1. 08 Nov, 2018 1 commit
    • Antonio Nino Diaz's avatar
      Standardise header guards across codebase · c3cf06f1
      Antonio Nino Diaz authored
      
      
      All identifiers, regardless of use, that start with two underscores are
      reserved. This means they can't be used in header guards.
      
      The style that this project is now to use the full name of the file in
      capital letters followed by 'H'. For example, for a file called
      "uart_example.h", the header guard is UART_EXAMPLE_H.
      
      The exceptions are files that are imported from other projects:
      
      - CryptoCell driver
      - dt-bindings folders
      - zlib headers
      
      Change-Id: I50561bf6c88b491ec440d0c8385c74650f3c106e
      Signed-off-by: default avatarAntonio Nino Diaz <antonio.ninodiaz@arm.com>
      c3cf06f1
  2. 29 Oct, 2018 3 commits
  3. 15 Oct, 2018 1 commit
  4. 28 Sep, 2018 1 commit
  5. 05 Sep, 2018 2 commits
    • Varun Wadekar's avatar
      cpus: denver: Implement static workaround for CVE-2018-3639 · 6cf8d65f
      Varun Wadekar authored
      
      
      For Denver CPUs, this approach enables the mitigation during EL3
      initialization, following every PE reset. No mechanism is provided to
      disable the mitigation at runtime.
      
      This approach permanently mitigates the EL3 software stack only. Other
      software components are responsible to enable it for their exception
      levels.
      
      TF-A implements this approach for the Denver CPUs with DENVER_MIDR_PN3
      and earlier:
      
      *   By setting bit 11 (Disable speculative store buffering) of
          `ACTLR_EL3`
      
      *   By setting bit 9 (Disable speculative memory disambiguation) of
          `ACTLR_EL3`
      
      TF-A implements this approach for the Denver CPUs with DENVER_MIDR_PN4
      and later:
      
      *   By setting bit 18 (Disable speculative store buffering) of
          `ACTLR_EL3`
      
      *   By setting bit 17 (Disable speculative memory disambiguation) of
          `ACTLR_EL3`
      
      Change-Id: If1de96605ce3f7b0aff5fab2c828e5aecb687555
      Signed-off-by: default avatarVarun Wadekar <vwadekar@nvidia.com>
      6cf8d65f
    • Varun Wadekar's avatar
      cpus: denver: reset power state to 'C1' on boot · cf3ed0dc
      Varun Wadekar authored
      
      
      Denver CPUs expect the power state field to be reset to 'C1'
      during boot. This patch updates the reset handler to reset the
      ACTLR_.PMSTATE field to 'C1' state during CPU boot.
      
      Change-Id: I7cb629627a4dd1a30ec5cbb3a5e90055244fe30c
      Signed-off-by: default avatarVarun Wadekar <vwadekar@nvidia.com>
      cf3ed0dc
  6. 17 Aug, 2018 1 commit
  7. 18 Jul, 2018 1 commit
  8. 11 Jul, 2018 4 commits
  9. 08 Jun, 2018 4 commits
  10. 23 May, 2018 2 commits
    • Dimitris Papastamos's avatar
      Add support for dynamic mitigation for CVE-2018-3639 · fe007b2e
      Dimitris Papastamos authored
      
      
      Some CPUS may benefit from using a dynamic mitigation approach for
      CVE-2018-3639.  A new SMC interface is defined to allow software
      executing in lower ELs to enable or disable the mitigation for their
      execution context.
      
      It should be noted that regardless of the state of the mitigation for
      lower ELs, code executing in EL3 is always mitigated against
      CVE-2018-3639.
      
      NOTE: This change is a compatibility break for any platform using
      the declare_cpu_ops_workaround_cve_2017_5715 macro.  Migrate to
      the declare_cpu_ops_wa macro instead.
      
