- 08 Mar, 2017 2 commits
-
-
Antonio Nino Diaz authored
TLBI instructions for EL3 won't have the desired effect under specific circumstances in Cortex-A57 r0p0. The workaround is to execute DSB and TLBI twice each time. Even though this errata is only needed in r0p0, the current errata framework is not prepared to apply run-time workarounds. The current one is always applied if compiled in, regardless of the CPU or its revision. This errata has been enabled for Juno. The `DSB` instruction used when initializing the translation tables has been changed to `DSB ISH` as an optimization and to be consistent with the barriers used for the workaround. Change-Id: Ifc1d70b79cb5e0d87e90d88d376a59385667d338 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
Antonio Nino Diaz authored
Added APIs to add and remove regions to the translation tables dynamically while the MMU is enabled. Only static regions are allowed to overlap other static ones (for backwards compatibility). A new private attribute (MT_DYNAMIC / MT_STATIC) has been added to flag each region as such. The dynamic mapping functionality can be enabled or disabled when compiling by setting the build option PLAT_XLAT_TABLES_DYNAMIC to 1 or 0. This can be done per-image. TLB maintenance code during dynamic table mapping and unmapping has also been added. Fixes ARM-software/tf-issues#310 Change-Id: I19e8992005c4292297a382824394490c5387aa3b Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 15 Feb, 2017 1 commit
-
-
dp-arm authored
Trusted Firmware currently has no support for secure self-hosted debug. To avoid unexpected exceptions, disable software debug exceptions, other than software breakpoint instruction exceptions, from all exception levels in secure state. This applies to both AArch32 and AArch64 EL3 initialization. Change-Id: Id097e54a6bbcd0ca6a2be930df5d860d8d09e777 Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 30 Jan, 2017 1 commit
-
-
Jeenu Viswambharan authored
The errata reporting policy is as follows: - If an errata workaround is enabled: - If it applies (i.e. the CPU is affected by the errata), an INFO message is printed, confirming that the errata workaround has been applied. - If it does not apply, a VERBOSE message is printed, confirming that the errata workaround has been skipped. - If an errata workaround is not enabled, but would have applied had it been, a WARN message is printed, alerting that errata workaround is missing. The CPU errata messages are printed by both BL1 (primary CPU only) and runtime firmware on debug builds, once for each CPU/errata combination. Relevant output from Juno r1 console when ARM Trusted Firmware is built with PLAT=juno LOG_LEVEL=50 DEBUG=1: VERBOSE: BL1: cortex_a57: errata workaround for 806969 was not applied VERBOSE: BL1: cortex_a57: errata workaround for 813420 was not applied INFO: BL1: cortex_a57: errata workaround for disable_ldnp_overread was applied WARNING: BL1: cortex_a57: errata workaround for 826974 was missing! WARNING: BL1: cortex_a57: errata workaround for 826977 was missing! WARNING: BL1: cortex_a57: errata workaround for 828024 was missing! WARNING: BL1: cortex_a57: errata workaround for 829520 was missing! WARNING: BL1: cortex_a57: errata workaround for 833471 was missing! ... VERBOSE: BL31: cortex_a57: errata workaround for 806969 was not applied VERBOSE: BL31: cortex_a57: errata workaround for 813420 was not applied INFO: BL31: cortex_a57: errata workaround for disable_ldnp_overread was applied WARNING: BL31: cortex_a57: errata workaround for 826974 was missing! WARNING: BL31: cortex_a57: errata workaround for 826977 was missing! WARNING: BL31: cortex_a57: errata workaround for 828024 was missing! WARNING: BL31: cortex_a57: errata workaround for 829520 was missing! WARNING: BL31: cortex_a57: errata workaround for 833471 was missing! ... VERBOSE: BL31: cortex_a53: errata workaround for 826319 was not applied INFO: BL31: cortex_a53: errata workaround for disable_non_temporal_hint was applied Also update documentation. Change-Id: Iccf059d3348adb876ca121cdf5207bdbbacf2aba Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 19 Jan, 2017 1 commit
