- 14 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch replaces all references to the SCP Firmware (BL0, BL30, BL3-0, bl30) with the image terminology detailed in the TF wiki (https://github.com/ARM-software/arm-trusted-firmware/wiki): BL0 --> SCP_BL1 BL30, BL3-0 --> SCP_BL2 bl30 --> scp_bl2 This change affects code, documentation, build system, tools and platform ports that load SCP firmware. ARM plaforms have been updated to the new porting API. IMPORTANT: build option to specify the SCP FW image has changed: BL30 --> SCP_BL2 IMPORTANT: This patch breaks compatibility for platforms that use BL2 to load SCP firmware. Affected platforms must be updated as follows: BL30_IMAGE_ID --> SCP_BL2_IMAGE_ID BL30_BASE --> SCP_BL2_BASE bl2_plat_get_bl30_meminfo() --> bl2_plat_get_scp_bl2_meminfo() bl2_plat_handle_bl30() --> bl2_plat_handle_scp_bl2() Change-Id: I24c4c1a4f0e4b9f17c9e4929da815c4069549e58
-
- 09 Dec, 2015 2 commits
-
-
Yatharth Kochar authored
This patch adds Firmware Update support for ARM platforms. New files arm_bl1_fwu.c and juno_bl1_setup.c were added to provide platform specific Firmware update code. BL1 now includes mmap entry for `ARM_MAP_NS_DRAM1` to map DRAM for authenticating NS_BL2U image(For both FVP and JUNO platform). Change-Id: Ie116cd83f5dc00aa53d904c2f1beb23d58926555
-
Achin Gupta authored
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three separate drivers instead of providing a single driver that can work on both versions of the GIC architecture. These drivers correspond to the following software use cases: 1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations e.g. GIC-400 2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features 3. A deprecated GICv3 driver that operates in legacy mode. This driver can operate only in the GICv2 mode in the secure world. On a GICv3 system, this driver allows normal world to run in either GICv3 mode (asymmetric mode) or in the GICv2 mode. Both modes of operation are deprecated on GICv3 systems. ARM platforms implement both versions of the GIC architecture. This patch adds a layer of abstraction to help ARM platform ports chose the right GIC driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been introduced to initialise the GIC and the driver during cold and warm boot. These functions are prefixed as "plat_arm_gic_". Weak definitions of these functions have been provided for each type of driver. 2. Each platform includes the sources that implement the right functions directly into the its makefile. The FVP can be instantiated with different versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option to specify which of the three drivers should be included in the build. 3. A list of secure interrupts has to be provided to initialise each of the three GIC drivers. For GIC v3.0 the interrupt ids have to be further categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two types are merged and treated as Group 0 interrupts. The two lists of interrupts are exported from the platform_def.h. The lists are constructed by adding a list of board specific interrupt ids to a list of ids common to all ARM platforms and Compute sub-systems. This patch also makes some fields of `arm_config` data structure in FVP redundant and these unused fields are removed. Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
-
- 30 Oct, 2015 1 commit
-
-
Soby Mathew authored
This patch adds the capability to power down at system power domain level on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers are modified to add support for power management operations at system power domain level. A new helper for populating `get_sys_suspend_power_state` handler in plat_psci_ops is defined. On entering the system suspend state, the SCP powers down the SYSTOP power domain on the SoC and puts the memory into retention mode. On wakeup from the power down, the system components on the CSS will be reinitialized by the platform layer and the PSCI client is responsible for restoring the context of these system components. According to PSCI Specification, interrupts targeted to cores in PSCI CPU SUSPEND should be able to resume it. On Juno, when the system power domain is suspended, the GIC is also powered down. The SCP resumes the final core to be suspend when an external wake-up event is received. But the other cores cannot be woken up by a targeted interrupt, because GIC doesn't forward these interrupts to the SCP. Due to this hardware limitation, we down-grade PSCI CPU SUSPEND requests targeted to the system power domain level to cluster power domain level in `juno_validate_power_state()` and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c. A system power domain resume helper `arm_system_pwr_domain_resume()` is defined for ARM standard platforms which resumes/re-initializes the system components on wakeup from system suspend. The security setup also needs to be done on resume from system suspend, which means `plat_arm_security_setup()` must now be included in the BL3-1 image in addition to previous BL images if system suspend need to be supported. Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
-
- 20 Oct, 2015 1 commit
-
-
Soby Mathew authored
