/* * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ /* * Top-level SMC handler for ZynqMP power management calls and * IPI setup functions for communication with PMU. */ #include #include #include "../zynqmp_private.h" #include "pm_api_sys.h" #include "pm_client.h" #include "pm_ipi.h" #if ZYNQMP_WDT_RESTART #include #include #include #include #include #endif #define PM_SET_SUSPEND_MODE 0xa02 #define PM_GET_TRUSTZONE_VERSION 0xa03 /* !0 - UP, 0 - DOWN */ static int32_t pm_up = 0; #if ZYNQMP_WDT_RESTART static spinlock_t inc_lock; static int active_cores = 0; #endif /** * pm_context - Structure which contains data for power management * @api_version version of PM API, must match with one on PMU side * @payload payload array used to store received * data from ipi buffer registers */ static struct { uint32_t api_version; uint32_t payload[PAYLOAD_ARG_CNT]; } pm_ctx; #if ZYNQMP_WDT_RESTART /** * trigger_wdt_restart() - Trigger warm restart event to APU cores * * This function triggers SGI for all active APU CPUs. SGI handler then * power down CPU and call system reset. */ static void trigger_wdt_restart(void) { uint32_t core_count = 0; uint32_t core_status[3]; uint32_t target_cpu_list = 0; int i; for (i = 0; i < 4; i++) { pm_get_node_status(NODE_APU_0 + i, core_status); if (core_status[0] == 1) { core_count++; target_cpu_list |= (1 << i); } } spin_lock(&inc_lock); active_cores = core_count; spin_unlock(&inc_lock); INFO("Active Cores: %d\n", active_cores); /* trigger SGI to active cores */ gicv2_raise_sgi(ARM_IRQ_SEC_SGI_7, target_cpu_list); } /** * ttc_fiq_handler() - TTC Handler for timer event * @id number of the highest priority pending interrupt of the type * that this handler was registered for * @flags security state, bit[0] * @handler pointer to 'cpu_context' structure of the current CPU for the * security state specified in the 'flags' parameter * @cookie unused * * Function registered as INTR_TYPE_EL3 interrupt handler * * When WDT event is received in PMU, PMU needs to notify master to do cleanup * if required. PMU sets up timer and starts timer to overflow in zero time upon * WDT event. ATF handles this timer event and takes necessary action required * for warm restart. * * In presence of non-secure software layers (EL1/2) sets the interrupt * at registered entrance in GIC and informs that PMU responsed or demands * action. */ static uint64_t ttc_fiq_handler(uint32_t id, uint32_t flags, void *handle, void *cookie) { INFO("BL31: Got TTC FIQ\n"); /* Clear TTC interrupt by reading interrupt register */ mmio_read_32(TTC3_INTR_REGISTER_1); /* Disable the timer interrupts */ mmio_write_32(TTC3_INTR_ENABLE_1, 0); trigger_wdt_restart(); return 0; } /** * zynqmp_sgi7_irq() - Handler for SGI7 IRQ * @id number of the highest priority pending interrupt of the type * that this handler was registered for * @flags security state, bit[0] * @handler pointer to 'cpu_context' structure of the current CPU for the * security state specified in the 'flags' parameter * @cookie unused * * Function registered as INTR_TYPE_EL3 interrupt handler * * On receiving WDT event from PMU, ATF generates SGI7 to all running CPUs. * In response to SGI7 interrupt, each CPUs do clean up if required and last * running CPU calls system restart. */ static uint64_t __unused __dead2 zynqmp_sgi7_irq(uint32_t id, uint32_t flags, void *handle, void *cookie) { int i; /* enter wfi and stay there */ INFO("Entering wfi\n"); spin_lock(&inc_lock); active_cores--; for (i = 0; i < 4; i++) { mmio_write_32(BASE_GICD_BASE + GICD_CPENDSGIR + 4 * i, 0xffffffff); } spin_unlock(&inc_lock); if (active_cores == 0) { pm_system_shutdown(PMF_SHUTDOWN_TYPE_RESET, PMF_SHUTDOWN_SUBTYPE_SUBSYSTEM); } /* enter wfi and stay there */ while (1) wfi(); } /** * pm_wdt_restart_setup() - Setup warm restart interrupts * * This function sets up handler for SGI7 and TTC interrupts * used for warm restart. */ static int pm_wdt_restart_setup(void) { int ret; /* register IRQ handler for SGI7 */ ret = request_intr_type_el3(ARM_IRQ_SEC_SGI_7, zynqmp_sgi7_irq); if (ret) { WARN("BL31: registering SGI7 interrupt failed\n"); goto err; } ret = request_intr_type_el3(IRQ_TTC3_1, ttc_fiq_handler); if (ret) WARN("BL31: registering TTC3 interrupt failed\n"); err: return ret; } #endif /** * pm_setup() - PM service setup * * @return On success, the initialization function must return 0. * Any other return value will cause the framework to ignore * the service * * Initialization functions for ZynqMP power management for * communicaton with PMU. * * Called from sip_svc_setup initialization function with the * rt_svc_init signature. */ int pm_setup(void) { int status, ret; status = pm_ipi_init(primary_proc); #if ZYNQMP_WDT_RESTART status = pm_wdt_restart_setup(); if (status) WARN("BL31: warm-restart setup failed\n"); #endif if (status >= 0) { INFO("BL31: PM Service Init Complete: API v%d.