- 20 Mar, 2017 1 commit
-
-
Andre Przywara authored
ARM erratum 855873 applies to all Cortex-A53 CPUs. The recommended workaround is to promote "data cache clean" instructions to "data cache clean and invalidate" instructions. For core revisions of r0p3 and later this can be done by setting a bit in the CPUACTLR_EL1 register, so that hardware takes care of the promotion. As CPUACTLR_EL1 is both IMPLEMENTATION DEFINED and can be trapped to EL3, we set the bit in firmware. Also we dump this register upon crashing to provide more debug information. Enable the workaround for the Juno boards. Change-Id: I3840114291958a406574ab6c49b01a9d9847fec8 Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
- 08 Mar, 2017 1 commit
-
-
Antonio Nino Diaz authored
TLBI instructions for EL3 won't have the desired effect under specific circumstances in Cortex-A57 r0p0. The workaround is to execute DSB and TLBI twice each time. Even though this errata is only needed in r0p0, the current errata framework is not prepared to apply run-time workarounds. The current one is always applied if compiled in, regardless of the CPU or its revision. This errata has been enabled for Juno. The `DSB` instruction used when initializing the translation tables has been changed to `DSB ISH` as an optimization and to be consistent with the barriers used for the workaround. Change-Id: Ifc1d70b79cb5e0d87e90d88d376a59385667d338 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 25 Jul, 2016 1 commit
-
-
Antonio Nino Diaz authored
Compile option `ARM_BOARD_OPTIMISE_MMAP` has been renamed to `ARM_BOARD_OPTIMISE_MEM` because it now applies not only to defines related to the translation tables but to the image size as well. The defines `PLAT_ARM_MAX_BL1_RW_SIZE`, `PLAT_ARM_MAX_BL2_SIZE` and `PLAT_ARM_MAX_BL31_SIZE` have been moved to the file board_arm_def.h. This way, ARM platforms no longer have to set their own values if `ARM_BOARD_OPTIMISE_MEM=0` and they can specify optimized values otherwise. The common sizes have been set to the highest values used for any of the current build configurations. This is needed because in some build configurations some images are running out of space. This way there is a common set of values known to work for all of them and it can be optimized for each particular platform if needed. The space reserved for BL2 when `TRUSTED_BOARD_BOOT=0` has been increased. This is needed because when memory optimisations are disabled the values for Juno of `PLAT_ARM_MMAP_ENTRIES` and `MAX_XLAT_TABLES` are higher. If in this situation the code is compiled in debug mode and with "-O0", the code won't fit. Change-Id: I70a3d8d3a0b0cad1d6b602c01a7ea334776e718e
-
- 31 Mar, 2016 1 commit
-
-
Soby Mathew authored
This patch migrates ARM Standard platforms to the refactored TZC driver. Change-Id: I2a2f60b645f73e14d8f416740c4551cec87cb1fb
-
- 22 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
`board_arm_def.h` contains multiple definitions of `PLAT_ARM_MMAP_ENTRIES` and `MAX_XLAT_TABLES` that are optimised for memory usage depending upon the chosen build configuration. To ease maintenance of these constants, this patch replaces their multiple definitions with a single set of definitions that will work on all ARM platforms. Platforms can override the defaults with optimal values by enabling the `ARM_BOARD_OPTIMISE_MMAP` build option. An example has been provided in the Juno ADP port. Additionally, `PLAT_ARM_MMAP_ENTRIES` is increased by one to accomodate future ARM platforms. Change-Id: I5ba6490fdd1e118cc9cc2d988ad7e9c38492b6f0
-
- 19 Feb, 2016 1 commit
-
-
Soby Mathew authored
The common topology description helper funtions and macros for ARM Standard platforms assumed a dual cluster system. This is not flexible enough to scale to multi cluster platforms. This patch does the following changes for more flexibility in defining topology: 1. The `plat_get_power_domain_tree_desc()` definition is moved from `arm_topology.c` to platform specific files, that is `fvp_topology.c` and `juno_topology.c`. Similarly the common definition of the porting macro `PLATFORM_CORE_COUNT` in `arm_def.h` is moved to platform specific `platform_def.h` header. 2. The ARM common layer porting macros which were dual cluster specific are now removed and a new macro PLAT_ARM_CLUSTER_COUNT is introduced which must be defined by each ARM standard platform. 3. A new mandatory ARM common layer porting API `plat_arm_get_cluster_core_count()` is introduced to enable the common implementation of `arm_check_mpidr()` to validate MPIDR. 4. For the FVP platforms, a new build option `FVP_NUM_CLUSTERS` has been introduced which allows the user to specify the cluster count to be used to build the topology tree within Trusted Firmare. This enables Trusted Firmware to be built for multi cluster FVP models. Change-Id: Ie7a2e38e5661fe2fdb2c8fdf5641d2b2614c2b6b
