- 08 Jul, 2016 3 commits
-
-
Sandrine Bailleux authored
At the moment, on ARM platforms, BL1 maps everything from BL1_RO_BASE to BL1_RO_LIMIT. BL1_RO_LIMIT, as defined in the porting guide, is the maximum address in Trusted ROM that BL1's actual content _can_ occupy. The actual portion of ROM occupied by BL1 can be less than that, which means that BL1 might map more Trusted ROM than it actually needs to. This patch changes BL1's memory mappings on ARM platforms to restrict the region of Trusted ROM it maps. It uses the symbols exported by the linker to figure out the actual extents of BL1's ROM footprint. This change increases the number of page tables used on FVP by 1. On FVP, we used to map the whole Trusted ROM. As it is 64MB large, we used to map it as blocks of 2MB using level-2 translation table entries. We now need a finer-grained mapping, which requires an additional level-3 translation table. On ARM CSS platforms, the number of translation tables is unchanged. The BL1 image resides in flash at address 0x0BEC0000. This address is not aligned on a 2MB-boundary so a level-3 translation table was already required to map this memory. Change-Id: I317a93fd99c40e70d0f13cc3d7a570f05c6c61eb
-
Sandrine Bailleux authored
This patch introduces a new header file: include/lib/utils.h. Its purpose is to provide generic macros and helper functions that are independent of any BL image, architecture, platform and even not specific to Trusted Firmware. For now, it contains only 2 macros: ARRAY_SIZE() and IS_POWER_OF_TWO(). These were previously defined in bl_common.h and xlat_tables.c respectively. bl_common.h includes utils.h to retain compatibility for platforms that relied on bl_common.h for the ARRAY_SIZE() macro. Upstream platform ports that use this macro have been updated to include utils.h. Change-Id: I960450f54134f25d1710bfbdc4184f12c049a9a9
-
Sandrine Bailleux authored
This patch introduces the arm_setup_page_tables() function to set up page tables on ARM platforms. It replaces the arm_configure_mmu_elx() functions and does the same thing except that it doesn't enable the MMU at the end. The idea is to reduce the amount of per-EL code that is generated by the C preprocessor by splitting the memory regions definitions and page tables creation (which is generic) from the MMU enablement (which is the only per-EL configuration). As a consequence, the call to the enable_mmu_elx() function has been moved up into the plat_arch_setup() hook. Any other ARM standard platforms that use the functions `arm_configure_mmu_elx()` must be updated. Change-Id: I6f12a20ce4e5187b3849a8574aac841a136de83d
-
- 16 Jun, 2016 1 commit
-
-
Soby Mathew authored
This patch enables optional PSCI functions `PSCI_STAT_COUNT` and `PSCI_STAT_RESIDENCY` for ARM standard platforms. The optional platform API 'translate_power_state_by_mpidr()' is implemented for the Juno platform. 'validate_power_state()' on Juno downgrades PSCI CPU_SUSPEND requests for the system power level to the cluster power level. Hence, it is not suitable for validating the 'power_state' parameter passed in a PSCI_STAT_COUNT/RESIDENCY call. Change-Id: I9548322676fa468d22912392f2325c2a9f96e4d2
-
- 03 Jun, 2016 1 commit
-
-
Sandrine Bailleux authored
Building TF with ERROR_DEPRECATED=1 fails because of a missing semi-column. This patch fixes this syntax error. Change-Id: I98515840ce74245b0a0215805f85c8e399094f68
-
- 25 May, 2016 1 commit
-
-
Soby Mathew authored
This patch adds support to select CCN driver for FVP during build. A new build option `FVP_INTERCONNECT_DRIVER` is added to allow selection between the CCI and CCN driver. Currently only the CCN-502 variant is supported on FVP. The common ARM CCN platform helper file now verifies the cluster count declared by platform is equal to the number of root node masters exported by the ARM Standard platform. Change-Id: I71d7b4785f8925ed499c153b2e9b9925fcefd57a
-
- 20 May, 2016 1 commit
-
-