      Change-Id: I3509a9337ad217bbd96de9f380c4ff8bf7917013
      Signed-off-by: default avatarDimitris Papastamos <dimitris.papastamos@arm.com>
      fe007b2e
    • Dimitris Papastamos's avatar
      Implement static workaround for CVE-2018-3639 · b8a25bbb
      Dimitris Papastamos authored
      For affected CPUs, this approach enables the mitigation during EL3
      initialization, following every PE reset. No mechanism is provided to
      disable the mitigation at runtime.
      
      This approach permanently mitigates the entire software stack and no
      additional mitigation code is required in other software components.
      
      TF-A implements this approach for the following affected CPUs:
      
      *   Cortex-A57 and Cortex-A72, by setting bit 55 (Disable load pass store) of
          `CPUACTLR_EL1` (`S3_1_C15_C2_0`).
      
      *   Cortex-A73, by setting bit 3 of `S3_0_C15_C0_0` (not documented in the
          Technical Reference Manual (TRM)).
      
      *   Cortex-A75, by setting bit 35 (reserved in TRM) of `CPUACTLR_EL1`
          (`S3_0_C15_C1_0`).
      
      Additionally, a new SMC interface is implemented to allow software
      executing in lower ELs to discover whether the system is mitigated
      against CVE-2018-3639.
      
      Refer to "Firmware interfaces for mitigating cache speculation
      vulnerabilities System Software on Arm Systems"[0] for more
      information.
      
      [0] https://developer.arm.com/cache-speculation-vulnerability-firmware-specification
      
      
      
      Change-Id: I084aa7c3bc7c26bf2df2248301270f77bed22ceb
      Signed-off-by: default avatarDimitris Papastamos <dimitris.papastamos@arm.com>
      b8a25bbb
  11. 12 Apr, 2018 1 commit
  12. 14 Mar, 2018 2 commits
  13. 27 Feb, 2018 3 commits
  14. 18 Jan, 2018 1 commit
    • Roberto Vargas's avatar
      bl2-el3: Add BL2_EL3 image · b1d27b48
      Roberto Vargas authored
      
      
      This patch enables BL2 to execute at the highest exception level
      without any dependancy on TF BL1. This enables platforms which already
      have a non-TF Boot ROM to directly load and execute BL2 and subsequent BL
      stages without need for BL1.  This is not currently possible because
      BL2 executes at S-EL1 and cannot jump straight to EL3.
      
      Change-Id: Ief1efca4598560b1b8c8e61fbe26d1f44e929d69
      Signed-off-by: default avatarRoberto Vargas <roberto.vargas@arm.com>
      b1d27b48
  15. 11 Jan, 2018 1 commit
  16. 29 Nov, 2017 1 commit
  17. 07 Sep, 2017 2 commits
  18. 29 Aug, 2017 2 commits
  19. 15 Jun, 2017 1 commit
  20. 14 Jun, 2017 1 commit
  21. 01 Jun, 2017 1 commit
  22. 24 May, 2017 1 commit
  23. 03 May, 2017 1 commit
  24. 20 Mar, 2017 1 commit
    • Andre Przywara's avatar
      Add workaround for ARM Cortex-A53 erratum 855873 · b75dc0e4
      Andre Przywara authored
      
      
      ARM erratum 855873 applies to all Cortex-A53 CPUs.
      The recommended workaround is to promote "data cache clean"
      instructions to "data cache clean and invalidate" instructions.
      For core revisions of r0p3 and later this can be done by setting a bit
      in the CPUACTLR_EL1 register, so that hardware takes care of the promotion.
      As CPUACTLR_EL1 is both IMPLEMENTATION DEFINED and can be trapped to EL3,
      we set the bit in firmware.
      Also we dump this register upon crashing to provide more debug
      information.
      
      Enable the workaround for the Juno boards.
      
      Change-Id: I3840114291958a406574ab6c49b01a9d9847fec8
      Signed-off-by: default avatarAndre Przywara <andre.przywara@arm.com>
      b75dc0e4
  25. 28 Feb, 2017 1 commit