- 28 Apr, 2015 1 commit
-
-
Dan Handley authored
Update the User Guide, Porting Guide and Firmware Design documents to align them with the recent changes made to the FVP and Juno platform ports. Also fix some other historical inaccuracies. Change-Id: I37aba4805f9044b1a047996d3e396c75f4a09176
-
- 03 Feb, 2015 1 commit
-
-
Achin Gupta authored
Final updates to readme.md and change-log.md for ARM Trusted Firmware version 1.1. Also increment the version in the Makefile. Change-Id: Ib001a6ec9a9c570985841d06f0ff80ed76c2996b
-
- 02 Feb, 2015 1 commit
-
-
Sandrine Bailleux authored
Change-Id: Iaf9d6305edc478d39cf1b37c8a70ccdf723e8ef9
-
- 30 Jan, 2015 1 commit
-
-
Soby Mathew authored
The CPU specific reset handlers no longer have the freedom of using any general purpose register because it is being invoked by the BL3-1 entry point in addition to BL1. The Cortex-A57 CPU specific reset handler was overwriting x20 register which was being used by the BL3-1 entry point to save the entry point information. This patch fixes this bug by reworking the register allocation in the Cortex-A57 reset handler to avoid using x20. The patch also explicitly mentions the register clobber list for each of the callee functions invoked by the reset handler Change-Id: I28fcff8e742aeed883eaec8f6c4ee2bd3fce30df
-
- 26 Jan, 2015 3 commits
-
-
Yatharth Kochar authored
This patch adds support to call the reset_handler() function in BL3-1 in the cold and warm boot paths when another Boot ROM reset_handler() has already run. This means the BL1 and BL3-1 versions of the CPU and platform specific reset handlers may execute different code to each other. This enables a developer to perform additional actions or undo actions already performed during the first call of the reset handlers e.g. apply additional errata workarounds. Typically, the reset handler will be first called from the BL1 Boot ROM. Any additional functionality can be added to the reset handler when it is called from BL3-1 resident in RW memory. The constant FIRST_RESET_HANDLER_CALL is used to identify whether this is the first version of the reset handler code to be executed or an overridden version of the code. The Cortex-A57 errata workarounds are applied only if they have not already been applied. Fixes ARM-software/tf-issue#275 Change-Id: Id295f106e4fda23d6736debdade2ac7f2a9a9053
-
Soby Mathew authored
This patch: * Bumps the PSCI VERSION to 1.0. This means that the PSCI_VERSION API will now return the value 0x00010000 to indicate the version as 1.0. The firmware remains compatible with PSCI v0.2 clients. * The firmware design guide is updated to document the APIs supported by the Trusted Firmware generic code. * The FVP Device Tree Sources (dts) and Blobs(dtb) are also updated to add "psci-1.0" and "psci-0.2" to the list of compatible PSCI versions. Change-Id: Iafc2f549c92651dcd65d7e24a8aae35790d00f8a
-
Juan Castillo authored
This patch allows the secure payload (BL3-2) to be loaded in the DRAM region secured by the TrustZone controller (top 16 MB of DRAM1). The location of BL3-2 can be selected at build time by setting the build flag FVP_TSP_RAM_LOCATION to one of the following options: - 'tsram' : Trusted SRAM (this is the default option) - 'tdram' : Trusted DRAM - 'dram' : Secure region in DRAM1 (top 16MB configured by the TrustZone controller) The number of MMU tables in BL3-2 depends on its location in memory: 3 in case it is loaded in DRAM, 2 otherwise. Documentation updated accordingly. Fixes ARM-software/tf-issues#212 Change-Id: I371eef3a4159f06a0c9e3c6c1f4c905b2f93803a
-
- 22 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch extends the build option `USE_COHERENT_MEMORY` to conditionally remove coherent memory from the memory maps of all boot loader stages. The patch also adds necessary documentation for coherent memory removal in firmware-design, porting and user guides. Fixes ARM-Software/tf-issues#106 Change-Id: I260e8768c6a5c2efc402f5804a80657d8ce38773
-
- 12 Jan, 2015 1 commit