Antonio Nino Diaz authored
Replaced plat_get_syscnt_freq by plat_get_syscnt_freq2 on all upstream platforms. Change-Id: I3248f3f65a16dc5e9720012a05c35b9e3ba6abbe
-
- 27 Apr, 2016 1 commit
-
-
Soby Mathew authored
This patch removes support for legacy Versatile Express memory map for the GIC peripheral in the FVP platform. The user guide is also updated for the same. Change-Id: Ib8cfb819083aca359e5b46b5757cb56cb0ea6533
-
- 26 Apr, 2016 1 commit
-
-
Yatharth Kochar authored
This patch puts the definition of `plat_get_syscnt_freq()` under `#ifdef ARM_SYS_CNTCTL_BASE` in arm_common.c file. This is the fix for compilation error introduced by commit-id `749ade45`, for platforms that use arm_common.c but do not provide a memory mapped interface to the generic counter. Fixes ARM-software/tf-issues#395 Change-Id: I2f2b10bd9500fa15308541ccb15829306a76a745
-
- 21 Apr, 2016 1 commit
-
-
Yatharth Kochar authored
This patch moves the definition for `plat_get_syscnt_freq()` from arm_bl31_setup.c to arm_common.c. This could be useful in case a delay timer needs to be installed based on the generic timer in other BLs. This patch also modifies the return type for this function from `uint64_t` to `unsigned long long` within ARM and other platform files. Change-Id: Iccdfa811948e660d4fdcaae60ad1d700e4eda80d
-
- 13 Apr, 2016 1 commit
-
-
Soby Mathew authored
This patch modifies the upstream platform port makefiles to use the new xlat_tables library files. This patch also makes mmap region setup common between AArch64 and AArch32 for FVP platform port. The file `fvp_common.c` is moved from the `plat/arm/board/fvp/aarch64` folder to the parent folder as it is not specific to AArch64. Change-Id: Id2e9aac45e46227b6f83cccfd1e915404018ea0b
-
- 08 Apr, 2016 3 commits
-
-
Antonio Nino Diaz authored
To avoid confusion the build option BL33_BASE has been renamed to PRELOADED_BL33_BASE, which is more descriptive of what it does and doesn't get mistaken by similar names like BL32_BASE that work in a completely different way. NOTE: PLATFORMS USING BUILD OPTION `BL33_BASE` MUST CHANGE TO THE NEW BUILD OPTION `PRELOADED_BL33_BASE`. Change-Id: I658925ebe95406edf0325f15aa1752e1782aa45b
-
Antonio Nino Diaz authored
The BL33 address is now set in arm_bl31_early_platform_setup() so that the preloaded BL33 boot option is available when RESET_TO_BL31 is also used. Change-Id: Iab93e3916f9199c3387886b055c7cd2315efed29
-
Antonio Nino Diaz authored
Previously, when building TF without SPD support, BL2 tried to load a BL32 image from the FIP and fails to find one, which resulted on warning messages on the console. Even if there is a BL32 image in the FIP it shouldn't be loaded because there is no way to transfer control to the Secure Payload without SPD support. The Makefile has been modified to pass a define of the form SPD_${SPD} to the source code the same way it's done for PLAT. The define SPD_none is then used to undefine BL32_BASE when BL32 is not used to prevent BL2 from trying to load a BL32 image and failing, thus removing the warning messages mentioned above. Fixes ARM-software/tf-issues#287 Change-Id: Ifeb6f1c26935efb76afd353fea88e87ba09e9658
-
- 01 Apr, 2016 2 commits
-
-
Soren Brinkmann authored
Make the timer configuration conditional on the optional interface being available. Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
-
Soby Mathew authored
This patch modifies the return type of the platform API `plat_get_ns_image_entrypoint()` from `unsigned long` to `uintptr_t` in accordance with the coding guidelines. Change-Id: Icb4510ca98b706aa4d535fe27e203394184fb4ca
-
- 31 Mar, 2016 3 commits
-
-
Vikram Kanigiri authored
This patch adds support to program TrustZone protection on ARM platforms that implement a DMC-500. arm_dmc_500.c has been added which implements the arm_dmc_tzc_setup() function. This function relies on constants related to TZC programming that are exported by each platform to program TrustZone protection using the DMC-500 TrustZone controller driver. This function should be called from plat_arm_security_setup() which is implemented by each platform. Change-Id: I5400bdee9e4b29155fd11296a40693d512312f29
