1. 18 Jul, 2016 1 commit
    • Soby Mathew's avatar
      Introduce `el3_runtime` and `PSCI` libraries · 532ed618
      Soby Mathew authored
      This patch moves the PSCI services and BL31 frameworks like context
      management and per-cpu data into new library components `PSCI` and
      `el3_runtime` respectively. This enables PSCI to be built independently from
      BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant
      PSCI library sources and gets included by `bl31.mk`. Other changes which
      are done as part of this patch are:
      
      * The runtime services framework is now moved to the `common/` folder to
        enable reuse.
      * The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture
        specific folder.
      * The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder
        to `plat/common` folder. The original file location now has a stub which
        just includes the file from new location to maintain platform compatibility.
      
      Most of the changes wouldn't affect platform builds as they just involve
      changes to the generic bl1.mk and bl31.mk makefiles.
      
      NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT
      THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR
      MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION.
      
      Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
      532ed618
  2. 13 Aug, 2015 1 commit
    • Soby Mathew's avatar
      PSCI: Add framework to handle composite power states · 8ee24980
      Soby Mathew authored
      The state-id field in the power-state parameter of a CPU_SUSPEND call can be
      used to describe composite power states specific to a platform. The current PSCI
      implementation does not interpret the state-id field. It relies on the target
      power level and the state type fields in the power-state parameter to perform
      state coordination and power management operations. The framework introduced
      in this patch allows the PSCI implementation to intepret generic global states
      like RUN, RETENTION or OFF from the State-ID to make global state coordination
      decisions and reduce the complexity of platform ports. It adds support to
      involve the platform in state coordination which facilitates the use of
      composite power states and improves the support for entering standby states
      at multiple power domains.
      
      The patch also includes support for extended state-id format for the power
      state parameter as specified by PSCIv1.0.
      
      The PSCI implementation now defines a generic representation of the power-state
      parameter. It depends on the platform port to convert the power-state parameter
      (possibly encoding a composite power state) passed in a CPU_SUSPEND call to this
      representation via the `validate_power_state()` plat_psci_ops handler. It is an
      array where each index corresponds to a power level. Each entry contains the
      local power state the power domain at that power level could enter.
      
      The meaning of the local power state values is platform defined, and may vary
      between levels in a single platform. The PSCI implementation constrains the
      values only so that it can classify the state as RUN, RETENTION or OFF as
      required by the specification:
         * zero means RUN
         * all OFF state values at all levels must be higher than all RETENTION
           state values at all levels
         * the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values
           to the framework
      
      The platform also must define the macros PLAT_MAX_RET_STATE and
      PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power
      domains have been requested to enter a retention or power down state. The PSCI
      implementation does not interpret the local power states defined by the
      platform. The only constraint is that the PLAT_MAX_RET_STATE <
      PLAT_MAX_OFF_STATE.
      
      For a power domain tree, the generic implementation maintains an array of local
      power states. These are the states requested for each power domain by all the
      cores contained within the domain. During a request to place multiple power
      domains in a low power state, the platform is passed an array of requested
      power-states for each power domain through the plat_get_target_pwr_state()
      API. It coordinates amongst these states to determine a target local power
      state for the power domain. A default weak implementation of this API is
      provided in the platform layer which returns the minimum of the requested
      power-states back to the PSCI state coordination.
      
      Finally, the plat_psci_ops power management handlers are passed the target
      local power states for each affected power domain using the generic
      representation described above. The platform executes operations specific to
      these target states.
      
      The platform power management handler for placing a power domain in a standby
      state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for
      placing a core power domain into a standby or retention state should now be
      used to only place the core power domain in a standby or retention state.
      
      The extended state-id power state format can be enabled by setting the
      build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default.
      
      Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
      8ee24980
  3. 28 Apr, 2015 1 commit
    • Dan Handley's avatar
      Add common ARM and CSS platform code · b4315306
      Dan Handley authored
      This major change pulls out the common functionality from the
      FVP and Juno platform ports into the following categories:
      
      *   (include/)plat/common. Common platform porting functionality that
      typically may be used by all platforms.
      
      *   (include/)plat/arm/common. Common platform porting functionality
      that may be used by all ARM standard platforms. This includes all
      ARM development platforms like FVP and Juno but may also include
      non-ARM-owned platforms.
      
      *   (include/)plat/arm/board/common. Common platform porting
      functionality for ARM development platforms at the board
      (off SoC) level.
      