-
-
Juan Castillo authored
This patch allows the BL3-1 NOBITS section to overlap the BL1 R/W section since the former will always be used after the latter. Similarly, the BL3-2 NOBITS section can overlay the BL2 image when BL3-2 is loaded in Trusted SRAM. Due to the current size of the images, there is no actual overlap. Nevertheless, this reorganization may help to optimise the Trusted SRAM usage when the images size grows. Note that because BL3-1 NOBITS section is allowed to overlap the BL1 R/W section, BL1 global variables will remain valid only until execution reaches the BL3-1 entry point during a cold boot. Documentation updated accordingly. Fixes ARM-software/tf-issues#254 Change-Id: Id538f4d1c7f1f7858108280fd7b97e138572b879
-
- 07 Jan, 2015 1 commit
-
-
Joakim Bech authored
Fixes arm-software/tf-issues#276
-
- 29 Oct, 2014 1 commit
-
-
Soby Mathew authored
This patch optimizes the Cortex-A57 cluster power down sequence by not flushing the Level1 data cache. The L1 data cache and the L2 unified cache are inclusive. A flush of the L2 by set/way flushes any dirty lines from the L1 as well. This is a known safe deviation from the Cortex-A57 TRM defined power down sequence. This optimization can be enabled by the platform through the 'SKIP_A57_L1_FLUSH_PWR_DWN' build flag. Each Cortex-A57 based platform must make its own decision on whether to use the optimization. This patch also renames the cpu-errata-workarounds.md to cpu-specific-build-macros.md as this facilitates documentation of both CPU Specific errata and CPU Specific Optimization build macros. Change-Id: I299b9fe79e9a7e08e8a0dffb7d345f9a00a71480
-
- 22 Oct, 2014 1 commit
-
-
Juan Castillo authored
This patch deprecates the build option to relocate the shared data into Trusted DRAM in FVP. After this change, shared data is always located at the base of Trusted SRAM. This reduces the complexity of the memory map and the number of combinations in the build options. Fixes ARM-software/tf-issues#257 Change-Id: I68426472567b9d8c6d22d8884cb816f6b61bcbd3
-
- 14 Oct, 2014 1 commit
-
-
Juan Castillo authored
This patch configures the TrustZone Controller in Juno to split the 2GB DDR-DRAM memory at 0x80000000 into Secure and Non-Secure regions: - Secure DDR-DRAM: top 16 MB, except for the last 2 MB which are used by the SCP for DDR retraining - Non-Secure DDR-DRAM: remaining DRAM starting at base address Build option PLAT_TSP_LOCATION selects the location of the secure payload (BL3-2): - 'tsram' : Trusted SRAM (default option) - 'dram' : Secure region in the DDR-DRAM (set by the TrustZone controller) The MMU memory map has been updated to give BL2 permission to load BL3-2 into the DDR-DRAM secure region. Fixes ARM-software/tf-issues#233 Change-Id: I6843fc32ef90aadd3ea6ac4c7f314f8ecbd5d07b
-
- 16 Sep, 2014 1 commit
-
-
Soby Mathew authored
This patch adds support for supplying pre-built BL binaries for BL2, BL3-1 and BL3-2 during trusted firmware build. Specifying BLx = <path_to_BLx> in the build command line, where 'x' is any one of BL2, BL3-1 or BL3-2, will skip building that BL stage from source and include the specified binary in final fip image. This patch also makes BL3-3 binary for FIP optional depending on the value of 'NEED_BL33' flag which is defined by the platform. Fixes ARM-software/tf-issues#244 Fixes ARM-software/tf-issues#245 Change-Id: I3ebe1d4901f8b857e8bb51372290978a3323bfe7
-
- 27 Aug, 2014 2 commits
-
-
Sandrine Bailleux authored
This patch gathers miscellaneous minor fixes to the documentation, and comments in the source code. Change-Id: I631e3dda5abafa2d90f464edaee069a1e58b751b Co-Authored-By: Soby Mathew <soby.mathew@arm.com> Co-Authored-By: Dan Handley <dan.handley@arm.com>
-
Juan Castillo authored
This patch reorganizes the firmware design guide to add information about the port of the ARM Trusted Firmware to the Juno ARM development platform. Change-Id: I0b80e2e7a35ccad1af2e971506cfb7fe505f8b84
-
- 20 Aug, 2014 1 commit
-
-
Soby Mathew authored