-
-
Antonio Nino Diaz authored
Fix the parameter type of the maintenance functions of data cache. Add missing declarations for AArch32 versions of dcsw_op_louis and dcsw_op_all to match the AAch64 ones. Change-Id: I4226e8ea4f8b2b5bc2972992c83de659ee0da52c
-
- 13 Dec, 2016 1 commit
-
-
Antonio Nino Diaz authored
Added the definitions `PLAT_PHY_ADDR_SPACE_SIZE` and `PLAT_VIRT_ADDR_SPACE_SIZE` which specify respectively the physical and virtual address space size a platform can use. `ADDR_SPACE_SIZE` is now deprecated. To maintain compatibility, if any of the previous defines aren't present, the value of `ADDR_SPACE_SIZE` will be used instead. For AArch64, register ID_AA64MMFR0_EL1 is checked to calculate the max PA supported by the hardware and to verify that the previously mentioned definition is valid. For AArch32, a 40 bit physical address space is considered. Added asserts to check for overflows. Porting guide updated. Change-Id: Ie8ce1da5967993f0c94dbd4eb9841fc03d5ef8d6 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 01 Dec, 2016 1 commit
-
-
David Cunado authored
This patch resets EL2 and EL3 registers that have architecturally UNKNOWN values on reset and that also provide EL2/EL3 configuration and trap controls. Specifically, the EL2 physical timer is disabled to prevent timer interrups into EL2 - CNTHP_CTL_EL2 and CNTHP_CTL for AArch64 and AArch32, respectively. Additionally, for AArch64, HSTR_EL2 is reset to avoid unexpected traps of non-secure access to certain system registers at EL1 or lower. For AArch32, the patch also reverts the reset to SDCR which was incorrectly added in a previous change. Change-Id: If00eaa23afa7dd36a922265194ccd6223187414f Signed-off-by: David Cunado <david.cunado@arm.com>
-
- 09 Nov, 2016 1 commit
-
-
David Cunado authored
In order to avoid unexpected traps into EL3/MON mode, this patch resets the debug registers, MDCR_EL3 and MDCR_EL2 for AArch64, and SDCR and HDCR for AArch32. MDCR_EL3/SDCR is zero'ed when EL3/MON mode is entered, at the start of BL1 and BL31/SMP_MIN. For MDCR_EL2/HDCR, this patch zero's the bits that are architecturally UNKNOWN values on reset. This is done when exiting from EL3/MON mode but only on platforms that support EL2/HYP mode but choose to exit to EL1/SVC mode. Fixes ARM-software/tf-issues#430 Change-Id: Idb992232163c072faa08892251b5626ae4c3a5b6 Signed-off-by: David Cunado <david.cunado@arm.com>
-
- 14 Oct, 2016 1 commit
-
-
Soby Mathew authored
The values of CP15BEN, nTWI & nTWE bits in SCTLR_EL1 are architecturally unknown if EL3 is AARCH64 whereas they reset to 1 if EL3 is AArch32. This might be a compatibility break for legacy AArch32 normal world software if these bits are not set to 1 when EL3 is AArch64. This patch enables the CP15BEN, nTWI and nTWE bits in the SCTLR_EL1 if the lower non-secure EL is AArch32. This unifies the SCTLR settings for lower non-secure EL in AArch32 mode for both AArch64 and AArch32 builds of Trusted Firmware. Fixes ARM-software/tf-issues#428 Change-Id: I3152d1580e4869c0ea745c5bd9da765f9c254947 Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 12 Sep, 2016 1 commit
-
-
Leon Chen authored
This patch support single core to boot to Linux kernel through Trusted Firmware. It also support 32 bit kernel and 64 bit kernel booting.
