/* * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #if LOG_LEVEL >= LOG_LEVEL_VERBOSE #define LVL0_SPACER "" #define LVL1_SPACER " " #define LVL2_SPACER " " #define LVL3_SPACER " " #define get_level_spacer(level) \ (((level) == 0) ? LVL0_SPACER : \ (((level) == 1) ? LVL1_SPACER : \ (((level) == 2) ? LVL2_SPACER : LVL3_SPACER))) #define debug_print(...) tf_printf(__VA_ARGS__) #else #define debug_print(...) ((void)0) #endif #define UNSET_DESC ~0ull static uint64_t xlat_tables[MAX_XLAT_TABLES][XLAT_TABLE_ENTRIES] __aligned(XLAT_TABLE_SIZE) __section("xlat_table"); static unsigned next_xlat; static unsigned long long xlat_max_pa; static uintptr_t xlat_max_va; /* * Array of all memory regions stored in order of ascending base address. * The list is terminated by the first entry with size == 0. */ static mmap_region_t mmap[MAX_MMAP_REGIONS + 1]; void print_mmap(void) { #if LOG_LEVEL >= LOG_LEVEL_VERBOSE debug_print("mmap:\n"); mmap_region_t *mm = mmap; while (mm->size) { debug_print(" VA:%p PA:0x%llx size:0x%zx attr:0x%x\n", (void *)mm->base_va, mm->base_pa, mm->size, mm->attr); ++mm; }; debug_print("\n"); #endif } void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size, unsigned int attr) { mmap_region_t *mm = mmap; mmap_region_t *mm_last = mm + ARRAY_SIZE(mmap) - 1; unsigned long long end_pa = base_pa + size - 1; uintptr_t end_va = base_va + size - 1; assert(IS_PAGE_ALIGNED(base_pa)); assert(IS_PAGE_ALIGNED(base_va)); assert(IS_PAGE_ALIGNED(size)); if (!size) return; assert(base_pa < end_pa); /* Check for overflows */ assert(base_va < end_va); #if DEBUG /* Check for PAs and VAs overlaps with all other regions */ for (mm = mmap; mm->size; ++mm) { uintptr_t mm_end_va = mm->base_va + mm->size - 1; /* * Check if one of the regions is completely inside the other * one. */ int fully_overlapped_va = ((base_va >= mm->base_va) && (end_va <= mm_end_va)) || ((mm->base_va >= base_va) && (mm_end_va <= end_va)); /* * Full VA overlaps are only allowed if both regions are * identity mapped (zero offset) or have the same VA to PA * offset. Also, make sure that it's not the exact same area. */ if (fully_overlapped_va) { assert((mm->base_va - mm->base_pa) == (base_va - base_pa)); assert((base_va != mm->base_va) || (size != mm->size)); } else { /* * If the regions do not have fully overlapping VAs, * then they must have fully separated VAs and PAs. * Partial overlaps are not allowed */ unsigned long long mm_end_pa = mm->base_pa + mm->size - 1; int separated_pa = (end_pa < mm->base_pa) || (base_pa > mm_end_pa); int separated_va = (end_va < mm->base_va) || (base_va > mm_end_va); assert(separated_va && separated_pa); } } mm = mmap; /* Restore pointer to the start of the array */ #endif /* DEBUG */ /* Find correct place in mmap to insert new region */ while (mm->base_va < base_va && mm->size) ++mm; /* * If a section is contained inside another one with the same base * address, it must be placed after the one it is contained in: * * 1st |-----------------------| * 2nd |------------| * 3rd |------| * * This is required for mmap_region_attr() to get the attributes of the * small region correctly. */ while ((mm->base_va == base_va) && (mm->size > size)) ++mm; /* Make room for new region by moving other regions up by one place */ memmove(mm + 1, mm, (uintptr_t)mm_last - (uintptr_t)mm); /* Check we haven't lost the empty sentinal from the end of the array */ assert(mm_last->size == 0); mm->base_pa = base_pa; mm->base_va = base_va; mm->size = size; mm->attr = attr; if (end_pa > xlat_max_pa) xlat_max_pa = end_pa; if (end_va > xlat_max_va) xlat_max_va = end_va; } void mmap_add(const mmap_region_t *mm) { while (mm->size) { mmap_add_region(mm->base_pa, mm->base_va, mm->size, mm->attr); ++mm; } } static uint64_t mmap_desc(unsigned attr, unsigned long long addr_pa, int level) { uint64_t desc; int mem_type; desc = addr_pa; desc |= (level == 3) ? TABLE_DESC : BLOCK_DESC; desc |= (attr & MT_NS) ? LOWER_ATTRS(NS) : 0; desc |= (attr & MT_RW) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO); desc |= LOWER_ATTRS(ACCESS_FLAG); /* * Deduce shareability domain and executability of the memory region * from the memory type. * * Data accesses to device memory and non-cacheable normal memory are * coherent for all observers in the system, and correspondingly are * always treated as being Outer Shareable. Therefore, for these 2 types * of memory, it is not strictly needed to set the shareability field * in the translation tables. */ mem_type = MT_TYPE(attr); if (mem_type == MT_DEVICE) { desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH); /* * Always map device memory as execute-never. * This is