This patch adds documentation for CPU specific abstraction in the firmware- design.md and adds a new document cpu-errata-workarounds.md to describe the cpu errata workaround build flags. Change-Id: Ia08c2fec0b868a0a107d0264e87a60182797a1bd
-
- 14 Aug, 2014 1 commit
-
-
Juan Castillo authored
This patch groups the current contents of the Trusted DRAM region at address 0x00_0600_0000 (entrypoint mailboxes and BL3-1 parameters) in a single shared memory area that may be allocated to Trusted SRAM (default) or Trusted DRAM at build time by setting the FVP_SHARED_DATA_LOCATION make variable. The size of this shared memory is 4096 bytes. The combination 'Shared data in Trusted SRAM + TSP in Trusted DRAM' is not currently supported due to restrictions in the maximum number of mmu tables that can be created. Documentation has been updated to reflect these changes. Fixes ARM-software/tf-issues#100 Change-Id: I26ff04d33ce4cacf8d770d1a1e24132b4fc53ff0
-
- 11 Aug, 2014 1 commit
-
-
Soby Mathew authored
This patch defines a compile time macro for each boot loader stage which allows compilation of code only for a specific stage. Change-Id: I3a4068404cd3dc26d652556ca9ca7afea8dd28ef
-
- 01 Aug, 2014 1 commit
-
-
Vikram Kanigiri authored
This patch adds support for BL3-2 initialization by asynchronous method where BL3-1 transfers control to BL3-2 using world switch. After BL3-2 initialization, it transfers control to BL3-3 via SPD service handler. The SPD service handler initializes the CPU context to BL3-3 entrypoint depending on the return function indentifier from TSP initialization. Fixes ARM-software/TF-issues#184 Change-Id: I7b135c2ceeb356d3bb5b6a287932e96ac67c7a34
-
- 11 Jul, 2014 1 commit
-
-
Sandrine Bailleux authored
Update the "Memory layout on FVP platforms" section in the Firmware Design document to reflect the overlaying of BL1 and BL2 images by BL3-1 and BL3-2. Also update the Porting Guide document to mention the BL31_PROGBITS_LIMIT and BL32_PROGBITS_LIMIT constants. Change-Id: I0b23dae5b5b4490a01be7ff7aa80567cff34bda8
-
- 03 Jun, 2014 2 commits
-
-
Achin Gupta authored
This patch adds documentation that describes the design of the Interrupt management framework in the ARM Trusted Firmware. The porting-guide.md has also been updated to describe the interface that should be implemented by each platform to support this framework. Change-Id: I3eda48e5c9456e6a9516956bee16a29e366633b7 Co-Authored-By: Soby Mathew <soby.mathew@arm.com>
-
Vikram Kanigiri authored
Update documentation with BL3-1 hardening interface changes and for using BL3-1 as a reset vector feature Change-Id: Iafdd05e7a8e66503409f2acc934372efef5bc51b
-
- 02 Jun, 2014 1 commit
-
-
Soby Mathew authored
This patch modifies and adds to the existing documentation for the crash reporting implementation in BL3-1. Change-Id: I2cfbfeeeb64996ec7d19a9ddf95295482899b4bd
-
- 23 May, 2014 1 commit
-
-
Sandrine Bailleux authored
Rework the "Memory layout on FVP platforms" section in the Firmware Design document. Add information about where the TSP image fits in the memory layout when present. Add documentation for the base addresses of each bootloader image in the porting guide. Change-Id: I4afb2605e008a1cb28c44a697804f2cb6bb4c9aa
-
- 19 May, 2014 1 commit
-
-
Harry Liebel authored
Provide some information about the expected use of BL3-0. Fixes ARM-software/tf-issues#144 Change-Id: I5c8d59a675578394be89481ae4ec39ca37522750
-
- 24 Apr, 2014 1 commit
-
-
Harry Liebel authored
Fixes ARM-software/tf-issues#64 Change-Id: I4e56c25f9dc7f486fbf6fa2f7d8253874119b989
-
- 08 Apr, 2014 2 commits
-
-
Sandrine Bailleux authored