-
- 16 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
ARM Trusted Firmware supports 2 different interconnect peripheral drivers: CCI and CCN. ARM platforms are implemented using either of the interconnect peripherals. This patch adds a layer of abstraction to help ARM platform ports to choose the right interconnect driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been implemented to initialise an interconnect and for entering/exiting a cluster from coherency. These functions are prefixed as "plat_arm_interconnect_". Weak definitions of these functions have been provided for each type of driver. 2.`plat_print_interconnect_regs` macro used for printing CCI registers is moved from a common arm_macros.S to cci_macros.S. 3. The `ARM_CONFIG_HAS_CCI` flag used in `arm_config_flags` structure is renamed to `ARM_CONFIG_HAS_INTERCONNECT`. Change-Id: I02f31184fbf79b784175892d5ce1161b65a0066c
-
- 15 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
Prior to this patch, it was assumed that on all ARM platforms the bare minimal security setup required is to program TrustZone protection. This would always be done by programming the TZC-400 which was assumed to be present in all ARM platforms. The weak definition of platform_arm_security_setup() in plat/arm/common/arm_security.c reflected these assumptions. In reality, each ARM platform either decides at runtime whether TrustZone protection needs to be programmed (e.g. FVPs) or performs some security setup in addition to programming TrustZone protection (e.g. NIC setup on Juno). As a result, the weak definition of plat_arm_security_setup() is always overridden. When a platform needs to program TrustZone protection and implements the TZC-400 peripheral, it uses the arm_tzc_setup() function to do so. It is also possible to program TrustZone protection through other peripherals that include a TrustZone controller e.g. DMC-500. The programmer's interface is slightly different across these various peripherals. In order to satisfy the above requirements, this patch makes the following changes to the way security setup is done on ARM platforms. 1. arm_security.c retains the definition of arm_tzc_setup() and has been renamed to arm_tzc400.c. This is to reflect the reliance on the TZC-400 peripheral to perform TrustZone programming. The new file is not automatically included in all platform ports through arm_common.mk. Each platform must include it explicitly in a platform specific makefile if needed. This approach enables introduction of similar library code to program TrustZone protection using a different peripheral. This code would be used by the subset of ARM platforms that implement this peripheral. 2. Due to #1 above, existing platforms which implements the TZC-400 have been updated to include the necessary files for both BL2, BL2U and BL31 images. Change-Id: I513c58f7a19fff2e9e9c3b95721592095bcb2735
-
- 09 Dec, 2015 3 commits
-
-
Yatharth Kochar authored
This patch adds support for Firmware update in BL2U for ARM platforms such that TZC initialization is performed on all ARM platforms and (optionally) transfer of SCP_BL2U image on ARM CSS platforms. BL2U specific functions are added to handle early_platform and plat_arch setup. The MMU is configured to map in the BL2U code/data area and other required memory. Change-Id: I57863295a608cc06e6cbf078b7ce34cbd9733e4f
-
Yatharth Kochar authored
This patch adds Firmware Update support for ARM platforms. New files arm_bl1_fwu.c and juno_bl1_setup.c were added to provide platform specific Firmware update code. BL1 now includes mmap entry for `ARM_MAP_NS_DRAM1` to map DRAM for authenticating NS_BL2U image(For both FVP and JUNO platform). Change-Id: Ie116cd83f5dc00aa53d904c2f1beb23d58926555
-
Achin Gupta authored
