- 21 Sep, 2016 1 commit
-
-
Yatharth Kochar authored
This patch adds changes in ARM platform code to use new version of image loading. Following are the major changes: -Refactor the signatures for bl31_early_platform_setup() and arm_bl31_early_platform_setup() function to use `void *` instead of `bl31_params_t *`. -Introduce `plat_arm_bl2_handle_scp_bl2()` to handle loading of SCP_BL2 image from BL2. -Remove usage of reserve_mem() function from `arm_bl1_early_platform_setup()` -Extract BL32 & BL33 entrypoint info, from the link list passed by BL2, in `arm_bl31_early_platform_setup()` -Provides weak definitions for following platform functions: plat_get_bl_image_load_info plat_get_next_bl_params plat_flush_next_bl_params bl2_plat_handle_post_image_load -Instantiates a descriptor array for ARM platforms describing image and entrypoint information for `SCP_BL2`, `BL31`, `BL32` and `BL33` images. All the above changes are conditionally compiled using the `LOAD_IMAGE_V2` flag. Change-Id: I5e88b9785a3df1a2b2bbbb37d85b8e353ca61049
-
- 19 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch moves the `arm_common.c` file from `plat/arm/common/aarch64/` to the parent directory since the functions implemented in the file are not AArch64 specific. The platform makefiles are also modified for this change. Change-Id: I776d2e4958f59041476cf2f53a9adb5b2d304ee0
-
- 18 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch reworks type usage in generic code, drivers and ARM platform files to make it more portable. The major changes done with respect to type usage are as listed below: * Use uintptr_t for storing address instead of uint64_t or unsigned long. * Review usage of unsigned long as it can no longer be assumed to be 64 bit. * Use u_register_t for register values whose width varies depending on whether AArch64 or AArch32. * Use generic C types where-ever possible. In addition to the above changes, this patch also modifies format specifiers in print invocations so that they are AArch64/AArch32 agnostic. Only files related to upcoming feature development have been reworked. Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
-
- 08 Jul, 2016 3 commits
-
-
Sandrine Bailleux authored
This patch adds some verbose traces in the arm_setup_page_tables() function to print the extents of the different memory regions it maps. Change-Id: Ia3ae1053e7ebf3579601ff9238b0e3791eb1e9e4
-
Sandrine Bailleux authored
The arm_setup_page_tables() function used to expect a single set of addresses defining the extents of the whole read-only section, code and read-only data mixed up, which was mapped as executable. This patch changes this behaviour. arm_setup_page_tables() now expects 2 separate sets of addresses: - the extents of the code section; - the extents of the read-only data section. The code is mapped as executable, whereas the data is mapped as execute-never. New #defines have been introduced to identify the extents of the code and the read-only data section. Given that all BL images except BL1 share the same memory layout and linker script structure, these #defines are common across these images. The slight memory layout differences in BL1 have been handled by providing values specific to BL1. Note that this patch also affects the Xilinx platform port, which uses the arm_setup_page_tables() function. It has been updated accordingly, such that the memory mappings on this platform are unchanged. This is achieved by passing null values as the extents of the read-only data section so that it is ignored. As a result, the whole read-only section is still mapped as executable. Fixes ARM-software/tf-issues#85 Change-Id: I1f95865c53ce6e253a01286ff56e0aa1161abac5
-
Sandrine Bailleux authored
This patch introduces the arm_setup_page_tables() function to set up page tables on ARM platforms. It replaces the arm_configure_mmu_elx() functions and does the same thing except that it doesn't enable the MMU at the end. The idea is to reduce the amount of per-EL code that is generated by the C preprocessor by splitting the memory regions definitions and page tables creation (which is generic) from the MMU enablement (which is the only per-EL configuration). As a consequence, the call to the enable_mmu_elx() function has been moved up into the plat_arch_setup() hook. Any other ARM standard platforms that use the functions `arm_configure_mmu_elx()` must be updated. Change-Id: I6f12a20ce4e5187b3849a8574aac841a136de83d
-
- 03 Jun, 2016 1 commit
-
-
Sandrine Bailleux authored
Building TF with ERROR_DEPRECATED=1 fails because of a missing semi-column. This patch fixes this syntax error. Change-Id: I98515840ce74245b0a0215805f85c8e399094f68