This patch does the following reorganization to psci power management (PM) handler setup for ARM standard platform ports : 1. The mailbox programming required during `plat_setup_psci_ops()` is identical for all ARM platforms. Hence the implementation of this API is now moved to the common `arm_pm.c` file. Each ARM platform now must define the PLAT_ARM_TRUSTED_MAILBOX_BASE macro, which in current platforms is the same as ARM_SHARED_RAM_BASE. 2. The PSCI PM handler callback structure, `plat_psci_ops`, must now be exported via `plat_arm_psci_pm_ops`. This allows the common implementation of `plat_setup_psci_ops()` to return a platform specific `plat_psci_ops`. In the case of CSS platforms, a default weak implementation of the same is provided in `css_pm.c` which can be overridden by each CSS platform. 3. For CSS platforms, the PSCI PM handlers defined in `css_pm.c` are now made library functions and a new header file `css_pm.h` is added to export these generic PM handlers. This allows the platform to reuse the adequate CSS PM handlers and redefine others which need to be customized when overriding the default `plat_arm_psci_pm_ops` in `css_pm.c`. Change-Id: I277910f609e023ee5d5ff0129a80ecfce4356ede
-
- 11 Sep, 2015 2 commits
-
-
Vikram Kanigiri authored
On Juno and FVP platforms, the Non-Secure System timer corresponds to frame 1. However, this is a platform-specific decision and it shouldn't be hard-coded. Hence, this patch introduces PLAT_ARM_NSTIMER_FRAME_ID which should be used by all ARM platforms to specify the correct non-secure timer frame. Change-Id: I6c3a905d7d89200a2f58c20ce5d1e1d166832bba
-
Vikram Kanigiri authored
This patch replaces the `ARM_TZC_BASE` constant with `PLAT_ARM_TZC_BASE` to support different TrustZone Controller base addresses across ARM platforms. Change-Id: Ie4e1c7600fd7a5875323c7cc35e067de0c6ef6dd
-
- 01 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
ARM TF configures all interrupts as non-secure except those which are present in irq_sec_array. This patch updates the irq_sec_array with the missing secure interrupts for ARM platforms. It also updates the documentation to be inline with the latest implementation. Fixes ARM-software/tf-issues#312 Change-Id: I39956c56a319086e3929d1fa89030b4ec4b01fcc
-
- 13 Aug, 2015 1 commit
-
-
Sandrine Bailleux authored
Since there is a unique warm reset entry point, the FVP and Juno port can use a single mailbox instead of maintaining one per core. The mailbox gets programmed only once when plat_setup_psci_ops() is invoked during PSCI initialization. This means mailbox is not zeroed out during wakeup. Change-Id: Ieba032a90b43650f970f197340ebb0ce5548d432
-
- 09 Jun, 2015 2 commits
-
-
Sandrine Bailleux authored
For CSS based platforms, the constants MHU_SECURE_BASE and MHU_SECURE_SIZE used to define the extents of the Trusted Mailboxes. As such, they were misnamed because the mailboxes are completely unrelated to the MHU hardware. This patch removes the MHU_SECURE_BASE and MHU_SECURE_SIZE #defines. The address of the Trusted Mailboxes is now relative to the base of the Trusted SRAM. This patch also introduces a new constant, SCP_COM_SHARED_MEM_BASE, which is the address of the first memory region used for communication between AP and SCP. This is used by the BOM and SCPI protocols. Change-Id: Ib200f057b19816bf05e834d111271c3ea777291f
-
Sandrine Bailleux authored
Add a comment explaining what the SCP boot configuration information is on CSS based platforms like Juno. Also express its address relatively to the base of the Trusted SRAM rather than hard-coding it. Change-Id: I82cf708a284c8b8212933074ea8c37bdf48b403b
-
- 27 May, 2015 1 commit
-
-
Soby Mathew authored
This patch fixes the incorrect bit width used to extract the primary cpu id from `ap_data` exported by scp at SCP_BOOT_CFG_ADDR in platform_is_primary_cpu(). Change-Id: I14abb361685f31164ecce0755fc1a145903b27aa
-
- 28 Apr, 2015 1 commit
-
-
Dan Handley authored
This major change pulls out the common functionality from the FVP and Juno platform ports into the following categories: * (include/)plat/common. Common platform porting functionality that typically may be used by all platforms. * (include/)plat/arm/common. Common platform porting functionality that may be used by all ARM standard platforms. This includes all ARM development platforms like FVP and Juno but may also include non-ARM-owned platforms. * (include/)plat/arm/board/common. Common platform porting functionality for ARM development platforms at the board (off SoC) level. * (include/)plat/arm/css/common. Common platform porting functionality at the ARM Compute SubSystem (CSS) level. Juno is an example of a CSS-based platform. * (include/)plat/arm/soc/common. Common platform porting functionality at the ARM SoC level, which is not already defined at the ARM CSS level. No guarantees are made about the backward compatibility of functionality provided in (include/)plat/arm. Also remove any unnecessary variation between the ARM development platform ports, including: * Unify the way BL2 passes `bl31_params_t` to BL3-1. Use the Juno implementation, which copies the information from BL2 memory instead of expecting it to persist in shared memory. * Unify the TZC configuration. There is no need to add a region for SCP in Juno; it's enough to simply not allow any access to this reserved region. Also set region 0 to provide no access by default instead of assuming this is the case. * Unify the number of memory map regions required for ARM development platforms, although the actual ranges mapped for each platform may be different. For the FVP port, this reduces the mapped peripheral address space. These latter changes will only be observed when the platform ports are migrated to use the new common platform code in subsequent patches. Change-Id: Id9c269dd3dc6e74533d0e5116fdd826d53946dc8
-