-
- 23 Aug, 2016 1 commit
-
-
Antonio Nino Diaz authored
Instead of hardcoding a level 1 table as the base translation level table, let the code decide which level is the most appropriate given the virtual address space size. As the table granularity is 4 KB, this allows the code to select level 0, 1 or 2 as base level for AArch64. This way, instead of limiting the virtual address space width to 39-31 bits, widths of 48-25 bit can be used. For AArch32, this change allows the code to select level 1 or 2 as the base translation level table and use virtual address space width of 32-25 bits. Also removed some unused definitions related to translation tables. Fixes ARM-software/tf-issues#362 Change-Id: Ie3bb5d6d1a4730a26700b09827c79f37ca3cdb65
-
- 10 Aug, 2016 1 commit
-
-
Soby Mathew authored
This patch adds an API in runtime service framework to invoke the registered handler corresponding to the SMC function identifier. This is helpful for AArch32 because the number of arguments required by the handler is more than registers available as per AArch32 program calling conventions and requires the use of stack. Hence this new API will do the necessary argument setup and invoke the appropriate handler. Although this API is primarily intended for AArch32, it can be used for AArch64 as well. Change-Id: Iefa15947fe5a1df55b0859886e677446a0fd7241
-
- 09 Aug, 2016 1 commit
-
-
Soby Mathew authored
This patch moves the macro SIZE_FROM_LOG2_WORDS() defined in `arch.h` to `utils.h` as it is utility macro. Change-Id: Ia8171a226978f053a1ee4037f80142c0a4d21430
-
- 19 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch introduces the PSCI Library interface. The major changes introduced are as follows: * Earlier BL31 was responsible for Architectural initialization during cold boot via bl31_arch_setup() whereas PSCI was responsible for the same during warm boot. This functionality is now consolidated by the PSCI library and it does Architectural initialization via psci_arch_setup() during both cold and warm boots. * Earlier the warm boot entry point was always `psci_entrypoint()`. This was not flexible enough as a library interface. Now PSCI expects the runtime firmware to provide the entry point via `psci_setup()`. A new function `bl31_warm_entrypoint` is introduced in BL31 and the previous `psci_entrypoint()` is deprecated. * The `smc_helpers.h` is reorganized to separate the SMC Calling Convention defines from the Trusted Firmware SMC helpers. The former is now in a new header file `smcc.h` and the SMC helpers are moved to Architecture specific header. * The CPU context is used by PSCI for context initialization and restoration after power down (PSCI Context). It is also used by BL31 for SMC handling and context management during Normal-Secure world switch (SMC Context). The `psci_smc_handler()` interface is redefined to not use SMC helper macros thus enabling to decouple the PSCI context from EL3 runtime firmware SMC context. This enables PSCI to be integrated with other runtime firmware using a different SMC context. NOTE: With this patch the architectural setup done in `bl31_arch_setup()` is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be invoked prior to architectural setup. It is highly unlikely that the platform setup will depend on architectural setup and cause any failure. Please be be aware of this change in sequence. Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
-
- 13 Apr, 2016 1 commit
-
-
Soby Mathew authored
The AArch32 long descriptor format and the AArch64 descriptor format correspond to each other which allows possible sharing of xlat_tables library code between AArch64 and AArch32. This patch refactors the xlat_tables library code to seperate the common functionality from architecture specific code. Prior to this patch, all of the xlat_tables library code were in `lib/aarch64/xlat_tables.c` file. The refactored code is now in `lib/xlat_tables/` directory. The AArch64 specific programming for xlat_tables is in `lib/xlat_tables/aarch64/xlat_tables.c` and the rest of the code common to AArch64 and AArch32 is in `lib/xlat_tables/xlat_tables_common.c`. Also the data types used in xlat_tables library APIs are reworked to make it compatible between AArch64 and AArch32. The `lib/aarch64/xlat_tables.c` file now includes the new xlat_tables library files to retain compatibility for existing platform ports. The macros related to xlat_tables library are also moved from `include/lib/aarch64/arch.h` to the header `include/lib/xlat_tables.h`. NOTE: THE `lib/aarch64/xlat_tables.c` FILE IS DEPRECATED AND PLATFORM PORTS ARE EXPECTED TO INCLUDE THE NEW XLAT_TABLES LIBRARY FILES IN THEIR MAKEFILES. Change-Id: I3d17217d24aaf3a05a4685d642a31d4d56255a0f
