/* * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include "../fvp_def.h" /* Defines for GIC Driver build time selection */ #define FVP_GICV2 1 #define FVP_GICV3 2 #define FVP_GICV3_LEGACY 3 /******************************************************************************* * arm_config holds the characteristics of the differences between the three FVP * platforms (Base, A53_A57 & Foundation). It will be populated during cold boot * at each boot stage by the primary before enabling the MMU (to allow * interconnect configuration) & used thereafter. Each BL will have its own copy * to allow independent operation. ******************************************************************************/ arm_config_t arm_config; #define MAP_DEVICE0 MAP_REGION_FLAT(DEVICE0_BASE, \ DEVICE0_SIZE, \ MT_DEVICE | MT_RW | MT_SECURE) #define MAP_DEVICE1 MAP_REGION_FLAT(DEVICE1_BASE, \ DEVICE1_SIZE, \ MT_DEVICE | MT_RW | MT_SECURE) /* * Need to be mapped with write permissions in order to set a new non-volatile * counter value. */ #define MAP_DEVICE2 MAP_REGION_FLAT(DEVICE2_BASE, \ DEVICE2_SIZE, \ MT_DEVICE | MT_RW | MT_SECURE) /* * Table of memory regions for various BL stages to map using the MMU. * This doesn't include Trusted SRAM as arm_setup_page_tables() already * takes care of mapping it. * * The flash needs to be mapped as writable in order to erase the FIP's Table of * Contents in case of unrecoverable error (see plat_error_handler()). */ #ifdef IMAGE_BL1 const mmap_region_t plat_arm_mmap[] = { ARM_MAP_SHARED_RAM, V2M_MAP_FLASH0_RW, V2M_MAP_IOFPGA, MAP_DEVICE0, MAP_DEVICE1, #if TRUSTED_BOARD_BOOT /* To access the Root of Trust Public Key registers. */ MAP_DEVICE2, /* Map DRAM to authenticate NS_BL2U image. */ ARM_MAP_NS_DRAM1, #endif {0} }; #endif #ifdef IMAGE_BL2 const mmap_region_t plat_arm_mmap[] = { ARM_MAP_SHARED_RAM, V2M_MAP_FLASH0_RW, V2M_MAP_IOFPGA, MAP_DEVICE0, MAP_DEVICE1, ARM_MAP_NS_DRAM1, #ifdef SPD_tspd ARM_MAP_TSP_SEC_MEM, #endif #if TRUSTED_BOARD_BOOT /* To access the Root of Trust Public Key registers. */ MAP_DEVICE2, #endif #if ARM_BL31_IN_DRAM ARM_MAP_BL31_SEC_DRAM, #endif #ifdef SPD_opteed ARM_OPTEE_PAGEABLE_LOAD_MEM, #endif {0} }; #endif #ifdef IMAGE_BL2U const mmap_region_t plat_arm_mmap[] = { MAP_DEVICE0, V2M_MAP_IOFPGA, {0} }; #endif #ifdef IMAGE_BL31 const mmap_region_t plat_arm_mmap[] = { ARM_MAP_SHARED_RAM, V2M_MAP_IOFPGA, MAP_DEVICE0, MAP_DEVICE1, {0} }; #endif #ifdef IMAGE_BL32 const mmap_region_t plat_arm_mmap[] = { #ifdef AARCH32 ARM_MAP_SHARED_RAM, #endif V2M_MAP_IOFPGA, MAP_DEVICE0, MAP_DEVICE1, {0} }; #endif ARM_CASSERT_MMAP #if FVP_INTERCONNECT_DRIVER != FVP_CCN static const int fvp_cci400_map[] = { PLAT_FVP_CCI400_CLUS0_SL_PORT, PLAT_FVP_CCI400_CLUS1_SL_PORT, }; static const int fvp_cci5xx_map[] = { PLAT_FVP_CCI5XX_CLUS0_SL_PORT, PLAT_FVP_CCI5XX_CLUS1_SL_PORT, }; static unsigned int get_interconnect_master(void) { unsigned int master; u_register_t mpidr; mpidr = read_mpidr_el1(); master = (arm_config.flags & ARM_CONFIG_FVP_SHIFTED_AFF) ? MPIDR_AFFLVL2_VAL(mpidr) : MPIDR_AFFLVL1_VAL(mpidr); assert(master < FVP_CLUSTER_COUNT); return master; } #endif /******************************************************************************* * A single boot loader stack is expected to work on both the Foundation FVP * models and the two flavours of the Base FVP models (AEMv8 & Cortex). The * SYS_ID register provides a mechanism for detecting the differences between * these platforms. This information is stored in a per-BL array to allow the * code to take the correct path.Per BL platform