- 16 Oct, 2017 1 commit
-
-
Jeenu Viswambharan authored
Document the API in separate platform interrupt controller API document. Change-Id: If18f208e10a8a243f5c59d226fcf48e985941949 Co-authored-by: Yousuf A <yousuf.sait@arm.com> Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 03 May, 2017 1 commit
-
-
dp-arm authored
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 01 Mar, 2017 1 commit
-
-
Soby Mathew authored
The GIC driver data is initialized by the primary CPU with caches enabled. When the secondary CPU boots up, it initializes the GICC/GICR interface with the caches disabled and there is a chance that the driver data is not yet written back to the memory. This patch fixes this problem by flushing the driver data after they have been initialized. Change-Id: Ie9477029683846209593ff005d2bac559bb8f5e6 Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 09 Feb, 2016 3 commits
-
-
Soby Mathew authored
This patch moves the private GIC common accessors from `gic_common.h` to a new private header file `gic_common_private.h`. This patch also adds additional comments to GIC register accessors to highlight the fact that some of them access register values that correspond to multiple interrupt IDs. The convention used is that the `set`, `get` and `clr` accessors access and modify the values corresponding to a single interrupt ID whereas the `read` and `write` GIC register accessors access the raw GIC registers and it could correspond to multiple interrupt IDs depending on the register accessed. Change-Id: I2643ecb2533f01e3d3219fcedfb5f80c120622f9
-
Soby Mathew authored
The code to set the interrupt priority for secure interrupts in the new GICv2 and GICv3 drivers is incorrect. The setup code to configure interrupt priorities of secure interrupts, one interrupt at a time, used gicd_write_ipriorityr()/gicr_write_ipriority() function affecting 4 interrupts at a time. This bug did not manifest itself because all the secure interrupts were configured to the highest secure priority(0) during cold boot and the adjacent non secure interrupt priority would be configured later by the normal world. This patch introduces new accessors, gicd_set_ipriorityr() and gicr_set_ipriorityr(), for configuring priority one interrupt at a time and fixes the the setup code to use the new accessors. Fixes ARM-software/tf-issues#344 Change-Id: I470fd74d2b7fce7058b55d83f604be05a27e1341
-
Soby Mathew authored
GICD_IPRIORITYR and GICD_ITARGETSR specifically support byte addressing so that individual interrupt priorities can be atomically updated by issuing a single byte write. The previous implementation of gicd_set_ipriority() and gicd_set_itargetsr() used 32-bit register accesses, modifying values for 4 interrupts at a time, using a read-modify-write approach. This potentially may cause concurrent changes by other CPUs to the adjacent interrupts to be corrupted. This patch fixes the issue by modifying these accessors to use byte addressing. Fixes ARM-software/tf-issues#343 Change-Id: Iec28b5f5074045b00dfb8d5f5339b685f9425915
-
- 26 Nov, 2015 1 commit
-
-
Soby Mathew authored
This patch adds a driver for ARM GICv2 systems, example GIC-400. Unlike the existing GIC driver in `include/drivers/arm/arm_gic.h`, this driver is optimised for GICv2 and does not support GICv3 systems in GICv2 compatibility mode. The driver interface has been implemented in `drivers/arm/gic/v2/gicv2_main.c`. The corresponding header is in `include/drivers/arm/gicv2.h`. Helper functions are implemented in `drivers/arm/gic/v2/gicv2_helpers.c` and are accessible through the `drivers/arm/gic/v2/gicv2_private.h` header. Change-Id: I09fffa4e621fb99ba3c01204839894816cd89a2a
-