-
Soby Mathew authored
This patch migrates ARM Standard platforms to the refactored TZC driver. Change-Id: I2a2f60b645f73e14d8f416740c4551cec87cb1fb
-
David Wang authored
This patch adds an option to the ARM common platforms to load BL31 in the TZC secured DRAM instead of the default secure SRAM. To enable this feature, set `ARM_BL31_IN_DRAM` to 1 in build options. If TSP is present, then setting this option also sets the TSP location to DRAM and ignores the `ARM_TSP_RAM_LOCATION` build flag. To use this feature, BL2 platform code must map in the DRAM used by BL31. The macro ARM_MAP_BL31_SEC_DRAM is provided for this purpose. Currently, only the FVP BL2 platform code maps in this DRAM. Change-Id: If5f7cc9deb569cfe68353a174d4caa48acd78d67
-
- 22 Feb, 2016 1 commit
-
-
Yatharth Kochar authored
This patch fixes inconsistencies in bl1_tbbr_image_descs[] and miscellaneous fixes in Firmware Update code. Following are the changes: * As part of the original FWU changes, a `copied_size` field was added to `image_info_t`. This was a subtle binary compatibility break because it changed the size of the `bl31_params_t` struct, which could cause problems if somebody used different versions of BL2 or BL31, one with the old `image_info_t` and one with the new version. This patch put the `copied_size` within the `image_desc_t`. * EXECUTABLE flag is now stored in `ep_info.h.attr` in place of `image_info.h.attr`, associating it to an entrypoint. * The `image_info.image_base` is only relevant for secure images that are copied from non-secure memory into secure memory. This patch removes initializing `image_base` for non secure images in the bl1_tbbr_image_descs[]. * A new macro `SET_STATIC_PARAM_HEAD` is added for populating bl1_tbbr_image_descs[].ep_info/image_info.h members statically. The version, image_type and image attributes are now populated using this new macro. * Added PLAT_ARM_NVM_BASE and PLAT_ARM_NVM_SIZE to avoid direct usage of V2M_FLASH0_XXX in plat/arm/common/arm_bl1_fwu.c. * Refactoring of code/macros related to SECURE and EXECUTABLE flags. NOTE: PLATFORM PORTS THAT RELY ON THE SIZE OF `image_info_t` OR USE the "EXECUTABLE" BIT WITHIN `image_info_t.h.attr` OR USE THEIR OWN `image_desc_t` ARRAY IN BL1, MAY BE BROKEN BY THIS CHANGE. THIS IS CONSIDERED UNLIKELY. Change-Id: Id4e5989af7bf0ed263d19d3751939da1169b561d
-
- 19 Feb, 2016 1 commit
-
-
Soby Mathew authored
The common topology description helper funtions and macros for ARM Standard platforms assumed a dual cluster system. This is not flexible enough to scale to multi cluster platforms. This patch does the following changes for more flexibility in defining topology: 1. The `plat_get_power_domain_tree_desc()` definition is moved from `arm_topology.c` to platform specific files, that is `fvp_topology.c` and `juno_topology.c`. Similarly the common definition of the porting macro `PLATFORM_CORE_COUNT` in `arm_def.h` is moved to platform specific `platform_def.h` header. 2. The ARM common layer porting macros which were dual cluster specific are now removed and a new macro PLAT_ARM_CLUSTER_COUNT is introduced which must be defined by each ARM standard platform. 3. A new mandatory ARM common layer porting API `plat_arm_get_cluster_core_count()` is introduced to enable the common implementation of `arm_check_mpidr()` to validate MPIDR. 4. For the FVP platforms, a new build option `FVP_NUM_CLUSTERS` has been introduced which allows the user to specify the cluster count to be used to build the topology tree within Trusted Firmare. This enables Trusted Firmware to be built for multi cluster FVP models. Change-Id: Ie7a2e38e5661fe2fdb2c8fdf5641d2b2614c2b6b
-
- 18 Feb, 2016 1 commit
-
-
Juan Castillo authored
