/* * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include "fvp_private.h" /* Defines for GIC Driver build time selection */ #define FVP_GICV2 1 #define FVP_GICV3 2 /******************************************************************************* * arm_config holds the characteristics of the differences between the three FVP * platforms (Base, A53_A57 & Foundation). It will be populated during cold boot * at each boot stage by the primary before enabling the MMU (to allow * interconnect configuration) & used thereafter. Each BL will have its own copy * to allow independent operation. ******************************************************************************/ arm_config_t arm_config; #define MAP_DEVICE0 MAP_REGION_FLAT(DEVICE0_BASE, \ DEVICE0_SIZE, \ MT_DEVICE | MT_RW | MT_SECURE) #define MAP_DEVICE1 MAP_REGION_FLAT(DEVICE1_BASE, \ DEVICE1_SIZE, \ MT_DEVICE | MT_RW | MT_SECURE) /* * Need to be mapped with write permissions in order to set a new non-volatile * counter value. */ #define MAP_DEVICE2 MAP_REGION_FLAT(DEVICE2_BASE, \ DEVICE2_SIZE, \ MT_DEVICE | MT_RW | MT_SECURE) /* * Table of memory regions for various BL stages to map using the MMU. * This doesn't include Trusted SRAM as setup_page_tables() already takes care * of mapping it. * * The flash needs to be mapped as writable in order to erase the FIP's Table of * Contents in case of unrecoverable error (see plat_error_handler()). */ #ifdef IMAGE_BL1 const mmap_region_t plat_arm_mmap[] = { ARM_MAP_SHARED_RAM, V2M_MAP_FLASH0_RW, V2M_MAP_IOFPGA, MAP_DEVICE0, MAP_DEVICE1, #if TRUSTED_BOARD_BOOT /* To access the Root of Trust Public Key registers. */ MAP_DEVICE2, /* Map DRAM to authenticate NS_BL2U image. */ ARM_MAP_NS_DRAM1, #endif {0} }; #endif #ifdef IMAGE_BL2 const mmap_region_t plat_arm_mmap[] = { ARM_MAP_SHARED_RAM, V2M_MAP_FLASH0_RW, V2M_MAP_IOFPGA, MAP_DEVICE0, MAP_DEVICE1, ARM_MAP_NS_DRAM1, #ifdef AARCH64 ARM_MAP_DRAM2, #endif #ifdef SPD_tspd ARM_MAP_TSP_SEC_MEM, #endif #if TRUSTED_BOARD_BOOT /* To access the Root of Trust Public Key registers. */ MAP_DEVICE2, #if !BL2_AT_EL3 ARM_MAP_BL1_RW, #endif #endif /* TRUSTED_BOARD_BOOT */ #if ENABLE_SPM && SPM_DEPRECATED ARM_SP_IMAGE_MMAP, #endif #if ENABLE_SPM && !SPM_DEPRECATED PLAT_MAP_SP_PACKAGE_MEM_RW, #endif #if ARM_BL31_IN_DRAM ARM_MAP_BL31_SEC_DRAM, #endif #ifdef SPD_opteed ARM_MAP_OPTEE_CORE_MEM, ARM_OPTEE_PAGEABLE_LOAD_MEM, #endif {0} }; #endif #ifdef IMAGE_BL2U const mmap_region_t plat_arm_mmap[] = { MAP_DEVICE0, V2M_MAP_IOFPGA, {0} }; #endif #ifdef IMAGE_BL31 const mmap_region_t plat_arm_mmap[] = { ARM_MAP_SHARED_RAM, ARM_MAP_EL3_TZC_DRAM, V2M_MAP_IOFPGA, MAP_DEVICE0, MAP_DEVICE1, ARM_V2M_MAP_MEM_PROTECT, #if ENABLE_SPM && SPM_DEPRECATED ARM_SPM_BUF_EL3_MMAP, #endif #if ENABLE_SPM && !SPM_DEPRECATED PLAT_MAP_SP_PACKAGE_MEM_RO, #endif {0} }; #if ENABLE_SPM && defined(IMAGE_BL31) && SPM_DEPRECATED const mmap_region_t plat_arm_secure_partition_mmap[] = { V2M_MAP_IOFPGA_EL0, /* for the UART */ MAP_REGION_FLAT(DEVICE0_BASE, \ DEVICE0_SIZE, \ MT_DEVICE | MT_RO | MT_SECURE | MT_USER), ARM_SP_IMAGE_MMAP, ARM_SP_IMAGE_NS_BUF_MMAP, ARM_SP_IMAGE_RW_MMAP, ARM_SPM_BUF_EL0_MMAP, {0} }; #endif #endif #ifdef IMAGE_BL32 const mmap_region_t plat_arm_mmap[] = { #ifdef