-
- 31 Mar, 2016 1 commit
-
-
Antonio Nino Diaz authored
lib/aarch64/xlat_helpers.c defines helper functions to build translation descriptors, but no common code or upstream platform port uses them. As the rest of the xlat_tables code evolves, there may be conflicts with these helpers, therefore this code should be removed. Change-Id: I9f5be99720f929264818af33db8dada785368711
-
- 30 Mar, 2016 2 commits
-
-
Gerald Lejeune authored
Bring ISR bits definition as a mnemonic for troublershooters as well. Signed-off-by: Gerald Lejeune <gerald.lejeune@st.com>
-
Gerald Lejeune authored
These macros are unused and redundant with other CPU system registers functions. Moreover enable_serror() function implementation may not reach its purpose because it does not handle the value of SCR_EL3.EA. Signed-off-by: Gerald Lejeune <gerald.lejeune@st.com>
-
- 03 Mar, 2016 1 commit
-
-
Sandrine Bailleux authored
At the moment, the memory translation library allows to create memory mappings of 2 types: - Device nGnRE memory (named MT_DEVICE in the library); - Normal, Inner Write-back non-transient, Outer Write-back non-transient memory (named MT_MEMORY in the library). As a consequence, the library code treats the memory type field as a boolean: everything that is not device memory is normal memory and vice-versa. In reality, the ARMv8 architecture allows up to 8 types of memory to be used at a single time for a given exception level. This patch reworks the memory attributes such that the memory type is now defined as an integer ranging from 0 to 7 instead of a boolean. This makes it possible to extend the list of memory types supported by the memory translation library. The priority system dictating memory attributes for overlapping memory regions has been extended to cope with these changes but the algorithm at its core has been preserved. When a memory region is re-mapped with different memory attributes, the memory translation library examines the former attributes and updates them only if the new attributes create a more restrictive mapping. This behaviour is unchanged, only the manipulation of the value has been modified to cope with the new format. This patch also introduces a new type of memory mapping in the memory translation library: MT_NON_CACHEABLE, meaning Normal, Inner Non-cacheable, Outer Non-cacheable memory. This can be useful to map a non-cacheable memory region, such as a DMA buffer for example. The rules around the Execute-Never (XN) bit in a translation table for an MT_NON_CACHEABLE memory mapping have been aligned on the rules used for MT_MEMORY mappings: - If the memory is read-only then it is also executable (XN = 0); - If the memory is read-write then it is not executable (XN = 1). The shareability field for MT_NON_CACHEABLE mappings is always set as 'Outer-Shareable'. Note that this is not strictly needed since shareability is only relevant if the memory is a Normal Cacheable memory type, but this is to align with the existing device memory mappings setup. All Device and Normal Non-cacheable memory regions are always treated as Outer Shareable, regardless of the translation table shareability attributes. This patch also removes the 'ATTR_SO' and 'ATTR_SO_INDEX' #defines. They were introduced to map memory as Device nGnRnE (formerly called "Strongly-Ordered" memory in the ARMv7 architecture) but were not used anywhere in the code base. Removing them avoids any confusion about the memory types supported by the library. Upstream platforms do not currently use the MT_NON_CACHEABLE memory type. NOTE: THIS CHANGE IS SOURCE COMPATIBLE BUT PLATFORMS THAT RELY ON THE BINARY VALUES OF `mmap_attr_t` or the `attr` argument of `mmap_add_region()` MAY BE BROKEN. Change-Id: I717d6ed79b4c845a04e34132432f98b93d661d79
-
- 18 Feb, 2016 1 commit
-
-
Juan Castillo authored