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three separate drivers instead of providing a single driver that can work on both versions of the GIC architecture. These drivers correspond to the following software use cases: 1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations e.g. GIC-400 2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features 3. A deprecated GICv3 driver that operates in legacy mode. This driver can operate only in the GICv2 mode in the secure world. On a GICv3 system, this driver allows normal world to run in either GICv3 mode (asymmetric mode) or in the GICv2 mode. Both modes of operation are deprecated on GICv3 systems. ARM platforms implement both versions of the GIC architecture. This patch adds a layer of abstraction to help ARM platform ports chose the right GIC driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been introduced to initialise the GIC and the driver during cold and warm boot. These functions are prefixed as "plat_arm_gic_". Weak definitions of these functions have been provided for each type of driver. 2. Each platform includes the sources that implement the right functions directly into the its makefile. The FVP can be instantiated with different versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option to specify which of the three drivers should be included in the build. 3. A list of secure interrupts has to be provided to initialise each of the three GIC drivers. For GIC v3.0 the interrupt ids have to be further categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two types are merged and treated as Group 0 interrupts. The two lists of interrupts are exported from the platform_def.h. The lists are constructed by adding a list of board specific interrupt ids to a list of ids common to all ARM platforms and Compute sub-systems. This patch also makes some fields of `arm_config` data structure in FVP redundant and these unused fields are removed. Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
-
- 02 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch adds watchdog support on ARM platforms (FVP and Juno). A secure instance of SP805 is used as Trusted Watchdog. It is entirely managed in BL1, being enabled in the early platform setup hook and disabled in the exit hook. By default, the watchdog is enabled in every build (even when TBB is disabled). A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG` has been introduced to allow the user to disable the watchdog at build time. This feature may be used for testing or debugging purposes. Specific error handlers for Juno and FVP are also provided in this patch. These handlers will be called after an image load or authentication error. On FVP, the Table of Contents (ToC) in the FIP is erased. On Juno, the corresponding error code is stored in the V2M Non-Volatile flags register. In both cases, the CPU spins until a watchdog reset is generated after 256 seconds (as specified in the TBBR document). Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
-
- 04 Nov, 2015 1 commit
-
-
Brendan Jackman authored
Cortex-A72 library support is now compiled into the Juno platform port to go with the existing A53/A57 support. This enables a single set of Juno TF binaries to run on Juno R0, R1 and R2 boards. Change-Id: I4a601dc4f671e98bdb19d98bbb66f02f0d8b7fc7
-
- 30 Oct, 2015 1 commit
-
-
Soby Mathew authored
This patch adds the capability to power down at system power domain level on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers are modified to add support for power management operations at system power domain level. A new helper for populating `get_sys_suspend_power_state` handler in plat_psci_ops is defined. On entering the system suspend state, the SCP powers down the SYSTOP power domain on the SoC and puts the memory into retention mode. On wakeup from the power down, the system components on the CSS will be reinitialized by the platform layer and the PSCI client is responsible for restoring the context of these system components. According to PSCI Specification, interrupts targeted to cores in PSCI CPU SUSPEND should be able to resume it. On Juno, when the system power domain is suspended, the GIC is also powered down. The SCP resumes the final core to be suspend when an external wake-up event is received. But the other cores cannot be woken up by a targeted interrupt, because GIC doesn't forward these interrupts to the SCP. Due to this hardware limitation, we down-grade PSCI CPU SUSPEND requests targeted to the system power domain level to cluster power domain level in `juno_validate_power_state()` and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c. A system power domain resume helper `arm_system_pwr_domain_resume()` is defined for ARM standard platforms which resumes/re-initializes the system components on wakeup from system suspend. The security setup also needs to be done on resume from system suspend, which means `plat_arm_security_setup()` must now be included in the BL3-1 image in addition to previous BL images if system suspend need to be supported. Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