      *   (include/)plat/arm/css/common. Common platform porting
      functionality at the ARM Compute SubSystem (CSS) level. Juno
      is an example of a CSS-based platform.
      
      *   (include/)plat/arm/soc/common. Common platform porting
      functionality at the ARM SoC level, which is not already defined
      at the ARM CSS level.
      
      No guarantees are made about the backward compatibility of
      functionality provided in (include/)plat/arm.
      
      Also remove any unnecessary variation between the ARM development
      platform ports, including:
      
      *   Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the
      Juno implementation, which copies the information from BL2 memory
      instead of expecting it to persist in shared memory.
      
      *   Unify the TZC configuration. There is no need to add a region
      for SCP in Juno; it's enough to simply not allow any access to
      this reserved region. Also set region 0 to provide no access by
      default instead of assuming this is the case.
      
      *   Unify the number of memory map regions required for ARM
      development platforms, although the actual ranges mapped for each
      platform may be different. For the FVP port, this reduces the
      mapped peripheral address space.
      
      These latter changes will only be observed when the platform ports
      are migrated to use the new common platform code in subsequent
      patches.
      
      Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8
      b4315306
  4. 05 Mar, 2015 1 commit
    • Sandrine Bailleux's avatar
      Fix violations to the coding style · ba592e28
      Sandrine Bailleux authored
      All coding style violations have been fixed in a previous patch and
      since then, each individual patch has been checked in this regard.
      However, the latest version of the checkpatch.pl script from the Linux
      kernel is more advanced and it is able to flag new errors in the
      Trusted Firmware codebase. This patch fixes them.
      
      Change-Id: I1f332f2440984be85d36b231bb83260368987077
      ba592e28
  5. 12 Feb, 2015 1 commit
    • Soby Mathew's avatar
      Export maximum affinity using PLATFORM_MAX_AFFLVL macro · 8c32bc26
      Soby Mathew authored
      This patch removes the plat_get_max_afflvl() platform API
      and instead replaces it with a platform macro PLATFORM_MAX_AFFLVL.
      This is done because the maximum affinity level for a platform
      is a static value and it is more efficient for it to be defined
      as a platform macro.
      
      NOTE: PLATFORM PORTS NEED TO BE UPDATED ON MERGE OF THIS COMMIT
      
      Fixes ARM-Software/tf-issues#265
      
      Change-Id: I31d89b30c2ccda30d28271154d869060d50df7bf
      8c32bc26
  6. 21 Aug, 2014 1 commit
    • Sandrine Bailleux's avatar
      Juno: Implement initial platform port · 01b916bf
      Sandrine Bailleux authored
      This patch adds the initial port of the ARM Trusted Firmware on the Juno
      development platform. This port does not support a BL3-2 image or any PSCI APIs
      apart from PSCI_VERSION and PSCI_CPU_ON. It enables workarounds for selected
      Cortex-A57 (#806969 & #813420) errata and implements the workaround for a Juno
      platform errata (Defect id 831273).
      
      Change-Id: Ib3d92df3af53820cfbb2977582ed0d7abf6ef893
      01b916bf
  7. 28 Jul, 2014 1 commit
    • Soby Mathew's avatar
      Rework the crash reporting in BL3-1 to use less stack · 626ed510
      Soby Mathew authored
      This patch reworks the crash reporting mechanism to further
      optimise the stack and code size. The reporting makes use
      of assembly console functions to avoid calling C Runtime
      to report the CPU state. The crash buffer requirement is
      reduced to 64 bytes with this implementation. The crash
      buffer is now part of per-cpu data which makes retrieving
      the crash buffer trivial.
      
      Also now panic() will use crash reporting if
      invoked from BL3-1.
      
      Fixes ARM-software/tf-issues#199
      
      Change-Id: I79d27a4524583d723483165dc40801f45e627da5
      626ed510
  8. 16 Jun, 2014 1 commit
    • Andrew Thoelke's avatar
      Per-cpu data cache restructuring · 5e910074
      Andrew Thoelke authored
      This patch prepares the per-cpu pointer cache for wider use by:
      * renaming the structure to cpu_data and placing in new header
      * providing accessors for this CPU, or other CPUs
      * splitting the initialization of the TPIDR pointer from the
        initialization of the cpu_data content
      * moving the crash stack initialization to a crash stack function
      * setting the TPIDR pointer very early during boot
      
      Change-Id: Icef9004ff88f8eb241d48c14be3158087d7e49a3
      5e910074
  9. 06 May, 2014 3 commits
    • Dan Handley's avatar
      Remove variables from .data section · 625de1d4
      Dan Handley authored
      Update code base to remove variables from the .data section,
      mainly by using const static data where possible and adding
      the const specifier as required. Most changes are to the IO
      subsystem, including the framework APIs. The FVP power
      management code is also affected.
      