The shared memory region on ARM platforms contains the mailboxes and, on Juno, the payload area for communication with the SCP. This shared memory may be configured as normal memory or device memory at build time by setting the platform flag 'PLAT_ARM_SHARED_RAM_CACHED' (on Juno, the value of this flag is defined by 'MHU_PAYLOAD_CACHED'). When set as normal memory, the platform port performs the corresponding cache maintenance operations. From a functional point of view, this is the equivalent of setting the shared memory as device memory, so there is no need to maintain both options. This patch removes the option to specify the shared memory as normal memory on ARM platforms. Shared memory is always treated as device memory. Cache maintenance operations are no longer needed and have been replaced by data memory barriers to guarantee that payload and MHU are accessed in the right order. Change-Id: I7f958621d6a536dd4f0fa8768385eedc4295e79f
-
- 09 Dec, 2015 1 commit
-
-
Sandrine Bailleux authored
In the situation that EL1 is selected as the exception level for the next image upon BL31 exit for a processor that supports EL2, the context management code must configure all essential EL2 register state to ensure correct execution of EL1. VTTBR_EL2 should be part of this set of EL2 registers because: - The ARMv8-A architecture does not define a reset value for this register. - Cache maintenance operations depend on VTTBR_EL2.VMID even when non-secure EL1&0 stage 2 address translation are disabled. This patch initializes the VTTBR_EL2 register to 0 when bypassing EL2 to address this issue. Note that this bug has not yet manifested itself on FVP or Juno because VTTBR_EL2.VMID resets to 0 on the Cortex-A53 and Cortex-A57. Change-Id: I58ce2d16a71687126f437577a506d93cb5eecf33
-
- 26 Nov, 2015 1 commit
-
-
Achin Gupta authored
This patch adds a driver for ARM GICv3 systems that need to run software stacks where affinity routing is enabled across all privileged exception levels for both security states. This driver is a partial implementation of the ARM Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069A). The driver does not cater for legacy support of interrupts and asymmetric configurations. The existing GIC driver has been preserved unchanged. The common code for GICv2 and GICv3 systems has been refactored into a new file, `drivers/arm/gic/common/gic_common.c`. The corresponding header is in `include/drivers/arm/gic_common.h`. The driver interface is implemented in `drivers/arm/gic/v3/gicv3_main.c`. The corresponding header is in `include/drivers/arm/gicv3.h`. Helper functions are implemented in `drivers/arm/gic/v3/arm_gicv3_helpers.c` and are accessible through the `drivers/arm/gic/v3/gicv3_private.h` header. Change-Id: I8c3c834a1d049d05b776b4dcb76b18ccb927444a
-
- 13 Nov, 2015 1 commit
-
-
Vikram Kanigiri authored
As per Section D7.2.81 in the ARMv8-A Reference Manual (DDI0487A Issue A.h), bits[29:28], bits[23:22], bit[20] and bit[11] in the SCTLR_EL1 are RES1. This patch adds the missing bit[20] to the SCTLR_EL1_RES1 macro. Change-Id: I827982fa2856d04def6b22d8200a79fe6922a28e
-
- 14 Sep, 2015 1 commit
-
-
Achin Gupta authored
On the ARMv8 architecture, cache maintenance operations by set/way on the last level of integrated cache do not affect the system cache. This means that such a flush or clean operation could result in the data being pushed out to the system cache rather than main memory. Another CPU could access this data before it enables its data cache or MMU. Such accesses could be serviced from the main memory instead of the system cache. If the data in the sysem cache has not yet been flushed or evicted to main memory then there could be a loss of coherency. The only mechanism to guarantee that the main memory will be updated is to use cache maintenance operations to the PoC by MVA(See section D3.4.11 (System level caches) of ARMv8-A Reference Manual (Issue A.g/ARM DDI0487A.G). This patch removes the reliance of Trusted Firmware on the flush by set/way operation to ensure visibility of data in the main memory. Cache maintenance operations by MVA are now used instead. The following are the broad category of changes: 1. The RW areas of BL2/BL31/BL32 are invalidated by MVA before the C runtime is initialised. This ensures that any stale cache lines at any level of cache are removed. 2. Updates to global data in runtime firmware (BL31) by the primary CPU are made visible to secondary CPUs using a cache clean operation by MVA. 3. Cache maintenance by set/way operations are only used prior to power down. NOTE: NON-UPSTREAM TRUSTED FIRMWARE CODE SHOULD MAKE EQUIVALENT CHANGES IN ORDER TO FUNCTION CORRECTLY ON PLATFORMS WITH SUPPORT FOR SYSTEM CACHES. Fixes ARM-software/tf-issues#205 Change-Id: I64f1b398de0432813a0e0881d70f8337681f6e9a
-
- 27 Apr, 2015 1 commit
-
-
Dan Handley authored