AARCH32 ARM_MAP_SHARED_RAM, ARM_V2M_MAP_MEM_PROTECT, #endif V2M_MAP_IOFPGA, MAP_DEVICE0, MAP_DEVICE1, {0} }; #endif ARM_CASSERT_MMAP #if FVP_INTERCONNECT_DRIVER != FVP_CCN static const int fvp_cci400_map[] = { PLAT_FVP_CCI400_CLUS0_SL_PORT, PLAT_FVP_CCI400_CLUS1_SL_PORT, }; static const int fvp_cci5xx_map[] = { PLAT_FVP_CCI5XX_CLUS0_SL_PORT, PLAT_FVP_CCI5XX_CLUS1_SL_PORT, }; static unsigned int get_interconnect_master(void) { unsigned int master; u_register_t mpidr; mpidr = read_mpidr_el1(); master = ((arm_config.flags & ARM_CONFIG_FVP_SHIFTED_AFF) != 0U) ? MPIDR_AFFLVL2_VAL(mpidr) : MPIDR_AFFLVL1_VAL(mpidr); assert(master < FVP_CLUSTER_COUNT); return master; } #endif #if ENABLE_SPM && defined(IMAGE_BL31) && SPM_DEPRECATED /* * Boot information passed to a secure partition during initialisation. Linear * indices in MP information will be filled at runtime. */ static secure_partition_mp_info_t sp_mp_info[] = { [0] = {0x80000000, 0}, [1] = {0x80000001, 0}, [2] = {0x80000002, 0}, [3] = {0x80000003, 0}, [4] = {0x80000100, 0}, [5] = {0x80000101, 0}, [6] = {0x80000102, 0}, [7] = {0x80000103, 0}, }; const secure_partition_boot_info_t plat_arm_secure_partition_boot_info = { .h.type = PARAM_SP_IMAGE_BOOT_INFO, .h.version = VERSION_1, .h.size = sizeof(secure_partition_boot_info_t), .h.attr = 0, .sp_mem_base = ARM_SP_IMAGE_BASE, .sp_mem_limit = ARM_SP_IMAGE_LIMIT, .sp_image_base = ARM_SP_IMAGE_BASE, .sp_stack_base = PLAT_SP_IMAGE_STACK_BASE, .sp_heap_base = ARM_SP_IMAGE_HEAP_BASE, .sp_ns_comm_buf_base = ARM_SP_IMAGE_NS_BUF_BASE, .sp_shared_buf_base = PLAT_SPM_BUF_BASE, .sp_image_size = ARM_SP_IMAGE_SIZE, .sp_pcpu_stack_size = PLAT_SP_IMAGE_STACK_PCPU_SIZE, .sp_heap_size = ARM_SP_IMAGE_HEAP_SIZE, .sp_ns_comm_buf_size = ARM_SP_IMAGE_NS_BUF_SIZE, .sp_shared_buf_size = PLAT_SPM_BUF_SIZE, .num_sp_mem_regions = ARM_SP_IMAGE_NUM_MEM_REGIONS, .num_cpus = PLATFORM_CORE_COUNT, .mp_info = &sp_mp_info[0], }; const struct mmap_region *plat_get_secure_partition_mmap(void *cookie) { return plat_arm_secure_partition_mmap; } const struct secure_partition_boot_info *plat_get_secure_partition_boot_info( void *cookie) { return &plat_arm_secure_partition_boot_info; } #endif /******************************************************************************* * A single boot loader stack is expected to work on both the Foundation FVP * models and the two flavours of the Base FVP models (AEMv8 & Cortex). The * SYS_ID register provides a mechanism for detecting the differences between * these platforms. This information is stored in a per-BL array to allow the * code to take the correct path.Per BL platform configuration. ******************************************************************************/ void __init fvp_config_setup(void) { unsigned int rev, hbi, bld, arch, sys_id; sys_id = mmio_read_32(V2M_SYSREGS_BASE + V2M_SYS_ID); rev = (sys_id >> V2M_SYS_ID_REV_SHIFT) & V2M_SYS_ID_REV_MASK; hbi = (sys_id >> V2M_SYS_ID_HBI_SHIFT) & V2M_SYS_ID_HBI_MASK; bld = (sys_id >> V2M_SYS_ID_BLD_SHIFT) & V2M_SYS_ID_BLD_MASK; arch = (sys_id >> V2M_SYS_ID_ARCH_SHIFT) & V2M_SYS_ID_ARCH_MASK; if (arch != ARCH_MODEL) { ERROR("This firmware is for FVP models\n"); panic(); } /* * The build field in the SYS_ID tells which