BL3-1 architecture setup code programs the system counter frequency into the CNTFRQ_EL0 register. This frequency is defined by the platform, though. This patch introduces a new platform hook that the architecture setup code can call to retrieve this information. In the ARM FVP port, this returns the first entry of the frequency modes table from the memory mapped generic timer. All system counter setup code has been removed from BL1 as some platforms may not have initialized the system counters at this stage. The platform specific settings done exclusively in BL1 have been moved to BL3-1. In the ARM FVP port, this consists in enabling and initializing the System level generic timer. Also, the frequency change request in the counter control register has been set to 0 to make it explicit it's using the base frequency. The CNTCR_FCREQ() macro has been fixed in this context to give an entry number rather than a bitmask. In future, when support for firmware update is implemented, there is a case where BL1 platform specific code will need to program the counter frequency. This should be implemented at that time. This patch also updates the relevant documentation. It properly fixes ARM-software/tf-issues#24 Change-Id: If95639b279f75d66ac0576c48a6614b5ccb0e84b
-
Sandrine Bailleux authored
This reverts commit 1c297bf0 because it introduced a bug: the CNTFRQ_EL0 register was no longer programmed by all CPUs. bl31_platform_setup() function is invoked only in the cold boot path and consequently only on the primary cpu. A subsequent commit will correctly implement the necessary changes to the counter frequency setup code. Fixes ARM-software/tf-issues#125 Conflicts: docs/firmware-design.md plat/fvp/bl31_plat_setup.c Change-Id: Ib584ad7ed069707ac04cf86717f836136ad3ab54
-
- 26 Mar, 2014 1 commit
-
-
Vikram Kanigiri authored
This patch reworks the console driver to ensure that each bootloader stage initializes it independently. As a result, both BL3-1 and BL2 platform code now calls console_init() instead of relying on BL1 to perform console setup Fixes ARM-software/tf-issues#120 Change-Id: Ic4d66e0375e40a2fc7434afcabc8bbb4715c14ab
-
- 10 Mar, 2014 1 commit
-
-
Jeenu Viswambharan authored
At present, bl1_arch_setup() and bl31_arch_setup() program the counter frequency using a value from the memory mapped generic timer. The generic timer however is not necessarily present on all ARM systems (although it is architected to be present on all server systems). This patch moves the timer setup to platform-specific code and updates the relevant documentation. Also, CNTR.FCREQ is set as the specification requires the bit corresponding to the counter's frequency to be set when enabling. Since we intend to use the base frequency, set bit 8. Fixes ARM-software/tf-issues#24 Change-Id: I32c52cf882253e01f49056f47c58c23e6f422652
-
- 28 Feb, 2014 4 commits
-
-
Dan Handley authored
Consolidate firmware-design.md and porting-guide.pm so that recently added sections fit better with pre-existing sections. Make the documentation more consistent in use of terminology. Change-Id: Id87050b096122fbd845189dc2fe1cd17c3003468
-
Dan Handley authored
1. Add design information on EL3 runtime services and Secure-EL1 Payload Dispatchers (SPD) to firmware-design.md. 2. Create new EL3 runtime service writer's guide (rt-svc-writers-guide.md) to ease creation of new runtime services. Change-Id: I670aeb5fc246e25c6e599a15139aac886a0074fd
-
Dan Handley authored
Move the firmware design documentation out of user-guide.md and into a new file - firmware-design.md. Reformat the section headers. Change-Id: I664815dd47011c7c1cf2202aa4472a8fd78ebb92
-
Dan Handley authored
1. Update user-guide.md with the latest versions of dependent components required by the tested configurations of ARM Trusted Firmware. This includes the tested versions of Fixed Virtual Platforms (FVPs), toolchain, EFI Development Kit 2(EDK2), Linux kernel and Linux file system. 2. Remove the instructions to configure the Cortex Base FVP with the legacy GICv2 memory map as this is no longer supported since version 5.3 of the Base FVPs. 3. General tidyup of "Using the software" section. Change-Id: If8264cd29036b59dc5ff435b5f8b1d072dd36ef0
-
- 20 Feb, 2014 3 commits
-
-
Achin Gupta authored
