- 30 Jan, 2017 1 commit
-
-
Jeenu Viswambharan authored
At present, spin locks can only defined from C files. Add some macros such that they can be defined from assembly files too. Change-Id: I64f0c214062f5c15b3c8b412c7f25c908e87d970 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 05 Dec, 2016 1 commit
-
-
Jeenu Viswambharan authored
There are many instances in ARM Trusted Firmware where control is transferred to functions from which return isn't expected. Such jumps are made using 'bl' instruction to provide the callee with the location from which it was jumped to. Additionally, debuggers infer the caller by examining where 'lr' register points to. If a 'bl' of the nature described above falls at the end of an assembly function, 'lr' will be left pointing to a location outside of the function range. This misleads the debugger back trace. This patch defines a 'no_ret' macro to be used when jumping to functions from which return isn't expected. The macro ensures to use 'bl' instruction for the jump, and also, for debug builds, places a 'nop' instruction immediately thereafter (unless instructed otherwise) so as to leave 'lr' pointing within the function range. Change-Id: Ib34c69fc09197cfd57bc06e147cc8252910e01b0 Co-authored-by: Douglas Raillard <douglas.raillard@arm.com> Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 19 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch moves assembler macros which are not architecture specific to a new file `asm_macros_common.S` and moves the `el3_common_macros.S` into `aarch64` specific folder. Change-Id: I444a1ee3346597bf26a8b827480cd9640b38c826
-
- 18 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch moves the PSCI services and BL31 frameworks like context management and per-cpu data into new library components `PSCI` and `el3_runtime` respectively. This enables PSCI to be built independently from BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant PSCI library sources and gets included by `bl31.mk`. Other changes which are done as part of this patch are: * The runtime services framework is now moved to the `common/` folder to enable reuse. * The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture specific folder. * The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder to `plat/common` folder. The original file location now has a stub which just includes the file from new location to maintain platform compatibility. Most of the changes wouldn't affect platform builds as they just involve changes to the generic bl1.mk and bl31.mk makefiles. NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION. Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
-
- 08 Jul, 2016 1 commit
-
-
Soby Mathew authored
The per-cpu stacks should be aligned to the cache-line size and the `declare_stack` helper in asm_macros.S macro assumed a cache-line size of 64 bytes. The platform defines the cache-line size via CACHE_WRITEBACK_GRANULE macro. This patch modifies `declare_stack` helper macro to derive stack alignment from the platform defined macro. Change-Id: I1e1b00fc8806ecc88190ed169f4c8d3dd25fe95b
-
- 26 May, 2016 2 commits
-
-
Sandrine Bailleux authored
The documentation of the GNU assembler specifies the following about the .align assembler directive: "the padding bytes are normally zero. However, on some systems, if the section is marked as containing code and the fill value is omitted, the space is filled with no-op instructions." (see https://sourceware.org/binutils/docs/as/Align.html) When building Trusted Firmware, the AArch64 GNU assembler uses a mix of zero bytes and no-op instructions as the padding bytes to align exception vectors. This patch mandates to use zero bytes to be stored in the padding bytes in the exception vectors. In the AArch64 instruction set, no valid instruction encodes as zero so this effectively inserts illegal instructions. Should this code end up being executed for any reason, it would crash immediately. This gives us an extra protection against misbehaving code at no extra cost. Change-Id: I4f2abb39d0320ca0f9d467fc5af0cb92ae297351
-
Sandrine Bailleux authored
This patch introduces some assembler macros to simplify the declaration of the exception vectors. It abstracts the section the exception code is put into as well as the alignments constraints mandated by the ARMv8 architecture. For all TF images, the exception code has been updated to make use of these macros. This patch also updates some invalid comments in the exception vector code. Change-Id: I35737b8f1c8c24b6da89b0a954c8152a4096fa95
-
- 24 Nov, 2015 1 commit
-
-
Soby Mathew authored
