB, except for the last 2 MB which are used by the SCP for DDR retraining - Non-Secure DDR-DRAM: remaining DRAM starting at base address Build option PLAT_TSP_LOCATION selects the location of the secure payload (BL3-2): - 'tsram' : Trusted SRAM (default option) - 'dram' : Secure region in the DDR-DRAM (set by the TrustZone controller) The MMU memory map has been updated to give BL2 permission to load BL3-2 into the DDR-DRAM secure region. Fixes ARM-software/tf-issues#233 Change-Id: I6843fc32ef90aadd3ea6ac4c7f314f8ecbd5d07b
-
- 14 Aug, 2014 2 commits
-
-
Dan Handley authored
The TZC-400 driver previously allowed the possibility of multiple controller instances to be present in the same executable. This was unnecessary since there will only ever be one instance. This change simplifies the tzc_init() function to only take the base address argument needed by implementation, conforming to the driver initialization model of other drivers. It also hides some of the implementation details that were previously exposed by the API. The FVP port has been updated accordingly. THIS CHANGE REQUIRES ALL PLATFORM PORTS THAT USE THE TZC-400 DRIVER TO BE UPDATED Fixes ARM-software/tf-issues#181 Change-Id: I7b721edf947064989958d8f457d6462d92e742c8
-
Dan Handley authored
* Create cci_init() function in CCI-400 driver to allow platform to provide arguments needed by the driver (i.e. base address and cluster indices for the ACE slave interfaces). * Rename cci_(en|dis)able_coherency to cci_(en|dis)able_cluster_coherency to make it clear that the driver only enables/disables the coherency of CPU clusters and not other devices connected to the CCI-400. * Update FVP port to use new cci_init() function and remove unnecessary CCI defintions from platform_def.h. Also rename fvp_cci_setup() to fvp_cci_enable() to more clearly differentiate between CCI initialization and enabling. THIS CHANGE REQUIRES PLATFORM PORTS THAT USE THE CCI-400 DRIVER TO BE UPDATED Fixes ARM-software/tf-issues#168 Change-Id: I1946a51409b91217b92285b6375082619f607fec
-
- 28 Jul, 2014 4 commits
-
-
Juan Castillo authored
Assert a valid security state using the macro sec_state_is_valid(). Replace assert() with panic() in those cases that might arise because of runtime errors and not programming errors. Replace panic() with assert() in those cases that might arise because of programming errors. Fixes ARM-software/tf-issues#96 Change-Id: I51e9ef0439fd5ff5e0edfef49050b69804bf14d5
-
Soby Mathew authored
This patch adds the CPUECTLR_EL1 register and the CCI Snoop Control register to the list of registers being reported when an unhandled exception occurs. Change-Id: I2d997f2d6ef3d7fa1fad5efe3364dc9058f9f22c
-
Soby Mathew authored
This patch adds baud rate and UART clock frequency as parameters to the pl011 driver api console_init(). This allows each platform to specify UART clock and baud rate according to their specific hardware implementation. Fixes ARM-software/tf-issues#215 Change-Id: Id13eef70a1c530e709b34dd1e6eb84db0797ced2
-
Soby Mathew authored
This patch replaces the pl011 console family of functions with their equivalents defined in assembly. The baud rate is defined by the PL011_BAUDRATE macro and IBRD and FBRD values for pl011 are computed statically. This patch will enable us to invoke the console functions without the C Runtime Stack. Change-Id: Ic3f7b7370ded38bf9020bf746b362081b76642c7
-
- 09 Jul, 2014 1 commit
-
-
Dan Handley authored
Refactor the FVP gic code in plat/fvp/fvp_gic.c to be a generic ARM GIC driver in drivers/arm/gic/arm_gic.c. Provide the platform specific inputs in the arm_gic_setup() function so that the driver has no explicit dependency on platform code. Provide weak implementations of the platform interrupt controller API in a new file, plat/common/plat_gic.c. These simply call through to the ARM GIC driver. Move the only remaining FVP GIC function, fvp_gic_init() to plat/fvp/aarch64/fvp_common.c and remove plat/fvp/fvp_gic.c Fixes ARM-software/tf-issues#182 Change-Id: Iea82fe095fad62dd33ba9efbddd48c57717edd21
-
- 10 Jun, 2014 1 commit
-
-
Andrew Thoelke authored
Replace the current out-of-line assembler implementations of the system register and system instruction operations with inline assembler. This enables better compiler optimisation and code generation when accessing system registers. Fixes ARM-software/tf-issues#91 Change-Id: I149af3a94e1e5e5140a3e44b9abfc37ba2324476
-
- 23 May, 2014 1 commit
-
-
Dan Handley authored
Function declarations implicitly have external linkage so do not need the extern keyword. Change-Id: Ia0549786796d8bf5956487e8996450a0b3d79f32
-
- 22 May, 2014 2 commits
-
-
Achin Gupta authored
This patch introduces a set of functions which allow generic firmware code e.g. the interrupt management framework to access the platform interrupt controller. APIs for finding the type and id of the highest pending interrupt, acknowledging and EOIing an interrupt and finding the security state of an interrupt have been added. It is assumed that the platform interrupt controller implements the v2.0 of the ARM GIC architecture specification. Support for v3.0 of the specification for managing interrupts in EL3 and the platform port will be added in the future. Change-Id: Ib3a01c2cf3e3ab27806930f1be79db2b29f91bcf
-
Achin Gupta authored
This patch introduces a framework for registering interrupts routed to EL3. The interrupt routing model is governed by the SCR_EL3.IRQ and FIQ bits and the security state an interrupt is generated in. The framework recognizes three type of interrupts depending upon which exception level and security state they should be handled in i.e. Secure EL1 interrupts, Non-secure interrupts and EL3 interrupts. It provides an API and macros that allow a runtime service to register an handler for a type of interrupt and specify the routing model. The framework validates the routing model and uses the context management framework to ensure that it is applied to the SCR_EL3 prior to entry into the target security state. It saves the handler in internal data structures. An API is provided to retrieve the handler when an interrupt of a particular type is asserted. Registration is expected to be done once by the primary CPU. The same handler and routing model is used for all CPUs. Support for EL3 interrupts will be added to the framework in the future. A makefile flag has been added to allow the FVP port choose between ARM GIC v2 and v3 support in EL3. The latter version is currently unsupported. A framework for handling interrupts in BL3-1 will be introduced in subsequent patches. The default routing model in the absence of any handlers expects no interrupts to be routed to EL3. Change-Id: Idf7c023b34fcd4800a5980f2bef85e4b5c29e649
-