- 11 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
This patch updates ARM platform ports to use the new unified bakery locks API. The caller does not have to use a different bakery lock API depending upon the value of the USE_COHERENT_MEM build option. NOTE: THIS PATCH CAN BE USED AS A REFERENCE TO UPDATE OTHER PLATFORM PORTS. Change-Id: I1b26afc7c9a9808a6040eb22f603d30192251da7
-
- 01 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
ARM TF configures all interrupts as non-secure except those which are present in irq_sec_array. This patch updates the irq_sec_array with the missing secure interrupts for ARM platforms. It also updates the documentation to be inline with the latest implementation. Fixes ARM-software/tf-issues#312 Change-Id: I39956c56a319086e3929d1fa89030b4ec4b01fcc
-
- 13 Aug, 2015 4 commits
-
-
Soby Mathew authored
This patch implements the platform power managment handler to verify non secure entrypoint for ARM platforms. The handler ensures that the entry point specified by the normal world during CPU_SUSPEND, CPU_ON or SYSTEM_SUSPEND PSCI API is a valid address within the non secure DRAM. Change-Id: I4795452df99f67a24682b22f0e0967175c1de429
-
Sandrine Bailleux authored
Since there is a unique warm reset entry point, the FVP and Juno port can use a single mailbox instead of maintaining one per core. The mailbox gets programmed only once when plat_setup_psci_ops() is invoked during PSCI initialization. This means mailbox is not zeroed out during wakeup. Change-Id: Ieba032a90b43650f970f197340ebb0ce5548d432
-
Soby Mathew authored
This patch adds support to the Juno and FVP ports for composite power states with both the original and extended state-id power-state formats. Both the platform ports use the recommended state-id encoding as specified in Section 6.5 of the PSCI specification (ARM DEN 0022C). The platform build flag ARM_RECOM_STATE_ID_ENC is used to include this support. By default, to maintain backwards compatibility, the original power state parameter format is used and the state-id field is expected to be zero. Change-Id: Ie721b961957eaecaca5bf417a30952fe0627ef10
-
Soby Mathew authored
This patch migrates ARM reference platforms, Juno and FVP, to the new platform API mandated by the new PSCI power domain topology and composite power state frameworks. The platform specific makefiles now exports the build flag ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer. Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
-
- 05 Aug, 2015 1 commit
-
-
Juan Castillo authored
If Trusted Firmware is built with optimizations disabled (-O0), the linker throws the following error: undefined reference to 'xxx' Where 'xxx' is a raw inline function defined in a header file. The reason is that, with optimizations disabled, GCC may decide to skip the inlining. If that is the case, an external definition to the compilation unit must be provided. Because no external definition is present, the linker throws the error. This patch fixes the problem by declaring the following inline functions static, so the internal definition is used: inline void soc_css_security_setup(void) inline const arm_config_t *get_arm_config(void) Change-Id: Id650d6be1b1396bdb48af1ac8a4c7900d212e95f
-
- 09 Jul, 2015 1 commit
-
-
Juan Castillo authored
This patch changes the type of the base address parameter in the ARM device driver APIs to uintptr_t (GIC, CCI, TZC400, PL011). The uintptr_t type allows coverage of the whole memory space and to perform arithmetic operations on the addresses. ARM platform code has also been updated to use uintptr_t as GIC base address in the configuration. Fixes ARM-software/tf-issues#214 Change-Id: I1b87daedadcc8b63e8f113477979675e07d788f1
-
- 25 Jun, 2015 4 commits
-
-
Juan Castillo authored
This patch modifies the Trusted Board Boot implementation to use the new authentication framework, making use of the authentication module, the cryto module and the image parser module to authenticate the images in the Chain of Trust. A new function 'load_auth_image()' has been implemented. When TBB is enabled, this function will call the authentication module to authenticate parent images following the CoT up to the root of trust to finally load and authenticate the requested image. The platform is responsible for picking up the right makefiles to build the corresponding cryptographic and image parser libraries. ARM platforms use the mbedTLS based libraries. The platform may also specify what key algorithm should be used to sign the certificates. This is done by declaring the 'KEY_ALG' variable in the platform makefile. FVP and Juno use ECDSA keys. On ARM platforms, BL2 and BL1-RW regions have been increased 4KB each to accommodate the ECDSA code. REMOVED BUILD OPTIONS: * 'AUTH_MOD' Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
-
Juan Castillo authored
This patch adds a CoT based on the Trusted Board Boot Requirements document*. The CoT consists of an array of authentication image descriptors indexed by the image identifiers. A new header file with TBBR image identifiers has been added. Platforms that use the TBBR (i.e. ARM platforms) may reuse these definitions as part of their platform porting. PLATFORM PORT - IMPORTANT: Default image IDs have been removed from the platform common definitions file (common_def.h). As a consequence, platforms that used those common definitons must now either include the IDs provided by the TBBR header file or define their own IDs. *The NVCounter authentication method has not been implemented yet. Change-Id: I7c4d591863ef53bb0cd4ce6c52a60b06fa0102d5