This patch changes the build time behaviour when using deprecated API within Trusted Firmware. Previously the use of deprecated APIs would only trigger a build warning (which was always treated as a build error), when WARN_DEPRECATED = 1. Now, the use of deprecated C declarations will always trigger a build time warning. Whether this warning is treated as error or not is determined by the build flag ERROR_DEPRECATED which is disabled by default. When the build flag ERROR_DEPRECATED=1, the invocation of deprecated API or inclusion of deprecated headers will result in a build error. Also the deprecated context management helpers in context_mgmt.c are now conditionally compiled depending on the value of ERROR_DEPRECATED flag so that the APIs themselves do not result in a build error when the ERROR_DEPRECATED flag is set. NOTE: Build systems that use the macro WARN_DEPRECATED must migrate to using ERROR_DEPRECATED, otherwise deprecated API usage will no longer trigger a build error. Change-Id: I843bceef6bde979af7e9b51dddf861035ec7965a
-
- 13 Aug, 2015 3 commits
-
-
Soby Mathew authored
This patch defines deprecated platform APIs to enable Trusted Firmware components like Secure Payload and their dispatchers(SPD) to continue to build and run when platform compatibility is disabled. This decouples the migration of platform ports to the new platform API from SPD and enables them to be migrated independently. The deprecated platform APIs defined in this patch are : platform_get_core_pos(), platform_get_stack() and platform_set_stack(). The patch also deprecates MPIDR based context management helpers like cm_get_context_by_mpidr(), cm_set_context_by_mpidr() and cm_init_context(). A mechanism to deprecate APIs and identify callers of these APIs during build is introduced, which is controlled by the build flag WARN_DEPRECATED. If WARN_DEPRECATED is defined to 1, the users of the deprecated APIs will be flagged either as a link error for assembly files or compile time warning for C files during build. Change-Id: Ib72c7d5dc956e1a74d2294a939205b200f055613
-
Soby Mathew authored
This commit does the switch to the new PSCI framework implementation replacing the existing files in PSCI folder with the ones in PSCI1.0 folder. The corresponding makefiles are modified as required for the new implementation. The platform.h header file is also is switched to the new one as required by the new frameworks. The build flag ENABLE_PLAT_COMPAT defaults to 1 to enable compatibility layer which let the existing platform ports to continue to build and run with minimal changes. The default weak implementation of platform_get_core_pos() is now removed from platform_helpers.S and is provided by the compatibility layer. Note: The Secure Payloads and their dispatchers still use the old platform and framework APIs and hence it is expected that the ENABLE_PLAT_COMPAT build flag will remain enabled in subsequent patch. The compatibility for SPDs using the older APIs on platforms migrated to the new APIs will be added in the following patch. Change-Id: I18c51b3a085b564aa05fdd98d11c9f3335712719
-
Soby Mathew authored
This patch introduces new platform APIs and context management helper APIs to support the new topology framework based on linear core position. This framework will be introduced in the follwoing patch and it removes the assumption that the MPIDR based affinity levels map directly to levels in a power domain tree. The new platforms APIs and context management helpers based on core position are as described below: * plat_my_core_pos() and plat_core_pos_by_mpidr() These 2 new mandatory platform APIs are meant to replace the existing 'platform_get_core_pos()' API. The 'plat_my_core_pos()' API returns the linear index of the calling core and 'plat_core_pos_by_mpidr()' returns the linear index of a core specified by its MPIDR. The latter API will also validate the MPIDR passed as an argument and will return an error code (-1) if an invalid MPIDR is passed as the argument. This enables the caller to safely convert an MPIDR of another core to its linear index without querying the PSCI topology tree e.g. during a call to PSCI CPU_ON. Since the 'plat_core_pos_by_mpidr()' API verifies an MPIDR, which is always platform specific, it is no longer possible to maintain a default implementation of this API. Also it might not be possible for a platform port to verify an MPIDR before the C runtime has been setup or the topology has been initialized. This would prevent 'plat_core_pos_by_mpidr()' from being callable prior to topology setup. As a result, the generic Trusted Firmware code does not call this API before the topology setup has been done. The 'plat_my_core_pos' API should be able to run without a C runtime. Since this API needs to return a core position which is equal to the one returned by 'plat_core_pos_by_mpidr()' API for the corresponding MPIDR, this too cannot have default implementation and is a mandatory API for platform ports. These APIs will be implemented by the ARM reference platform ports later in the patch stack. * plat_get_my_stack() and plat_set_my_stack() These APIs are the stack management APIs which set/return stack addresses appropriate for the calling core. These replace the 'platform_get_stack()' and 'platform_set_stack()' APIs. A default weak MP version and a global UP version of these APIs are provided for the platforms. * Context management helpers based on linear core position A set of new context management(CM) helpers viz cm_get_context_by_index(), cm_set_context_by_index(), cm_init_my_context() and cm_init_context_by_index() are defined which are meant to replace the old helpers which took MPIDR as argument. The old CM helpers are implemented based on the new helpers to allow for code consolidation and will be deprecated once the switch to the new framework is done. Change-Id: I89758632b370c2812973a4b2efdd9b81a41f9b69