This patch adds the following support to the BL3-1 stage: 1. BL3-1 allows runtime services to specify and determine the security state of the next image after BL3-1. This has been done by adding the `bl31_set_next_image_type()` & `bl31_get_next_image_type()` apis. The default security state is non-secure. The platform api `bl31_get_next_image_info()` has been modified to let the platform decide which is the next image in the desired security state. 2. BL3-1 exports the `bl31_prepare_next_image_entry()` function to program entry into the target security state. It uses the apis introduced in 1. to do so. 3. BL3-1 reads the information populated by BL2 about the BL3-2 image into its internal data structures. 4. BL3-1 introduces a weakly defined reference `bl32_init()` to allow initialisation of a BL3-2 image. A runtime service like the Secure payload dispatcher will define this function if present. Change-Id: Icc46dcdb9e475ce6575dd3f9a5dc7a48a83d21d1
-
Achin Gupta authored
This patch adds support for loading a BL3-2 image in BL2. In case a BL3-2 image is found, it also passes information to BL3-1 about where it is located and the extents of memory available to it. Information about memory extents is populated by platform specific code. The documentation has also been updated to reflect the above changes. Change-Id: I526b2efb80babebab1318f2b02e319a86d6758b0 Co-authored-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
Achin Gupta authored
This patch reworks BL2 to BL3-1 hand over interface by introducing a composite structure (bl31_args) that holds the superset of information that needs to be passed from BL2 to BL3-1. - The extents of secure memory available to BL3-1 - The extents of memory available to BL3-2 (not yet implemented) and BL3-3 - Information to execute BL3-2 (not yet implemented) and BL3-3 images This patch also introduces a new platform API (bl2_get_bl31_args_ptr) that needs to be implemented by the platform code to export reference to bl31_args structure which has been allocated in platform-defined memory. The platform will initialize the extents of memory available to BL3-3 during early platform setup in bl31_args structure. This obviates the need for bl2_get_ns_mem_layout platform API. BL2 calls the bl2_get_bl31_args_ptr function to get a reference to bl31_args structure. It uses the 'bl33_meminfo' field of this structure to load the BL3-3 image. It sets the entry point information for the BL3-3 image in the 'bl33_image_info' field of this structure. The reference to this structure is passed to the BL3-1 image. Also fixes issue ARM-software/tf-issues#25 Change-Id: Ic36426196dd5ebf89e60ff42643bed01b3500517
-
- 17 Feb, 2014 1 commit
-
-
Harry Liebel authored
This fixes ARM-software/tf-issues#9 Change-Id: Id57037115b8762efc9eaf5ff41887b71d6494c5d
-
- 30 Jan, 2014 1 commit
-
-
Ian Spray authored
New phony Makefile targets have been added: * checkcodebase * checkpatch The checkcodebase target will run a Linux style compliance check over the entire codebase, and honours the V=1 Makefile verbose setting and so will show more information when this is enabled. If the local directory is a git checkout then the output of git ls-files is used to decide which files to test for compliance. If the local directory is not under git control then a 'best attempt' is made, but in this case it should be noted that it is possible for additional non-codebase files to be tested, so care should be taken when parsing the output. The checkpatch target will compare local changes against the git origin/master to allow issues with the last set of changes to be identified. To override the change comparision location, set the BASE_COMMIT variable to your desired git branch. Both targets rely on the Linux source tree script checkpatch.pl to do the syntax checking, and expects that the CHECKPATCH environment variable points to the location of this file. Notes on the usage of these targets have been added to the contributing.md and docs/user-guide.md text files. Change-Id: I6d73c97af578e24a34226d972afadab9d30f1d8d
-