The required platform constant PLATFORM_CACHE_LINE_SIZE is unnecessary since CACHE_WRITEBACK_GRANULE effectively provides the same information. CACHE_WRITEBACK_GRANULE is preferred since this is an architecturally defined term and allows comparison with the corresponding hardware register value. Replace all usage of PLATFORM_CACHE_LINE_SIZE with CACHE_WRITEBACK_GRANULE. Also, add a runtime assert in BL1 to check that the provided CACHE_WRITEBACK_GRANULE matches the value provided in CTR_EL0. Change-Id: If87286be78068424217b9f3689be358356500dcd
-
- 31 Mar, 2015 1 commit
-
-
Varun Wadekar authored
This patch adds functionality to translate virtual addresses from secure or non-secure worlds. This functionality helps Trusted Apps to share virtual addresses directly and allows the NS world to pass virtual addresses to TLK directly. Change-Id: I77b0892963e0e839c448b5d0532920fb7e54dc8e Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
- 16 Mar, 2015 1 commit
-
-
Vikram Kanigiri authored
This patch updates the FVP and Juno platform ports to use the common driver for ARM Cache Coherent Interconnects. Change-Id: Ib142f456b9b673600592616a2ec99e9b230d6542
-
- 23 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch adds support to return SUCCESS if a pending interrupt is detected during a CPU_SUSPEND call to a power down state. The check is performed as late as possible without losing the ability to return to the caller. This reduces the overhead incurred by a CPU in undergoing a complete power cycle when a wakeup interrupt is already pending. Fixes ARM-Software/tf-issues#102 Change-Id: I1aff04a74b704a2f529734428030d1d10750fd4b
-
- 22 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch adds helper macros for barrier operations that specify the type of barrier (dmb, dsb) and the shareability domain (system, inner-shareable) it affects. Change-Id: I4bf95103e79da212c4fbdbc13d91ad8ac385d9f5
-
- 07 Jan, 2015 1 commit
-
-
Sandrine Bailleux authored
Calls to system register read accessors functions may be optimised out by the compiler if called twice in a row for the same register. This is because the compiler is not aware that the result from the instruction may be modified by external agents. Therefore, if nothing modifies the register between the 2 reads as far as the compiler knows then it might consider that it is useless to read it twice and emit only 1 call. This behaviour is faulty for registers that may not have the same value if read twice in succession. E.g.: counters, timer control/countdown registers, GICv3 interrupt status registers and so on. The same problem happens for calls to system register write accessors functions. The compiler might optimise out some calls if it considers that it will produce the same result. Again, this behaviour is faulty for cases where intermediate writes to these registers make a difference in the system. This patch fixes the problem by making these assembly register accesses volatile. Fixes ARM-software/tf-issues#273 Change-Id: I33903bc4cc4eea8a8d87bc2c757909fbb0138925
-
- 04 Dec, 2014 1 commit
-
-
Soby Mathew authored
This patch fixes the array size of mpidr_aff_map_nodes_t which was less by one element. Fixes ARM-software/tf-issues#264 Change-Id: I48264f6f9e7046a3d0f4cbcd63b9ba49657e8818
-
- 29 Oct, 2014 1 commit
-
-
Soby Mathew authored
Prior to this patch, the errata workarounds were applied for any version of the CPU in the release build and in the debug build an assert failure resulted when the revision did not match. This patch applies errata workarounds in the Cortex-A57 reset handler only if the 'variant' and 'revision' fields read from the MIDR_EL1 match. In the debug build, a warning message is printed for each errata workaround which is not applied. The patch modifies the register usage in 'reset_handler` so as to adhere to ARM procedure calling standards. Fixes ARM-software/tf-issues#242 Change-Id: I51b1f876474599db885afa03346e38a476f84c29
-
- 25 Sep, 2014 1 commit
-
-
Soby Mathew authored
This patch uses the IMAGE_BL<x> constants to create translation tables specific to a boot loader stage. This allows each stage to create mappings only for areas in the memory map that it needs. Fixes ARM-software/tf-issues#209 Change-Id: Ie4861407ddf9317f0fb890fc7575eaa88d0de51c
-
- 16 Sep, 2014 1 commit
-
-
Jens Wiklander authored
Initializes SCTLR_EL1 based on MODE_RW bit in SPSR for the entry point. The RES1 bits for SCTLR_EL1 differs for Aarch64 and Aarch32 mode.