-
- 13 Aug, 2015 1 commit
-
-
Soby Mathew authored
This patch migrates ARM reference platforms, Juno and FVP, to the new platform API mandated by the new PSCI power domain topology and composite power state frameworks. The platform specific makefiles now exports the build flag ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer. Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
-
- 25 Jun, 2015 1 commit
-
-
Juan Castillo authored
This patch modifies the Trusted Board Boot implementation to use the new authentication framework, making use of the authentication module, the cryto module and the image parser module to authenticate the images in the Chain of Trust. A new function 'load_auth_image()' has been implemented. When TBB is enabled, this function will call the authentication module to authenticate parent images following the CoT up to the root of trust to finally load and authenticate the requested image. The platform is responsible for picking up the right makefiles to build the corresponding cryptographic and image parser libraries. ARM platforms use the mbedTLS based libraries. The platform may also specify what key algorithm should be used to sign the certificates. This is done by declaring the 'KEY_ALG' variable in the platform makefile. FVP and Juno use ECDSA keys. On ARM platforms, BL2 and BL1-RW regions have been increased 4KB each to accommodate the ECDSA code. REMOVED BUILD OPTIONS: * 'AUTH_MOD' Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
-
- 28 Apr, 2015 2 commits
-
-
Dan Handley authored
Move the Juno port from plat/juno to plat/arm/board/juno. Also rename some of the files so they are consistently prefixed with juno_. Update the platform makefiles accordingly. Change-Id: I0af6cb52a5fee7ef209107a1188b76a3c33a2a9f
-
Dan Handley authored
Major update to the Juno platform port to use the common platform code in (include/)plat/arm/* and (include/)plat/common/*. This mainly consists of removing duplicated code but also introduces some small behavioural changes where there was unnecessary variation between the FVP and Juno ports. See earlier commit titled `Add common ARM and CSS platform code` for details. Also move the ARM SoC specific security setup (i.e. NIC-400 and PCIe initialization) from BL1 to `plat_arm_security_setup()` in BL2, where the other security setup is done. Change-Id: Ic9fe01bae8ed382bfb04fc5839a4cfff332eb124
-
- 16 Mar, 2015 1 commit
-
-
Vikram Kanigiri authored
This patch updates the FVP and Juno platform ports to use the common driver for ARM Cache Coherent Interconnects. Change-Id: Ib142f456b9b673600592616a2ec99e9b230d6542
-
- 11 Mar, 2015 1 commit
-
-
Sandrine Bailleux authored
Cortex-A57 erratum #806969 applies to revision r0p0 of the CPU but does not manifest itself on Juno r0. It is not applicable to Juno r1 in any case. This patch modifies the Juno platform Makefile to no longer compile this erratum workaround in. Change-Id: I32b16835b2ac897e639e869ab2b78b62a51a0139
-
- 28 Jan, 2015 1 commit
-
-
Juan Castillo authored
This patch adds the function plat_match_rotpk() to the platform porting layer to provide a Root Of Trust Public key (ROTPK) verification mechanism. This function is called during the Trusted Board Boot process and receives a supposed valid copy of the ROTPK as a parameter, usually obtained from an external source (for instance, a certificate). It returns 0 (success) if that key matches the actual ROTPK stored in the system or any other value otherwise. The mechanism to access the actual ROTPK stored in the system is platform specific and should be implemented as part of this function. The format of the ROTPK is also platform specific (to save memory, some platforms might store a hash of the key instead of the whole key). TRUSTED_BOARD_BOOT build option has been added to allow the user to enable the Trusted Board Boot features. The implementation of the plat_match_rotpk() funtion is mandatory when Trusted Board Boot is enabled. For development purposes, FVP and Juno ports provide a dummy function that returns always success (valid key). A safe trusted boot implementation should provide a proper matching function. Documentation updated accordingly. Change-Id: I74ff12bc2b041556c48533375527d9e8c035b8c3