-
- 04 Jun, 2015 1 commit
-
-
Sandrine Bailleux authored
The attempt to run the CPU reset code as soon as possible after reset results in highly complex conditional code relating to the RESET_TO_BL31 option. This patch relaxes this requirement a little. In the BL1, BL3-1 and PSCI entrypoints code, the sequence of operations is now as follows: 1) Detect whether it is a cold or warm boot; 2) For cold boot, detect whether it is the primary or a secondary CPU. This is needed to handle multiple CPUs entering cold reset simultaneously; 3) Run the CPU init code. This patch also abstracts the EL3 registers initialisation done by the BL1, BL3-1 and PSCI entrypoints into common code. This improves code re-use and consolidates the code flows for different types of systems. NOTE: THE FUNCTION plat_secondary_cold_boot() IS NOW EXPECTED TO NEVER RETURN. THIS PATCH FORCES PLATFORM PORTS THAT RELIED ON THE FORMER RETRY LOOP AT THE CALL SITE TO MODIFY THEIR IMPLEMENTATION. OTHERWISE, SECONDARY CPUS WILL PANIC. Change-Id: If5ecd74d75bee700b1bd718d23d7556b8f863546
-
- 27 Apr, 2015 1 commit
-
-
Dan Handley authored
Some assembly files containing macros are included like header files into other assembly files. This will cause assembler errors if they are included multiple times. Add header guards to assembly macro files to avoid assembler errors. Change-Id: Ia632e767ed7df7bf507b294982b8d730a6f8fe69
-
- 08 Apr, 2015 1 commit
-
-
Kévin Petit authored
In order for the symbol table in the ELF file to contain the size of functions written in assembly, it is necessary to report it to the assembler using the .size directive. To fulfil the above requirements, this patch introduces an 'endfunc' macro which contains the .endfunc and .size directives. It also adds a .func directive to the 'func' assembler macro. The .func/.endfunc have been used so the assembler can fail if endfunc is omitted. Fixes ARM-Software/tf-issues#295 Change-Id: If8cb331b03d7f38fe7e3694d4de26f1075b278fc Signed-off-by: Kévin Petit <kevin.petit@arm.com>
-
- 28 Jul, 2014 1 commit
-
-
Soby Mathew authored
This patch introduces platform APIs to initialise and print a character on a designated crash console. For the FVP platform, PL011_UART0 is the designated crash console. The platform porting guide is also updated to document the new APIs. Change-Id: I5e97d8762082e0c88c8c9bbb479353eac8f11a66
-
- 22 May, 2014 1 commit
-
-
Vikram Kanigiri authored
This change adds optional reset vector support to BL3-1 which means BL3-1 entry point can detect cold/warm boot, initialise primary cpu, set up cci and mail box. When using BL3-1 as a reset vector it is assumed that the BL3-1 platform code can determine the location of the BL3-2 images, or load them as there are no parameters that can be passed to BL3-1 at reset. It also fixes the incorrect initialisation of mailbox registers on the FVP platform This feature can be enabled by building the code with make variable RESET_TO_BL31 set as 1 Fixes ARM-software/TF-issues#133 Fixes ARM-software/TF-issues#20 Change-Id: I4e23939b1c518614b899f549f1e8d412538ee570
-
- 07 May, 2014 2 commits
-
-
Andrew Thoelke authored
The data cache clean and invalidate operations dcsw_op_all() and dcsw_op_loius() were implemented to invoke a DSB and ISB barrier for every set/way operation. This adds a substantial performance penalty to an already expensive operation. These functions have been reworked to provide an optimised implementation derived from the code in section D3.4 of the ARMv8 ARM. The helper macro setup_dcsw_op_args has been moved and reworked alongside the implementation. Fixes ARM-software/tf-issues#146 Change-Id: Icd5df57816a83f0a842fce935320a369f7465c7f
-
Andrew Thoelke authored
Instead of using the system register helper functions to read or write system registers, assembler coded functions should use MRS/MSR instructions. This results in faster and more compact code. This change replaces all usage of the helper functions with direct register accesses. Change-Id: I791d5f11f257010bb3e6a72c6c5ab8779f1982b3
-
- 06 May, 2014 2 commits
-
-
Dan Handley authored
Reduce the number of header files included from other header files as much as possible without splitting the files. Use forward declarations where possible. This allows removal of some unnecessary "#ifndef __ASSEMBLY__" statements. Also, review the .c and .S files for which header files really need including and reorder the #include statements alphabetically. Fixes ARM-software/tf-issues#31 Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