The shared memory region on ARM platforms contains the mailboxes and, on Juno, the payload area for communication with the SCP. This shared memory may be configured as normal memory or device memory at build time by setting the platform flag 'PLAT_ARM_SHARED_RAM_CACHED' (on Juno, the value of this flag is defined by 'MHU_PAYLOAD_CACHED'). When set as normal memory, the platform port performs the corresponding cache maintenance operations. From a functional point of view, this is the equivalent of setting the shared memory as device memory, so there is no need to maintain both options. This patch removes the option to specify the shared memory as normal memory on ARM platforms. Shared memory is always treated as device memory. Cache maintenance operations are no longer needed and have been replaced by data memory barriers to guarantee that payload and MHU are accessed in the right order. Change-Id: I7f958621d6a536dd4f0fa8768385eedc4295e79f
-
- 16 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
ARM Trusted Firmware supports 2 different interconnect peripheral drivers: CCI and CCN. ARM platforms are implemented using either of the interconnect peripherals. This patch adds a layer of abstraction to help ARM platform ports to choose the right interconnect driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been implemented to initialise an interconnect and for entering/exiting a cluster from coherency. These functions are prefixed as "plat_arm_interconnect_". Weak definitions of these functions have been provided for each type of driver. 2.`plat_print_interconnect_regs` macro used for printing CCI registers is moved from a common arm_macros.S to cci_macros.S. 3. The `ARM_CONFIG_HAS_CCI` flag used in `arm_config_flags` structure is renamed to `ARM_CONFIG_HAS_INTERCONNECT`. Change-Id: I02f31184fbf79b784175892d5ce1161b65a0066c
-
- 15 Feb, 2016 2 commits
-
-
Vikram Kanigiri authored
Prior to this patch, it was assumed that on all ARM platforms the bare minimal security setup required is to program TrustZone protection. This would always be done by programming the TZC-400 which was assumed to be present in all ARM platforms. The weak definition of platform_arm_security_setup() in plat/arm/common/arm_security.c reflected these assumptions. In reality, each ARM platform either decides at runtime whether TrustZone protection needs to be programmed (e.g. FVPs) or performs some security setup in addition to programming TrustZone protection (e.g. NIC setup on Juno). As a result, the weak definition of plat_arm_security_setup() is always overridden. When a platform needs to program TrustZone protection and implements the TZC-400 peripheral, it uses the arm_tzc_setup() function to do so. It is also possible to program TrustZone protection through other peripherals that include a TrustZone controller e.g. DMC-500. The programmer's interface is slightly different across these various peripherals. In order to satisfy the above requirements, this patch makes the following changes to the way security setup is done on ARM platforms. 1. arm_security.c retains the definition of arm_tzc_setup() and has been renamed to arm_tzc400.c. This is to reflect the reliance on the TZC-400 peripheral to perform TrustZone programming. The new file is not automatically included in all platform ports through arm_common.mk. Each platform must include it explicitly in a platform specific makefile if needed. This approach enables introduction of similar library code to program TrustZone protection using a different peripheral. This code would be used by the subset of ARM platforms that implement this peripheral. 2. Due to #1 above, existing platforms which implements the TZC-400 have been updated to include the necessary files for both BL2, BL2U and BL31 images. Change-Id: I513c58f7a19fff2e9e9c3b95721592095bcb2735
-
Vikram Kanigiri authored