-
- 02 Sep, 2014 1 commit
-
-
Soby Mathew authored
This patch resets the value of CNTVOFF_EL2 before exit to EL1 on warm boot. This needs to be done if only the Trusted Firmware exits to EL1 instead of EL2, otherwise the hypervisor would be responsible for this. Fixes ARM-software/tf-issues#240 Change-Id: I79d54831356cf3215bcf1f251c373bd8f89db0e0
-
- 21 Aug, 2014 1 commit
-
-
Sandrine Bailleux authored
This patch adds the initial port of the ARM Trusted Firmware on the Juno development platform. This port does not support a BL3-2 image or any PSCI APIs apart from PSCI_VERSION and PSCI_CPU_ON. It enables workarounds for selected Cortex-A57 (#806969 & #813420) errata and implements the workaround for a Juno platform errata (Defect id 831273). Change-Id: Ib3d92df3af53820cfbb2977582ed0d7abf6ef893
-
- 20 Aug, 2014 4 commits
-
-
Soby Mathew authored
This patch adds workarounds for selected errata which affect the Cortex-A57 r0p0 part. Each workaround has a build time flag which should be used by the platform port to enable or disable the corresponding workaround. The workarounds are disabled by default. An assertion is raised if the platform enables a workaround which does not match the CPU revision at runtime. Change-Id: I9ae96b01c6ff733d04dc733bd4e67dbf77b29fb0
-
Soby Mathew authored
This patch adds handlers for dumping Cortex-A57 and Cortex-A53 specific register state to the CPU specific operations framework. The contents of CPUECTLR_EL1 are dumped currently. Change-Id: I63d3dbfc4ac52fef5e25a8cf6b937c6f0975c8ab
-
Soby Mathew authored
This patch adds CPU core and cluster power down sequences to the CPU specific operations framework introduced in a earlier patch. Cortex-A53, Cortex-A57 and generic AEM sequences have been added. The latter is suitable for the Foundation and Base AEM FVPs. A pointer to each CPU's operations structure is saved in the per-cpu data so that it can be easily accessed during power down seqeunces. An optional platform API has been introduced to allow a platform to disable the Accelerator Coherency Port (ACP) during a cluster power down sequence. The weak definition of this function (plat_disable_acp()) does not take any action. It should be overriden with a strong definition if the ACP is present on a platform. Change-Id: I8d09bd40d2f528a28d2d3f19b77101178778685d
-
Soby Mathew authored
This patch introduces a framework which will allow CPUs to perform implementation defined actions after a CPU reset, during a CPU or cluster power down, and when a crash occurs. CPU specific reset handlers have been implemented in this patch. Other handlers will be implemented in subsequent patches. Also moved cpu_helpers.S to the new directory lib/cpus/aarch64/. Change-Id: I1ca1bade4d101d11a898fb30fea2669f9b37b956
-