to avoid the possibility of a speculative instruction * fetch, which could be an issue if this memory region * corresponds to a read-sensitive peripheral. */ desc |= UPPER_ATTRS(XN); } else { /* Normal memory */ /* * Always map read-write normal memory as execute-never. * (Trusted Firmware doesn't self-modify its code, therefore * R/W memory is reserved for data storage, which must not be * executable.) * Note that setting the XN bit here is for consistency only. * The enable_mmu_elx() function sets the SCTLR_EL3.WXN bit, * which makes any writable memory region to be treated as * execute-never, regardless of the value of the XN bit in the * translation table. * * For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER * attribute to figure out the value of the XN bit. */ if ((attr & MT_RW) || (attr & MT_EXECUTE_NEVER)) desc |= UPPER_ATTRS(XN); if (mem_type == MT_MEMORY) { desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX | ISH); } else { assert(mem_type == MT_NON_CACHEABLE); desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH); } } debug_print((mem_type == MT_MEMORY) ? "MEM" : ((mem_type == MT_NON_CACHEABLE) ? "NC" : "DEV")); debug_print(attr & MT_RW ? "-RW" : "-RO"); debug_print(attr & MT_NS ? "-NS" : "-S"); debug_print(attr & MT_EXECUTE_NEVER ? "-XN" : "-EXEC"); return desc; } /* * Returns attributes of area at `base_va` with size `size`. It returns the * attributes of the innermost region that contains it. If there are partial * overlaps, it returns -1, as a smaller size is needed. */ static int mmap_region_attr(mmap_region_t *mm, uintptr_t base_va, size_t size) { /* Don't assume that the area is contained in the first region */ int attr = -1; /* * Get attributes from last (innermost) region that contains the * requested area. Don't stop as soon as one region doesn't contain it * because there may be other internal regions that contain this area: * * |-----------------------------1-----------------------------| * |----2----| |-------3-------| |----5----| * |--4--| * * |---| <- Area we want the attributes of. * * In this example, the area is contained in regions 1, 3 and 4 but not * in region 2. The loop shouldn't stop at region 2 as inner regions * have priority over outer regions, it should stop at region 5. */ for (;; ++mm) { if (!mm->size) return attr; /* Reached end of list */ if (mm->base_va > base_va + size - 1) return attr; /* Next region is after area so end */ if (mm->base_va + mm->size - 1 < base_va) continue; /* Next region has already been overtaken */ if (mm->attr == attr) continue; /* Region doesn't override attribs so skip */ if (mm->base_va > base_va || mm->base_va + mm->size - 1 < base_va + size - 1) return -1; /* Region doesn't fully cover our area */ attr = mm->attr; } } static mmap_region_t *init_xlation_table_inner(mmap_region_t *mm, uintptr_t base_va, uint64_t *table, int level) { unsigned level_size_shift = L1_XLAT_ADDRESS_SHIFT - (level - 1) * XLAT_TABLE_ENTRIES_SHIFT; unsigned level_size = 1 << level_size_shift; u_register_t level_index_mask = (u_register_t)(((u_register_t) XLAT_TABLE_ENTRIES_MASK) << level_size_shift); assert(level > 0 && level <= 3); debug_print("New xlat table:\n"); do { uint64_t desc = UNSET_DESC; if (!mm->size) { /* Done mapping regions; finish zeroing the table */ desc = INVALID_DESC; } else if (mm->base_va + mm->size - 1 < base_va) { /* This area is after the region so get next region */ ++mm; continue; } debug_print("%s VA:%p size:0x%x ", get_level_spacer(level), (void *)base_va, level_size); if (mm->base_va > base_va + level_size - 1) { /* Next region is after this area. Nothing to map yet */ desc = INVALID_DESC; } else { /* * Try to get attributes of this area. It will fail if * there are partially overlapping regions. On success, * it will return the innermost region's attributes. */ int attr = mmap_region_attr(mm, base_va, level_size); if (attr >= 0) { desc = mmap_desc(attr, base_va - mm->base_va + mm->base_pa, level); } } if (desc == UNSET_DESC) { /* Area not covered by a region so need finer table */ uint64_t *new_table = xlat_tables[next_xlat++]; assert(next_xlat <= MAX_XLAT_TABLES); desc = TABLE_DESC | (uintptr_t)new_table; /* Recurse to fill in new table */ mm = init_xlation_table_inner(mm, base_va, new_table, level+1); } debug_print("\n"); *table++ = desc; base_va += level_size; } while ((base_va & level_index_mask) && (base_va - 1 < ADDR_SPACE_SIZE - 1)); return mm; } void init_xlation_table(uintptr_t base_va, uint64_t *table, int level, uintptr_t *max_va, unsigned long long *max_pa) { init_xlation_table_inner(mmap, base_va, table, level); *max_va = xlat_max_va; *max_pa = xlat_max_pa; }