Functions to configure the MMU in S-EL1 and EL3 on ARM platforms expect each platform to export its memory map in the `plat_arm_mmap` data structure. This approach does not scale well in case the memory map cannot be determined until runtime. To cater for this possibility, this patch introduces the plat_arm_get_mmap() API. It returns a reference to the `plat_arm_mmap` by default but can be overridden by a platform if required. Change-Id: Idae6ad8fdf40cdddcd8b992abc188455fa047c74
-
- 21 Jan, 2016 1 commit
-
-
Juan Castillo authored
The PL011 TRM (ARM DDI 0183G) specifies that the UART must be disabled before any of the control registers are programmed. The PL011 driver included in TF does not disable the UART, so the initialization in BL2 and BL31 is violating this requirement (and potentially in BL1 if the UART is enabled after reset). This patch modifies the initialization function in the PL011 console driver to disable the UART before programming the control registers. Register clobber list and documentation updated. Fixes ARM-software/tf-issues#300 Change-Id: I839b2d681d48b03f821ac53663a6a78e8b30a1a1
-
- 20 Jan, 2016 1 commit
-
-
Juan Castillo authored
Currently, Trusted Firmware on ARM platforms unlocks access to the timer frame registers that will be used by the Non-Secure world. This unlock operation should be done by the Non-Secure software itself, instead of relying on secure firmware settings. This patch adds a new ARM specific build option 'ARM_CONFIG_CNTACR' to unlock access to the timer frame by setting the corresponding bits in the CNTACR<N> register. The frame id <N> is defined by 'PLAT_ARM_NSTIMER_FRAME_ID'. Default value is true (unlock timer access). Documentation updated accordingly. Fixes ARM-software/tf-issues#170 Change-Id: Id9d606efd781e43bc581868cd2e5f9c8905bdbf6
-
- 14 Jan, 2016 1 commit
-
-
Soren Brinkmann authored
Migrate all direct usage of __attribute__ to usage of their corresponding macros from cdefs.h. e.g.: - __attribute__((unused)) -> __unused Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
-
- 05 Jan, 2016 1 commit
-
-
Juan Castillo authored
The fip_create tool specifies images in the command line using the ARM TF naming convention (--bl2, --bl31, etc), while the cert_create tool uses the TBBR convention (--tb-fw, --soc-fw, etc). This double convention is confusing and should be aligned. This patch updates the fip_create command line options to follow the TBBR naming convention. Usage examples in the User Guide have been also updated. NOTE: users that build the FIP by calling the fip_create tool directly from the command line must update the command line options in their scripts. Users that build the FIP by invoking the main ARM TF Makefile should not notice any difference. Change-Id: I84d602630a2585e558d927b50dfde4dd2112496f
-
- 14 Dec, 2015 3 commits
-
-
Juan Castillo authored
This patch removes the dash character from the image name, to follow the image terminology in the Trusted Firmware Wiki page: https://github.com/ARM-software/arm-trusted-firmware/wiki Changes apply to output messages, comments and documentation. non-ARM platform files have been left unmodified. Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
-
Juan Castillo authored
This patch replaces all references to the SCP Firmware (BL0, BL30, BL3-0, bl30) with the image terminology detailed in the TF wiki (https://github.com/ARM-software/arm-trusted-firmware/wiki): BL0 --> SCP_BL1 BL30, BL3-0 --> SCP_BL2 bl30 --> scp_bl2 This change affects code, documentation, build system, tools and platform ports that load SCP firmware. ARM plaforms have been updated to the new porting API. IMPORTANT: build option to specify the SCP FW image has changed: BL30 --> SCP_BL2 IMPORTANT: This patch breaks compatibility for platforms that use BL2 to load SCP firmware. Affected platforms must be updated as follows: BL30_IMAGE_ID --> SCP_BL2_IMAGE_ID BL30_BASE --> SCP_BL2_BASE bl2_plat_get_bl30_meminfo() --> bl2_plat_get_scp_bl2_meminfo() bl2_plat_handle_bl30() --> bl2_plat_handle_scp_bl2() Change-Id: I24c4c1a4f0e4b9f17c9e4929da815c4069549e58