-
- 22 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch moves the bakery locks out of coherent memory to normal memory. This implies that the lock information needs to be placed on a separate cache line for each cpu. Hence the bakery_lock_info_t structure is allocated in the per-cpu data so as to minimize memory wastage. A similar platform per-cpu data is introduced for the platform locks. As a result of the above changes, the bakery lock api is completely changed. Earlier, a reference to the lock structure was passed to the lock implementation. Now a unique-id (essentially an index into the per-cpu data array) and an offset into the per-cpu data for bakery_info_t needs to be passed to the lock implementation. Change-Id: I1e76216277448713c6c98b4c2de4fb54198b39e0
-
- 31 Oct, 2014 1 commit
-
-
Juan Castillo authored
This patch replaces the usage of the GIC private driver in Juno with the generic ARM GIC driver. The private driver is no longer necessary and has been removed from the Juno port. Fixes ARM-software/tf-issues#253 Change-Id: I6aaabc252e5e6fb5fcf44ab6d0febd9b38791056
-
- 29 Oct, 2014 1 commit
-
-
Soby Mathew authored
This patch optimizes the Cortex-A57 cluster power down sequence by not flushing the Level1 data cache. The L1 data cache and the L2 unified cache are inclusive. A flush of the L2 by set/way flushes any dirty lines from the L1 as well. This is a known safe deviation from the Cortex-A57 TRM defined power down sequence. This optimization can be enabled by the platform through the 'SKIP_A57_L1_FLUSH_PWR_DWN' build flag. Each Cortex-A57 based platform must make its own decision on whether to use the optimization. This patch also renames the cpu-errata-workarounds.md to cpu-specific-build-macros.md as this facilitates documentation of both CPU Specific errata and CPU Specific Optimization build macros. Change-Id: I299b9fe79e9a7e08e8a0dffb7d345f9a00a71480
-
- 14 Oct, 2014 1 commit
-
-
Juan Castillo authored
This patch configures the TrustZone Controller in Juno to split the 2GB DDR-DRAM memory at 0x80000000 into Secure and Non-Secure regions: - Secure DDR-DRAM: top 16 MB, except for the last 2 MB which are used by the SCP for DDR retraining - Non-Secure DDR-DRAM: remaining DRAM starting at base address Build option PLAT_TSP_LOCATION selects the location of the secure payload (BL3-2): - 'tsram' : Trusted SRAM (default option) - 'dram' : Secure region in the DDR-DRAM (set by the TrustZone controller) The MMU memory map has been updated to give BL2 permission to load BL3-2 into the DDR-DRAM secure region. Fixes ARM-software/tf-issues#233 Change-Id: I6843fc32ef90aadd3ea6ac4c7f314f8ecbd5d07b
-
- 09 Oct, 2014 1 commit
-
-
Juan Castillo authored
This patch replaces direct accesses to the TZC-400 registers by the appropiate calls to the generic driver available in the Trusted Firmware in order to initialize the TrustZone Controller. Functions related to the initialization of the secure memory, like the TZC-400 configuration, have been moved to a new file 'plat_security.c'. This reorganization makes easier to set up the secure memory from any BL stage. TZC-400 initialization has been moved from BL1 to BL2 because BL1 does not access the non-secure memory. It is BL2's responsibility to enable and configure the TZC-400 before loading the next BL images. In Juno, BL3-0 initializes some of the platform peripherals, like the DDR controller. Thus, BL3-0 must be loaded before configuring the TrustZone Controller. As a consequence, the IO layer initialization has been moved to early platform initialization. Fixes ARM-software/tf-issues#234 Change-Id: I83dde778f937ac8d2996f7377e871a2e77d9490e
-
- 21 Aug, 2014 1 commit
-
-
Sandrine Bailleux authored
This patch adds the initial port of the ARM Trusted Firmware on the Juno development platform. This port does not support a BL3-2 image or any PSCI APIs apart from PSCI_VERSION and PSCI_CPU_ON. It enables workarounds for selected Cortex-A57 (#806969 & #813420) errata and implements the workaround for a Juno platform errata (Defect id 831273). Change-Id: Ib3d92df3af53820cfbb2977582ed0d7abf6ef893
-