%d\n", PM_VERSION_MAJOR, PM_VERSION_MINOR); ret = 0; } else { INFO("BL31: PM Service Init Failed, Error Code %d!\n", status); ret = status; } pm_up = !status; return ret; } /** * pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2. * @smc_fid - Function Identifier * @x1 - x4 - Arguments * @cookie - Unused * @handler - Pointer to caller's context structure * * @return - Unused * * Determines that smc_fid is valid and supported PM SMC Function ID from the * list of pm_api_ids, otherwise completes the request with * the unknown SMC Function ID * * The SMC calls for PM service are forwarded from SIP Service SMC handler * function with rt_svc_handle signature */ uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { enum pm_ret_status ret; uint32_t pm_arg[4]; /* Handle case where PM wasn't initialized properly */ if (!pm_up) SMC_RET1(handle, SMC_UNK); pm_arg[0] = (uint32_t)x1; pm_arg[1] = (uint32_t)(x1 >> 32); pm_arg[2] = (uint32_t)x2; pm_arg[3] = (uint32_t)(x2 >> 32); switch (smc_fid & FUNCID_NUM_MASK) { /* PM API Functions */ case PM_SELF_SUSPEND: ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_REQ_SUSPEND: ret = pm_req_suspend(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_REQ_WAKEUP: { /* Use address flag is encoded in the 1st bit of the low-word */ unsigned int set_addr = pm_arg[1] & 0x1; uint64_t address = (uint64_t)pm_arg[2] << 32; address |= pm_arg[1] & (~0x1); ret = pm_req_wakeup(pm_arg[0], set_addr, address, pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); } case PM_FORCE_POWERDOWN: ret = pm_force_powerdown(pm_arg[0], pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_ABORT_SUSPEND: ret = pm_abort_suspend(pm_arg[0]); SMC_RET1(handle, (uint64_t)ret); case PM_SET_WAKEUP_SOURCE: ret = pm_set_wakeup_source(pm_arg[0], pm_arg[1], pm_arg[2]); SMC_RET1(handle, (uint64_t)ret); case PM_SYSTEM_SHUTDOWN: ret = pm_system_shutdown(pm_arg[0], pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_REQ_NODE: ret = pm_req_node(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_RELEASE_NODE: ret = pm_release_node(pm_arg[0]); SMC_RET1(handle, (uint64_t)ret); case PM_SET_REQUIREMENT: ret = pm_set_requirement(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_SET_MAX_LATENCY: ret = pm_set_max_latency(pm_arg[0], pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_GET_API_VERSION: /* Check is PM API version already verified */ if (pm_ctx.api_version == PM_VERSION) { SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS | ((uint64_t)PM_VERSION << 32)); } ret = pm_get_api_version(&pm_ctx.api_version); /* * Enable IPI IRQ * assume the rich OS is OK to handle callback IRQs now. * Even if we were wrong, it would not enable the IRQ in * the GIC. */ pm_ipi_irq_enable(primary_proc); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)pm_ctx.api_version << 32)); case PM_SET_CONFIGURATION: ret = pm_set_configuration(pm_arg[0]); SMC_RET1(handle, (uint64_t)ret); case PM_INIT_FINALIZE: ret = pm_init_finalize(); SMC_RET1(handle, (uint64_t)ret); case PM_GET_NODE_STATUS: { uint32_t buff[3]; ret = pm_get_node_status(pm_arg[0], buff); SMC_RET2(handle, (uint64_t)ret | ((uint64_t)buff[0] << 32), (uint64_t)buff[1] | ((uint64_t)buff[2] << 32)); } case PM_GET_OP_CHARACTERISTIC: { uint32_t result; ret = pm_get_op_characteristic(pm_arg[0], pm_arg[1], &result); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result << 32)); } case PM_REGISTER_NOTIFIER: ret = pm_register_notifier(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_RESET_ASSERT: ret = pm_reset_assert(pm_arg[0], pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_RESET_GET_STATUS: { uint32_t reset_status; ret = pm_reset_get_status(pm_arg[0], &reset_status); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)reset_status << 32)); } /* PM memory access functions */ case PM_MMIO_WRITE: ret = pm_mmio_write(pm_arg[0], pm_arg[1], pm_arg[2]); SMC_RET1(handle, (uint64_t)ret); case