-
Juan Castillo authored
This patch applies the TBBR naming convention to the certificates and the corresponding extensions defined by the CoT: * Certificate UUID names * Certificate identifier names * OID names Changes apply to: * Generic code (variables and defines) * The default certificate identifiers provided in the generic code * Build system * ARM platforms port * cert_create tool internal definitions * fip_create and cert_create tools command line options * Documentation IMPORTANT: this change breaks the compatibility with platforms that use TBBR. The platform will need to adapt the identifiers and OIDs to the TBBR naming convention introduced by this patch: Certificate UUIDs: UUID_TRUSTED_BOOT_FIRMWARE_BL2_CERT --> UUID_TRUSTED_BOOT_FW_CERT UUID_SCP_FIRMWARE_BL30_KEY_CERT --> UUID_SCP_FW_KEY_CERT UUID_SCP_FIRMWARE_BL30_CERT --> UUID_SCP_FW_CONTENT_CERT UUID_EL3_RUNTIME_FIRMWARE_BL31_KEY_CERT --> UUID_SOC_FW_KEY_CERT UUID_EL3_RUNTIME_FIRMWARE_BL31_CERT --> UUID_SOC_FW_CONTENT_CERT UUID_SECURE_PAYLOAD_BL32_KEY_CERT --> UUID_TRUSTED_OS_FW_KEY_CERT UUID_SECURE_PAYLOAD_BL32_CERT --> UUID_TRUSTED_OS_FW_CONTENT_CERT UUID_NON_TRUSTED_FIRMWARE_BL33_KEY_CERT --> UUID_NON_TRUSTED_FW_KEY_CERT UUID_NON_TRUSTED_FIRMWARE_BL33_CERT --> UUID_NON_TRUSTED_FW_CONTENT_CERT Certificate identifiers: BL2_CERT_ID --> TRUSTED_BOOT_FW_CERT_ID BL30_KEY_CERT_ID --> SCP_FW_KEY_CERT_ID BL30_CERT_ID --> SCP_FW_CONTENT_CERT_ID BL31_KEY_CERT_ID --> SOC_FW_KEY_CERT_ID BL31_CERT_ID --> SOC_FW_CONTENT_CERT_ID BL32_KEY_CERT_ID --> TRUSTED_OS_FW_KEY_CERT_ID BL32_CERT_ID --> TRUSTED_OS_FW_CONTENT_CERT_ID BL33_KEY_CERT_ID --> NON_TRUSTED_FW_KEY_CERT_ID BL33_CERT_ID --> NON_TRUSTED_FW_CONTENT_CERT_ID OIDs: TZ_FW_NVCOUNTER_OID --> TRUSTED_FW_NVCOUNTER_OID NTZ_FW_NVCOUNTER_OID --> NON_TRUSTED_FW_NVCOUNTER_OID BL2_HASH_OID --> TRUSTED_BOOT_FW_HASH_OID TZ_WORLD_PK_OID --> TRUSTED_WORLD_PK_OID NTZ_WORLD_PK_OID --> NON_TRUSTED_WORLD_PK_OID BL30_CONTENT_CERT_PK_OID --> SCP_FW_CONTENT_CERT_PK_OID BL30_HASH_OID --> SCP_FW_HASH_OID BL31_CONTENT_CERT_PK_OID --> SOC_FW_CONTENT_CERT_PK_OID BL31_HASH_OID --> SOC_AP_FW_HASH_OID BL32_CONTENT_CERT_PK_OID --> TRUSTED_OS_FW_CONTENT_CERT_PK_OID BL32_HASH_OID --> TRUSTED_OS_FW_HASH_OID BL33_CONTENT_CERT_PK_OID --> NON_TRUSTED_FW_CONTENT_CERT_PK_OID BL33_HASH_OID --> NON_TRUSTED_WORLD_BOOTLOADER_HASH_OID BL2U_HASH_OID --> AP_FWU_CFG_HASH_OID SCP_BL2U_HASH_OID --> SCP_FWU_CFG_HASH_OID NS_BL2U_HASH_OID --> FWU_HASH_OID Change-Id: I1e047ae046299ca913911c39ac3a6e123bd41079
-
- 09 Dec, 2015 6 commits
-
-
Yatharth Kochar authored
Firmware update feature needs a new FIP called `fwu_fip.bin` that includes Secure(SCP_BL2U, BL2U) and Normal world(NS_BL2U) images along with the FWU_CERT certificate in order for NS_BL1U to load the images and help the Firmware update process to complete. This patch adds the capability to support the new target `fwu_fip` which includes above mentioned FWU images in the make files. The new target of `fwu_fip` and its dependencies are included for compilation only when `TRUSTED_BOARD_BOOT` is defined. Change-Id: Ie780e3aac6cbd0edfaff3f9af96a2332bd69edbc
-
Yatharth Kochar authored
This patch adds support for Firmware update in BL2U for ARM platforms such that TZC initialization is performed on all ARM platforms and (optionally) transfer of SCP_BL2U image on ARM CSS platforms. BL2U specific functions are added to handle early_platform and plat_arch setup. The MMU is configured to map in the BL2U code/data area and other required memory. Change-Id: I57863295a608cc06e6cbf078b7ce34cbd9733e4f
-
Yatharth Kochar authored
This patch adds Firmware Update support for ARM platforms. New files arm_bl1_fwu.c and juno_bl1_setup.c were added to provide platform specific Firmware update code. BL1 now includes mmap entry for `ARM_MAP_NS_DRAM1` to map DRAM for authenticating NS_BL2U image(For both FVP and JUNO platform). Change-Id: Ie116cd83f5dc00aa53d904c2f1beb23d58926555