configuration. ******************************************************************************/ void fvp_config_setup(void) { unsigned int rev, hbi, bld, arch, sys_id; sys_id = mmio_read_32(V2M_SYSREGS_BASE + V2M_SYS_ID); rev = (sys_id >> V2M_SYS_ID_REV_SHIFT) & V2M_SYS_ID_REV_MASK; hbi = (sys_id >> V2M_SYS_ID_HBI_SHIFT) & V2M_SYS_ID_HBI_MASK; bld = (sys_id >> V2M_SYS_ID_BLD_SHIFT) & V2M_SYS_ID_BLD_MASK; arch = (sys_id >> V2M_SYS_ID_ARCH_SHIFT) & V2M_SYS_ID_ARCH_MASK; if (arch != ARCH_MODEL) { ERROR("This firmware is for FVP models\n"); panic(); } /* * The build field in the SYS_ID tells which variant of the GIC * memory is implemented by the model. */ switch (bld) { case BLD_GIC_VE_MMAP: ERROR("Legacy Versatile Express memory map for GIC peripheral" " is not supported\n"); panic(); break; case BLD_GIC_A53A57_MMAP: break; default: ERROR("Unsupported board build %x\n", bld); panic(); } /* * The hbi field in the SYS_ID is 0x020 for the Base FVP & 0x010 * for the Foundation FVP. */ switch (hbi) { case HBI_FOUNDATION_FVP: arm_config.flags = 0; /* * Check for supported revisions of Foundation FVP * Allow future revisions to run but emit warning diagnostic */ switch (rev) { case REV_FOUNDATION_FVP_V2_0: case REV_FOUNDATION_FVP_V2_1: case REV_FOUNDATION_FVP_v9_1: case REV_FOUNDATION_FVP_v9_6: break; default: WARN("Unrecognized Foundation FVP revision %x\n", rev); break; } break; case HBI_BASE_FVP: arm_config.flags |= (ARM_CONFIG_BASE_MMAP | ARM_CONFIG_HAS_TZC); /* * Check for supported revisions * Allow future revisions to run but emit warning diagnostic */ switch (rev) { case REV_BASE_FVP_V0: arm_config.flags |= ARM_CONFIG_FVP_HAS_CCI400; break; case REV_BASE_FVP_REVC: arm_config.flags |= (ARM_CONFIG_FVP_HAS_SMMUV3 | ARM_CONFIG_FVP_HAS_CCI5XX); break; default: WARN("Unrecognized Base FVP revision %x\n", rev); break; } break; default: ERROR("Unsupported board HBI number 0x%x\n", hbi); panic(); } /* * We assume that the presence of MT bit, and therefore shifted * affinities, is uniform across the platform: either all CPUs, or no * CPUs implement it. */ if (read_mpidr_el1() & MPIDR_MT_MASK) arm_config.flags |= ARM_CONFIG_FVP_SHIFTED_AFF; } void fvp_interconnect_init(void) { #if FVP_INTERCONNECT_DRIVER == FVP_CCN if (ccn_get_part0_id(PLAT_ARM_CCN_BASE) != CCN_502_PART0_ID) { ERROR("Unrecognized CCN variant detected. Only CCN-502" " is supported"); panic(); } plat_arm_interconnect_init(); #else uintptr_t cci_base = 0; const int *cci_map = 0; unsigned int map_size = 0; if (!(arm_config.flags & (ARM_CONFIG_FVP_HAS_CCI400 | ARM_CONFIG_FVP_HAS_CCI5XX))) { return; } /* Initialize the right interconnect */ if (arm_config.flags & ARM_CONFIG_FVP_HAS_CCI5XX) { cci_base = PLAT_FVP_CCI5XX_BASE; cci_map = fvp_cci5xx_map; map_size = ARRAY_SIZE(fvp_cci5xx_map); } else if (arm_config.flags & ARM_CONFIG_FVP_HAS_CCI400) { cci_base = PLAT_FVP_CCI400_BASE; cci_map = fvp_cci400_map; map_size = ARRAY_SIZE(fvp_cci400_map); } assert(cci_base); assert(cci_map); cci_init(cci_base, cci_map, map_size); #endif } void fvp_interconnect_enable(void) { #if FVP_INTERCONNECT_DRIVER == FVP_CCN plat_arm_interconnect_enter_coherency(); #else unsigned int master; if (arm_config.flags & (ARM_CONFIG_FVP_HAS_CCI400 | ARM_CONFIG_FVP_HAS_CCI5XX)) { master = get_interconnect_master(); cci_enable_snoop_dvm_reqs(master); } #endif } void fvp_interconnect_disable(void) { #if FVP_INTERCONNECT_DRIVER == FVP_CCN plat_arm_interconnect_exit_coherency(); #else unsigned int master; if (arm_config.flags & (ARM_CONFIG_FVP_HAS_CCI400 | ARM_CONFIG_FVP_HAS_CCI5XX)) { master = get_interconnect_master(); cci_disable_snoop_dvm_reqs(master); } #endif }