-
Juan Castillo authored
This patch extends the platform port by adding an API that returns either the Root of Trust public key (ROTPK) or its hash. This is usually stored in ROM or eFUSE memory. The ROTPK returned must be encoded in DER format according to the following ASN.1 structure: SubjectPublicKeyInfo ::= SEQUENCE { algorithm AlgorithmIdentifier, subjectPublicKey BIT STRING } In case the platform returns a hash of the key: DigestInfo ::= SEQUENCE { digestAlgorithm AlgorithmIdentifier, keyDigest OCTET STRING } An implementation for ARM development platforms is provided in this patch. When TBB is enabled, the ROTPK hash location must be specified using the build option 'ARM_ROTPK_LOCATION'. Available options are: - 'regs' : return the ROTPK hash stored in the Trusted root-key storage registers. - 'devel_rsa' : return a ROTPK hash embedded in the BL1 and BL2 binaries. This hash has been obtained from the development RSA public key located in 'plat/arm/board/common/rotpk'. On FVP, the number of MMU tables has been increased to map and access the ROTPK registers. A new file 'board_common.mk' has been added to improve code sharing in the ARM develelopment platforms. Change-Id: Ib25862e5507d1438da10773e62bd338da8f360bf
-
Juan Castillo authored
The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type 'io_uuid_spec_t' has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --> uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
-
- 18 Jun, 2015 1 commit
-
-
Ryan Harkin authored
Add SP804 delay timer support to the FVP BSP. This commit simply provides the 3 constants needed by the SP804 delay timer driver and calls sp804_timer_init() in bl2_platform_setup(). The BSP does not currently use the delay timer functions. Note that the FVP SP804 is a normal world accessible peripheral and should not be used by the secure world after transition to the normal world. Change-Id: I5f91d2ac9eb336fd81943b3bb388860dfb5f2b39 Co-authored-by: Dan Handley <dan.handley@arm.com>
-
- 09 Jun, 2015 2 commits
-
-
Sandrine Bailleux authored
For CSS based platforms, the constants MHU_SECURE_BASE and MHU_SECURE_SIZE used to define the extents of the Trusted Mailboxes. As such, they were misnamed because the mailboxes are completely unrelated to the MHU hardware. This patch removes the MHU_SECURE_BASE and MHU_SECURE_SIZE #defines. The address of the Trusted Mailboxes is now relative to the base of the Trusted SRAM. This patch also introduces a new constant, SCP_COM_SHARED_MEM_BASE, which is the address of the first memory region used for communication between AP and SCP. This is used by the BOM and SCPI protocols. Change-Id: Ib200f057b19816bf05e834d111271c3ea777291f
-
Sandrine Bailleux authored
Add a comment explaining what the SCP boot configuration information is on CSS based platforms like Juno. Also express its address relatively to the base of the Trusted SRAM rather than hard-coding it. Change-Id: I82cf708a284c8b8212933074ea8c37bdf48b403b
-
- 27 May, 2015 1 commit
-
-
Soby Mathew authored
This patch fixes the incorrect bit width used to extract the primary cpu id from `ap_data` exported by scp at SCP_BOOT_CFG_ADDR in platform_is_primary_cpu(). Change-Id: I14abb361685f31164ecce0755fc1a145903b27aa
-
- 28 Apr, 2015 1 commit
-
-
Dan Handley authored
This major change pulls out the common functionality from the FVP and Juno platform ports into the following categories: * (include/)plat/common. Common platform porting functionality that typically may be used by all platforms. * (include/)plat/arm/common. Common platform porting functionality that may be used by all ARM standard platforms. This includes all ARM development platforms like FVP and Juno but may also include non-ARM-owned platforms. * (include/)plat/arm/board/common. Common platform porting functionality for ARM development platforms at the board (off SoC) level. * (include/)plat/arm/css/common. Common platform porting functionality at the ARM Compute SubSystem (CSS) level. Juno is an example of a CSS-based platform. * (include/)plat/arm/soc/common. Common platform porting functionality at the ARM SoC level, which is not already defined at the ARM CSS level. No guarantees are made about the backward compatibility of functionality provided in (include/)plat/arm. Also remove any unnecessary variation between the ARM development platform ports, including: * Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the Juno implementation, which copies the information from BL2 memory instead of expecting it to persist in shared memory. * Unify the TZC configuration. There is no need to add a region for SCP in Juno; it's enough to simply not allow any access to this reserved region. Also set region 0 to provide no access by default instead of assuming this is the case. * Unify the number of memory map regions required for ARM development platforms, although the actual ranges mapped for each platform may be different. For the FVP port, this reduces the mapped peripheral address space. These latter changes will only be observed when the platform ports are migrated to use the new common platform code in subsequent patches. Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8
-