-
Yatharth Kochar authored
As of now BL1 loads and execute BL2 based on hard coded information provided in BL1. But due to addition of support for upcoming Firmware Update feature, BL1 now require more flexible approach to load and run different images using information provided by the platform. This patch adds new mechanism to load and execute images based on platform provided image id's. BL1 now queries the platform to fetch the image id of the next image to be loaded and executed. In order to achieve this, a new struct image_desc_t was added which holds the information about images, such as: ep_info and image_info. This patch introduces following platform porting functions: unsigned int bl1_plat_get_next_image_id(void); This is used to identify the next image to be loaded and executed by BL1. struct image_desc *bl1_plat_get_image_desc(unsigned int image_id); This is used to retrieve the image_desc for given image_id. void bl1_plat_set_ep_info(unsigned int image_id, struct entry_point_info *ep_info); This function allows platforms to update ep_info for given image_id. The plat_bl1_common.c file provides default weak implementations of all above functions, the `bl1_plat_get_image_desc()` always return BL2 image descriptor, the `bl1_plat_get_next_image_id()` always return BL2 image ID and `bl1_plat_set_ep_info()` is empty and just returns. These functions gets compiled into all BL1 platforms by default. Platform setup in BL1, using `bl1_platform_setup()`, is now done _after_ the initialization of authentication module. This change provides the opportunity to use authentication while doing the platform setup in BL1. In order to store secure/non-secure context, BL31 uses percpu_data[] to store context pointer for each core. In case of BL1 only the primary CPU will be active hence percpu_data[] is not required to store the context pointer. This patch introduce bl1_cpu_context[] and bl1_cpu_context_ptr[] to store the context and context pointers respectively. It also also re-defines cm_get_context() and cm_set_context() for BL1 in bl1/bl1_context_mgmt.c. BL1 now follows the BL31 pattern of using SP_EL0 for the C runtime environment, to support resuming execution from a previously saved context. NOTE: THE `bl1_plat_set_bl2_ep_info()` PLATFORM PORTING FUNCTION IS NO LONGER CALLED BY BL1 COMMON CODE. PLATFORMS THAT OVERRIDE THIS FUNCTION MAY NEED TO IMPLEMENT `bl1_plat_set_ep_info()` INSTEAD TO MAINTAIN EXISTING BEHAVIOUR. Change-Id: Ieee4c124b951c2e9bc1c1013fa2073221195d881
-
Soby Mathew authored
This patch overrides the default weak definition of `bl31_plat_runtime_setup()` for ARM Standard platforms to specify a BL31 runtime console. ARM Standard platforms are now expected to define `PLAT_ARM_BL31_RUN_UART_BASE` and `PLAT_ARM_BL31_RUN_UART_CLK_IN_HZ` macros which is required by `arm_bl31_plat_runtime_setup()` to initialize the runtime console. The system suspend resume helper `arm_system_pwr_domain_resume()` is fixed to initialize the runtime console rather than the boot console on resumption from system suspend. Fixes ARM-software/tf-issues#220 Change-Id: I80eafe5b6adcfc7f1fdf8b99659aca1c64d96975
-
Achin Gupta authored
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three separate drivers instead of providing a single driver that can work on both versions of the GIC architecture. These drivers correspond to the following software use cases: 1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations e.g. GIC-400 2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features 3. A deprecated GICv3 driver that operates in legacy mode. This driver can operate only in the GICv2 mode in the secure world. On a GICv3 system, this driver allows normal world to run in either GICv3 mode (asymmetric mode) or in the GICv2 mode. Both modes of operation are deprecated on GICv3 systems. ARM platforms implement both versions of the GIC architecture. This patch adds a layer of abstraction to help ARM platform ports chose the right GIC driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been introduced to initialise the GIC and the driver during cold and warm boot. These functions are prefixed as "plat_arm_gic_". Weak definitions of these functions have been provided for each type of driver. 