-
- 20 May, 2016 1 commit
-
-
Antonio Nino Diaz authored
Replaced plat_get_syscnt_freq by plat_get_syscnt_freq2 on all upstream platforms. Change-Id: I3248f3f65a16dc5e9720012a05c35b9e3ba6abbe
-
- 26 Apr, 2016 1 commit
-
-
Yatharth Kochar authored
This patch puts the definition of `plat_get_syscnt_freq()` under `#ifdef ARM_SYS_CNTCTL_BASE` in arm_common.c file. This is the fix for compilation error introduced by commit-id `749ade45`, for platforms that use arm_common.c but do not provide a memory mapped interface to the generic counter. Fixes ARM-software/tf-issues#395 Change-Id: I2f2b10bd9500fa15308541ccb15829306a76a745
-
- 21 Apr, 2016 1 commit
-
-
Yatharth Kochar authored
This patch moves the definition for `plat_get_syscnt_freq()` from arm_bl31_setup.c to arm_common.c. This could be useful in case a delay timer needs to be installed based on the generic timer in other BLs. This patch also modifies the return type for this function from `uint64_t` to `unsigned long long` within ARM and other platform files. Change-Id: Iccdfa811948e660d4fdcaae60ad1d700e4eda80d
-
- 01 Apr, 2016 2 commits
-
-
Soren Brinkmann authored
Make the timer configuration conditional on the optional interface being available. Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
-
Soby Mathew authored
This patch modifies the return type of the platform API `plat_get_ns_image_entrypoint()` from `unsigned long` to `uintptr_t` in accordance with the coding guidelines. Change-Id: Icb4510ca98b706aa4d535fe27e203394184fb4ca
-
- 16 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
ARM Trusted Firmware supports 2 different interconnect peripheral drivers: CCI and CCN. ARM platforms are implemented using either of the interconnect peripherals. This patch adds a layer of abstraction to help ARM platform ports to choose the right interconnect driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been implemented to initialise an interconnect and for entering/exiting a cluster from coherency. These functions are prefixed as "plat_arm_interconnect_". Weak definitions of these functions have been provided for each type of driver. 2.`plat_print_interconnect_regs` macro used for printing CCI registers is moved from a common arm_macros.S to cci_macros.S. 3. The `ARM_CONFIG_HAS_CCI` flag used in `arm_config_flags` structure is renamed to `ARM_CONFIG_HAS_INTERCONNECT`. Change-Id: I02f31184fbf79b784175892d5ce1161b65a0066c
-
- 15 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
Functions to configure the MMU in S-EL1 and EL3 on ARM platforms expect each platform to export its memory map in the `plat_arm_mmap` data structure. This approach does not scale well in case the memory map cannot be determined until runtime. To cater for this possibility, this patch introduces the plat_arm_get_mmap() API. It returns a reference to the `plat_arm_mmap` by default but can be overridden by a platform if required. Change-Id: Idae6ad8fdf40cdddcd8b992abc188455fa047c74
-
- 21 Jan, 2016 1 commit
-
-
Juan Castillo authored
The PL011 TRM (ARM DDI 0183G) specifies that the UART must be disabled before any of the control registers are programmed. The PL011 driver included in TF does not disable the UART, so the initialization in BL2 and BL31 is violating this requirement (and potentially in BL1 if the UART is enabled after reset). This patch modifies the initialization function in the PL011 console driver to disable the UART before programming the control registers. Register clobber list and documentation updated. Fixes ARM-software/tf-issues#300 Change-Id: I839b2d681d48b03f821ac53663a6a78e8b30a1a1
-
- 20 Jan, 2016 1 commit
-
-
Juan Castillo authored
Currently, Trusted Firmware on ARM platforms unlocks access to the timer frame registers that will be used by the Non-Secure world. This unlock operation should be done by the Non-Secure software itself, instead of relying on secure firmware settings. This patch adds a new ARM specific build option 'ARM_CONFIG_CNTACR' to unlock access to the timer frame by setting the corresponding bits in the CNTACR<N> register. The frame id <N> is defined by 'PLAT_ARM_NSTIMER_FRAME_ID'. Default value is true (unlock timer access). Documentation updated accordingly. Fixes ARM-software/tf-issues#170 Change-Id: Id9d606efd781e43bc581868cd2e5f9c8905bdbf6
-
- 14 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch removes the dash character from the image name, to follow the image terminology in the Trusted Firmware Wiki page: https://github.com/ARM-software/arm-trusted-firmware/wiki Changes apply to output messages, comments and documentation. non-ARM platform files have been left unmodified. Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