variant of the GIC * memory is implemented by the model. */ switch (bld) { case BLD_GIC_VE_MMAP: ERROR("Legacy Versatile Express memory map for GIC peripheral" " is not supported\n"); panic(); break; case BLD_GIC_A53A57_MMAP: break; default: ERROR("Unsupported board build %x\n", bld); panic(); } /* * The hbi field in the SYS_ID is 0x020 for the Base FVP & 0x010 * for the Foundation FVP. */ switch (hbi) { case HBI_FOUNDATION_FVP: arm_config.flags = 0; /* * Check for supported revisions of Foundation FVP * Allow future revisions to run but emit warning diagnostic */ switch (rev) { case REV_FOUNDATION_FVP_V2_0: case REV_FOUNDATION_FVP_V2_1: case REV_FOUNDATION_FVP_v9_1: case REV_FOUNDATION_FVP_v9_6: break; default: WARN("Unrecognized Foundation FVP revision %x\n", rev); break; } break; case HBI_BASE_FVP: arm_config.flags |= (ARM_CONFIG_BASE_MMAP | ARM_CONFIG_HAS_TZC); /* * Check for supported revisions * Allow future revisions to run but emit warning diagnostic */ switch (rev) { case REV_BASE_FVP_V0: arm_config.flags |= ARM_CONFIG_FVP_HAS_CCI400; break; case REV_BASE_FVP_REVC: arm_config.flags |= (ARM_CONFIG_FVP_HAS_SMMUV3 | ARM_CONFIG_FVP_HAS_CCI5XX); break; default: WARN("Unrecognized Base FVP revision %x\n", rev); break; } break; default: ERROR("Unsupported board HBI number 0x%x\n", hbi); panic(); } /* * We assume that the presence of MT bit, and therefore shifted * affinities, is uniform across the platform: either all CPUs, or no * CPUs implement it. */ if ((read_mpidr_el1() & MPIDR_MT_MASK) != 0U) arm_config.flags |= ARM_CONFIG_FVP_SHIFTED_AFF; } void __init fvp_interconnect_init(void) { #if FVP_INTERCONNECT_DRIVER == FVP_CCN if (ccn_get_part0_id(PLAT_ARM_CCN_BASE) != CCN_502_PART0_ID) { ERROR("Unrecognized CCN variant detected. Only CCN-502 is supported"); panic(); } plat_arm_interconnect_init(); #else uintptr_t cci_base = 0U; const int *cci_map = NULL; unsigned int map_size = 0U; /* Initialize the right interconnect */ if ((arm_config.flags & ARM_CONFIG_FVP_HAS_CCI5XX) != 0U) { cci_base = PLAT_FVP_CCI5XX_BASE; cci_map = fvp_cci5xx_map; map_size = ARRAY_SIZE(fvp_cci5xx_map); } else if ((arm_config.flags & ARM_CONFIG_FVP_HAS_CCI400) != 0U) { cci_base = PLAT_FVP_CCI400_BASE; cci_map = fvp_cci400_map; map_size = ARRAY_SIZE(fvp_cci400_map); } else { return; } assert(cci_base != 0U); assert(cci_map != NULL); cci_init(cci_base, cci_map, map_size); #endif } void fvp_interconnect_enable(void) { #if FVP_INTERCONNECT_DRIVER == FVP_CCN plat_arm_interconnect_enter_coherency(); #else unsigned int master; if ((arm_config.flags & (ARM_CONFIG_FVP_HAS_CCI400 | ARM_CONFIG_FVP_HAS_CCI5XX)) != 0U) { master = get_interconnect_master(); cci_enable_snoop_dvm_reqs(master); } #endif } void fvp_interconnect_disable(void) { #if FVP_INTERCONNECT_DRIVER == FVP_CCN plat_arm_interconnect_exit_coherency(); #else unsigned int master; if ((arm_config.flags & (ARM_CONFIG_FVP_HAS_CCI400 | ARM_CONFIG_FVP_HAS_CCI5XX)) != 0U) { master = get_interconnect_master(); cci_disable_snoop_dvm_reqs(master); } #endif } #if TRUSTED_BOARD_BOOT int plat_get_mbedtls_heap(void **heap_addr, size_t *heap_size) { assert(heap_addr != NULL); assert(heap_size != NULL); return arm_get_mbedtls_heap(heap_addr, heap_size); } #endif