-
Dan Handley authored
Move almost all system include files to a logical sub-directory under ./include. The only remaining system include directories not under ./include are specific to the platform. Move the corresponding source files to match the include directory structure. Also remove pm.h as it is no longer used. Change-Id: Ie5ea6368ec5fad459f3e8a802ad129135527f0b3
-
- 15 Apr, 2014 1 commit
-
-
Andrew Thoelke authored
The BL images share common stack management code which provides one coherent and one cacheable stack for every CPU. BL1 and BL2 just execute on the primary CPU during boot and do not require the additional CPU stacks. This patch provides separate stack support code for UP and MP images, substantially reducing the RAM usage for BL1 and BL2 for the FVP platform. This patch also provides macros for declaring stacks and calculating stack base addresses to improve consistency where this has to be done in the firmware. The stack allocation source files are now included via platform.mk rather than the common BLx makefiles. This allows each platform to select the appropriate MP/UP stack support for each BL image. Each platform makefile must be updated when including this commit. Fixes ARM-software/tf-issues#76 Change-Id: Ia251f61b8148ffa73eae3f3711f57b1ffebfa632
-
- 26 Mar, 2014 1 commit
-
-
Andrew Thoelke authored
This extends the --gc-sections behaviour to the many assembler support functions in the firmware images by placing each function into its own code section. This is achieved by creating a 'func' macro used to declare each function label. Fixes ARM-software/tf-issues#80 Change-Id: I301937b630add292d2dec6d2561a7fcfa6fec690
-
- 20 Feb, 2014 1 commit
-
-
Jeenu Viswambharan authored
This patch adds guards so that an exception vector exceeding 32 instructions will generate a compile-time error. This keeps the exception handlers in check from spilling over. Change-Id: I7aa56dd0071a333664e2814c656d3896032046fe
-
- 17 Feb, 2014 2 commits
-
-
Jeenu Viswambharan authored
This patch uses the reworked exception handling support to handle runtime service requests through SMCs following the SMC calling convention. This is a giant commit since all the changes are inter-related. It does the following: 1. Replace the old exception handling mechanism with the new one 2. Enforce that SP_EL0 is used C runtime stacks. 3. Ensures that the cold and warm boot paths use the 'cpu_context' structure to program an ERET into the next lower EL. 4. Ensures that SP_EL3 always points to the next 'cpu_context' structure prior to an ERET into the next lower EL 5. Introduces a PSCI SMC handler which completes the use of PSCI as a runtime service Change-Id: I661797f834c0803d2c674d20f504df1b04c2b852 Co-authored-by: Achin Gupta <achin.gupta@arm.com>
-
Achin Gupta authored
This patch introduces the reworked exception handling logic which lays the foundation for accessing runtime services in later patches. The type of an exception has a greater say in the way it is handled. SP_EL3 is used as the stack pointer for: 1. Determining the type of exception and handling the unexpected ones on the exception stack 2. Saving and restoring the essential general purpose and system register state after exception entry and prior to exception exit. SP_EL0 is used as the stack pointer for handling runtime service requests e.g. SMCs. A new structure for preserving general purpose register state has been added to the 'cpu_context' structure. All assembler ensures that it does not use callee saved registers (x19-x29). The C runtime preserves them across functions calls. Hence EL3 code does not have to save and restore them explicitly. Since the exception handling framework has undergone substantial change, the changes have been kept in separate files to aid readability. These files will replace the existing ones in subsequent patches. Change-Id: Ice418686592990ff7a4260771e8d6676e6c8c5ef
-
- 17 Jan, 2014 1 commit
-
-
Dan Handley authored
Change-Id: Ic7fb61aabae1d515b9e6baf3dd003807ff42da60
-
- 05 Dec, 2013 2 commits
-
-
Achin Gupta authored
The runtime exception handling assembler code used magic numbers for saving and restoring the general purpose register context on stack memory. The memory is interpreted as a 'gp_regs' structure and the magic numbers are offsets to members of this structure. This patch replaces the magic number offsets with constants. It also adds compile time assertions to prevent an incorrect assembler view of this structure. Change-Id: Ibf125bfdd62ba3a33e58c5f1d71f8c229720781c
-
Dan Handley authored
- Add instructions for contributing to ARM Trusted Firmware. - Update copyright text in all files to acknowledge contributors. Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5
-
- 25 Oct, 2013 1 commit
-
-
Achin Gupta authored
-