      Delay initialization of the global static variable,
      next_image_type in bl31_main.c, until it is realy needed.
      Doing this moves the variable from the .data to the .bss
      section.
      
      Also review the IO interface for inconsistencies, using
      uintptr_t where possible instead of void *. Remove the
      io_handle and io_dev_handle typedefs, which were
      unnecessary, replacing instances with uintptr_t.
      
      Fixes ARM-software/tf-issues#107.
      
      Change-Id: I085a62197c82410b566e4698e5590063563ed304
      625de1d4
    • Dan Handley's avatar
      Reduce deep nesting of header files · 97043ac9
      Dan Handley authored
      Reduce the number of header files included from other header
      files as much as possible without splitting the files. Use forward
      declarations where possible. This allows removal of some unnecessary
      "#ifndef __ASSEMBLY__" statements.
      
      Also, review the .c and .S files for which header files really need
      including and reorder the #include statements alphabetically.
      
      Fixes ARM-software/tf-issues#31
      
      Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
      97043ac9
    • Dan Handley's avatar
      Move include and source files to logical locations · 4ecca339
      Dan Handley authored
      Move almost all system include files to a logical sub-directory
      under ./include. The only remaining system include directories
      not under ./include are specific to the platform. Move the
      corresponding source files to match the include directory
      structure.
      
      Also remove pm.h as it is no longer used.
      
      Change-Id: Ie5ea6368ec5fad459f3e8a802ad129135527f0b3
      4ecca339
  10. 17 Feb, 2014 2 commits
    • Harry Liebel's avatar
      Add Firmware Image Package (FIP) driver · 561cd33e
      Harry Liebel authored
      The Firmware Image Package (FIP) driver allows for data to be loaded
      from a FIP on platform storage. The FVP supports loading bootloader
      images from a FIP located in NOR FLASH.
      
      The implemented FVP policy states that bootloader images will be
      loaded from a FIP in NOR FLASH if available and fall back to loading
      individual images from semi-hosting.
      
      NOTE:
      - BL3-3(e.g. UEFI) is loaded into DRAM and needs to be configured
        to run from the BL33_BASE address. This is currently set to
        DRAM_BASE+128MB for the FVP.
      
      Change-Id: I2e4821748e3376b5f9e467cf3ec09509e43579a0
      561cd33e
    • James Morrissey's avatar
      Implement load_image in terms of IO abstraction · 9d72b4ea
      James Morrissey authored
      The modified implementation uses the IO abstraction rather than
      making direct semi-hosting calls.  The semi-hosting driver is now
      registered for the FVP platform during initialisation of each boot
      stage where it is used.  Additionally, the FVP platform includes a
      straightforward implementation of 'plat_get_image_source' which
      provides a generic means for the 'load_image' function to determine
      how to access the image data.
      
      Change-Id: Ia34457b471dbee990c7b3c79de7aee4ceea51aa6
      9d72b4ea
  11. 17 Jan, 2014 2 commits
    • Jeenu Viswambharan's avatar
      Change comments in assembler files to help ctags · 3a4cae05
      Jeenu Viswambharan authored
      Ctags seem to have a problem with generating tags for assembler symbols
      when a comment immediately follows an assembly label.
      
      This patch inserts a single space character between the label
      definition and the following comments to help ctags.
      
      The patch is generated by the command:
      
        git ls-files -- \*.S | xargs sed -i 's/^\([^:]\+\):;/\1: ;/1'
      
      Change-Id: If7a3c9d0f51207ea033cc8b8e1b34acaa0926475
      3a4cae05
    • Dan Handley's avatar
      Update year in copyright text to 2014 · e83b0cad
      Dan Handley authored
      Change-Id: Ic7fb61aabae1d515b9e6baf3dd003807ff42da60
      e83b0cad
  12. 05 Dec, 2013 1 commit
    • Dan Handley's avatar
      Enable third party contributions · ab2d31ed
      Dan Handley authored
      - Add instructions for contributing to ARM Trusted Firmware.
      
      - Update copyright text in all files to acknowledge contributors.
      
      Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5
      ab2d31ed
  13. 25 Oct, 2013 1 commit