PM_MMIO_READ: { uint32_t value; ret = pm_mmio_read(pm_arg[0], &value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_FPGA_LOAD: ret = pm_fpga_load(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_FPGA_GET_STATUS: { uint32_t value; ret = pm_fpga_get_status(&value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_GET_CHIPID: { uint32_t result[2]; ret = pm_get_chipid(result); SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32), result[1]); } case PM_SECURE_RSA_AES: ret = pm_secure_rsaaes(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_PINCTRL_REQUEST: ret = pm_pinctrl_request(pm_arg[0]); SMC_RET1(handle, (uint64_t)ret); case PM_PINCTRL_RELEASE: ret = pm_pinctrl_release(pm_arg[0]); SMC_RET1(handle, (uint64_t)ret); case PM_PINCTRL_GET_FUNCTION: { uint32_t value = 0; ret = pm_pinctrl_get_function(pm_arg[0], &value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_PINCTRL_SET_FUNCTION: ret = pm_pinctrl_set_function(pm_arg[0], pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_PINCTRL_CONFIG_PARAM_GET: { uint32_t value; ret = pm_pinctrl_get_config(pm_arg[0], pm_arg[1], &value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_PINCTRL_CONFIG_PARAM_SET: ret = pm_pinctrl_set_config(pm_arg[0], pm_arg[1], pm_arg[2]); SMC_RET1(handle, (uint64_t)ret); case PM_IOCTL: { uint32_t value; ret = pm_ioctl(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], &value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_QUERY_DATA: { uint32_t data[4] = { 0 }; ret = pm_query_data(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], data); SMC_RET2(handle, (uint64_t)data[0] | ((uint64_t)data[1] << 32), (uint64_t)data[2] | ((uint64_t)data[3] << 32)); } case PM_CLOCK_ENABLE: ret = pm_clock_enable(pm_arg[0]); SMC_RET1(handle, (uint64_t)ret); case PM_CLOCK_DISABLE: ret = pm_clock_disable(pm_arg[0]); SMC_RET1(handle, (uint64_t)ret); case PM_CLOCK_GETSTATE: { uint32_t value; ret = pm_clock_getstate(pm_arg[0], &value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_CLOCK_SETDIVIDER: ret = pm_clock_setdivider(pm_arg[0], pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_CLOCK_GETDIVIDER: { uint32_t value; ret = pm_clock_getdivider(pm_arg[0], &value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_CLOCK_SETRATE: ret = pm_clock_setrate(pm_arg[0], ((uint64_t)pm_arg[2]) << 32 | pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_CLOCK_GETRATE: { uint64_t value; ret = pm_clock_getrate(pm_arg[0], &value); SMC_RET2(handle, (uint64_t)ret | (((uint64_t)value & 0xFFFFFFFFU) << 32U), (value >> 32U) & 0xFFFFFFFFU); } case PM_CLOCK_SETPARENT: ret = pm_clock_setparent(pm_arg[0], pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_CLOCK_GETPARENT: { uint32_t value; ret = pm_clock_getparent(pm_arg[0], &value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_GET_TRUSTZONE_VERSION: SMC_RET1(handle, (uint64_t)PM_RET_SUCCESS | ((uint64_t)ZYNQMP_TZ_VERSION << 32)); case PM_SET_SUSPEND_MODE: ret = pm_set_suspend_mode(pm_arg[0]); SMC_RET1(handle, (uint64_t)ret); case PM_SECURE_SHA: ret = pm_sha_hash(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_SECURE_RSA: ret = pm_rsa_core(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3]); SMC_RET1(handle, (uint64_t)ret); case PM_SECURE_IMAGE: { uint32_t result[2]; ret = pm_secure_image(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], &result[0]); SMC_RET2(handle, (uint64_t)ret | ((uint64_t)result[0] << 32), result[1]); } case PM_FPGA_READ: { uint32_t value; ret = pm_fpga_read(pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3], &value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_SECURE_AES: { uint32_t value; ret = pm_aes_engine(pm_arg[0], pm_arg[1], &value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value) << 32); } case PM_PLL_SET_PARAMETER: ret = pm_pll_set_parameter(pm_arg[0], pm_arg[1], pm_arg[2]); SMC_RET1(handle, (uint64_t)ret); case PM_PLL_GET_PARAMETER: { uint32_t value; ret = pm_pll_get_parameter(pm_arg[0], pm_arg[1], &value); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)value << 32)); } case PM_PLL_SET_MODE: ret = pm_pll_set_mode(pm_arg[0], pm_arg[1]); SMC_RET1(handle, (uint64_t)ret); case PM_PLL_GET_MODE: { uint32_t mode; ret = pm_pll_get_mode(pm_arg[0], &mode); SMC_RET1(handle, (uint64_t)ret | ((uint64_t)mode << 32)); } default: WARN("Unimplemented PM Service Call: 0x%x\n", smc_fid); SMC_RET1(handle, SMC_UNK); } }