2. Each platform includes the sources that implement the right functions directly into the its makefile. The FVP can be instantiated with different versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option to specify which of the three drivers should be included in the build. 3. A list of secure interrupts has to be provided to initialise each of the three GIC drivers. For GIC v3.0 the interrupt ids have to be further categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two types are merged and treated as Group 0 interrupts. The two lists of interrupts are exported from the platform_def.h. The lists are constructed by adding a list of board specific interrupt ids to a list of ids common to all ARM platforms and Compute sub-systems. This patch also makes some fields of `arm_config` data structure in FVP redundant and these unused fields are removed. Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
-
- 02 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch adds watchdog support on ARM platforms (FVP and Juno). A secure instance of SP805 is used as Trusted Watchdog. It is entirely managed in BL1, being enabled in the early platform setup hook and disabled in the exit hook. By default, the watchdog is enabled in every build (even when TBB is disabled). A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG` has been introduced to allow the user to disable the watchdog at build time. This feature may be used for testing or debugging purposes. Specific error handlers for Juno and FVP are also provided in this patch. These handlers will be called after an image load or authentication error. On FVP, the Table of Contents (ToC) in the FIP is erased. On Juno, the corresponding error code is stored in the V2M Non-Volatile flags register. In both cases, the CPU spins until a watchdog reset is generated after 256 seconds (as specified in the TBBR document). Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
-
- 26 Nov, 2015 1 commit
-
-
Sandrine Bailleux authored
This patch adds support for booting EL3 payloads on CSS platforms, for example Juno. In this scenario, the Trusted Firmware follows its normal boot flow up to the point where it would normally pass control to the BL31 image. At this point, it jumps to the EL3 payload entry point address instead. Before handing over to the EL3 payload, the data SCP writes for AP at the beginning of the Trusted SRAM is restored, i.e. we zero the first 128 bytes and restore the SCP Boot configuration. The latter is saved before transferring the BL30 image to SCP and is restored just after the transfer (in BL2). The goal is to make it appear that the EL3 payload is the first piece of software to run on the target. The BL31 entrypoint info structure is updated to make the primary CPU jump to the EL3 payload instead of the BL31 image. The mailbox is populated with the EL3 payload entrypoint address, which releases the secondary CPUs out of their holding pen (if the SCP has powered them on). The arm_program_trusted_mailbox() function has been exported for this purpose. The TZC-400 configuration in BL2 is simplified: it grants secure access only to the whole DRAM. Other security initialization is unchanged. This alternative boot flow is disabled by default. A new build option EL3_PAYLOAD_BASE has been introduced to enable it and provide the EL3 payload's entry point address. The build system has been modified such that BL31 and BL33 are not compiled and/or not put in the FIP in this case, as those images are not used in this boot flow. Change-Id: Id2e26fa57988bbc32323a0effd022ab42f5b5077
-