-
- 30 Oct, 2015 1 commit
-
-
Soby Mathew authored
This patch adds the capability to power down at system power domain level on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers are modified to add support for power management operations at system power domain level. A new helper for populating `get_sys_suspend_power_state` handler in plat_psci_ops is defined. On entering the system suspend state, the SCP powers down the SYSTOP power domain on the SoC and puts the memory into retention mode. On wakeup from the power down, the system components on the CSS will be reinitialized by the platform layer and the PSCI client is responsible for restoring the context of these system components. According to PSCI Specification, interrupts targeted to cores in PSCI CPU SUSPEND should be able to resume it. On Juno, when the system power domain is suspended, the GIC is also powered down. The SCP resumes the final core to be suspend when an external wake-up event is received. But the other cores cannot be woken up by a targeted interrupt, because GIC doesn't forward these interrupts to the SCP. Due to this hardware limitation, we down-grade PSCI CPU SUSPEND requests targeted to the system power domain level to cluster power domain level in `juno_validate_power_state()` and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c. A system power domain resume helper `arm_system_pwr_domain_resume()` is defined for ARM standard platforms which resumes/re-initializes the system components on wakeup from system suspend. The security setup also needs to be done on resume from system suspend, which means `plat_arm_security_setup()` must now be included in the BL3-1 image in addition to previous BL images if system suspend need to be supported. Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
-
- 13 Aug, 2015 2 commits
-
-
Sandrine Bailleux authored
Now that the FVP mailbox is no longer zeroed, the function platform_mem_init() does nothing both on FVP and on Juno. Therefore, this patch pools it as the default implementation on ARM platforms. Change-Id: I007220f4531f15e8b602c3368a1129a5e3a38d91
-
Soby Mathew authored
This patch migrates ARM reference platforms, Juno and FVP, to the new platform API mandated by the new PSCI power domain topology and composite power state frameworks. The platform specific makefiles now exports the build flag ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer. Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
-
- 28 Apr, 2015 1 commit
-
-
Dan Handley authored
This major change pulls out the common functionality from the FVP and Juno platform ports into the following categories: * (include/)plat/common. Common platform porting functionality that typically may be used by all platforms. * (include/)plat/arm/common. Common platform porting functionality that may be used by all ARM standard platforms. This includes all ARM development platforms like FVP and Juno but may also include non-ARM-owned platforms. * (include/)plat/arm/board/common. Common platform porting functionality for ARM development platforms at the board (off SoC) level. * (include/)plat/arm/css/common. Common platform porting functionality at the ARM Compute SubSystem (CSS) level. Juno is an example of a CSS-based platform. * (include/)plat/arm/soc/common. Common platform porting functionality at the ARM SoC level, which is not already defined at the ARM CSS level. No guarantees are made about the backward compatibility of functionality provided in (include/)plat/arm. Also remove any unnecessary variation between the ARM development platform ports, including: * Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the Juno implementation, which copies the information from BL2 memory instead of expecting it to persist in shared memory. * Unify the TZC configuration. There is no need to add a region for SCP in Juno; it's enough to simply not allow any access to this reserved region. Also set region 0 to provide no access by default instead of assuming this is the case. * Unify the number of memory map regions required for ARM development platforms, although the actual ranges mapped for each platform may be different. For the FVP port, this reduces the mapped peripheral address space. These latter changes will only be observed when the platform ports are migrated to use the new common platform code in subsequent patches. Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8
-