/* * Copyright (c) 2015-2021, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #ifndef GICV3_PRIVATE_H #define GICV3_PRIVATE_H #include #include #include #include #include #include "../common/gic_common_private.h" /******************************************************************************* * GICv3 private macro definitions ******************************************************************************/ /* Constants to indicate the status of the RWP bit */ #define RWP_TRUE U(1) #define RWP_FALSE U(0) /* Calculate GIC register bit number corresponding to its interrupt ID */ #define BIT_NUM(REG, id) \ ((id) & ((1U << REG##R_SHIFT) - 1U)) /* * Calculate 8, 32 and 64-bit GICD register offset * corresponding to its interrupt ID */ #if GIC_EXT_INTID /* GICv3.1 */ #define GICD_OFFSET_8(REG, id) \ (((id) <= MAX_SPI_ID) ? \ GICD_##REG##R + (uintptr_t)(id) : \ GICD_##REG##RE + (uintptr_t)(id) - MIN_ESPI_ID) #define GICD_OFFSET(REG, id) \ (((id) <= MAX_SPI_ID) ? \ GICD_##REG##R + (((uintptr_t)(id) >> REG##R_SHIFT) << 2) : \ GICD_##REG##RE + ((((uintptr_t)(id) - MIN_ESPI_ID) >> \ REG##R_SHIFT) << 2)) #define GICD_OFFSET_64(REG, id) \ (((id) <= MAX_SPI_ID) ? \ GICD_##REG##R + (((uintptr_t)(id) >> REG##R_SHIFT) << 3) : \ GICD_##REG##RE + ((((uintptr_t)(id) - MIN_ESPI_ID) >> \ REG##R_SHIFT) << 3)) #else /* GICv3 */ #define GICD_OFFSET_8(REG, id) \ (GICD_##REG##R + (uintptr_t)(id)) #define GICD_OFFSET(REG, id) \ (GICD_##REG##R + (((uintptr_t)(id) >> REG##R_SHIFT) << 2)) #define GICD_OFFSET_64(REG, id) \ (GICD_##REG##R + (((uintptr_t)(id) >> REG##R_SHIFT) << 3)) #endif /* GIC_EXT_INTID */ /* * Read/Write 8, 32 and 64-bit GIC Distributor register * corresponding to its interrupt ID */ #define GICD_READ(REG, base, id) \ mmio_read_32((base) + GICD_OFFSET(REG, (id))) #define GICD_READ_64(REG, base, id) \ mmio_read_64((base) + GICD_OFFSET_64(REG, (id))) #define GICD_WRITE_8(REG, base, id, val) \ mmio_write_8((base) + GICD_OFFSET_8(REG, (id)), (val)) #define GICD_WRITE(REG, base, id, val) \ mmio_write_32((base) + GICD_OFFSET(REG, (id)), (val)) #define GICD_WRITE_64(REG, base, id, val) \ mmio_write_64((base) + GICD_OFFSET_64(REG, (id)), (val)) /* * Bit operations on GIC Distributor register corresponding * to its interrupt ID */ /* Get bit in GIC Distributor register */ #define GICD_GET_BIT(REG, base, id) \ ((mmio_read_32((base) + GICD_OFFSET(REG, (id))) >> \ BIT_NUM(REG, (id))) & 1U) /* Set bit in GIC Distributor register */ #define GICD_SET_BIT(REG, base, id) \ mmio_setbits_32((base) + GICD_OFFSET(REG, (id)), \ ((uint32_t)1 << BIT_NUM(REG, (id)))) /* Clear bit in GIC Distributor register */ #define GICD_CLR_BIT(REG, base, id) \ mmio_clrbits_32((base) + GICD_OFFSET(REG, (id)), \ ((uint32_t)1 << BIT_NUM(REG, (id)))) /* Write bit in GIC Distributor register */ #define GICD_WRITE_BIT(REG, base, id) \ mmio_write_32((base) + GICD_OFFSET(REG, (id)), \ ((uint32_t)1 << BIT_NUM(REG, (id)))) /* * Calculate 8 and 32-bit GICR register offset * corresponding to its interrupt ID */ #if GIC_EXT_INTID /* GICv3.1 */ #define GICR_OFFSET_8(REG, id) \ (((id) <= MAX_PPI_ID) ? \ GICR_##REG##R + (uintptr_t)(id) : \ GICR_##REG##R + (uintptr_t)(id) - (MIN_EPPI_ID - MIN_SPI_ID)) #define GICR_OFFSET(REG, id) \ (((id) <= MAX_PPI_ID) ? \ GICR_##REG##R + (((uintptr_t)(id) >> REG##R_SHIFT) << 2) : \ GICR_##REG##R + ((((uintptr_t)(id) - (MIN_EPPI_ID - MIN_SPI_ID))\ >> REG##R_SHIFT) << 2)) #else /* GICv3 */ #define GICR_OFFSET_8(REG, id) \ (GICR_##REG##R + (uintptr_t)(id)) #define GICR_OFFSET(REG, id) \ (GICR_##REG##R + (((uintptr_t)(id) >> REG##R_SHIFT) << 2)) #endif /* GIC_EXT_INTID */ /* Read/Write GIC Redistributor register corresponding to its interrupt ID */ #define GICR_READ(REG, base, id) \ mmio_read_32((base) + GICR_OFFSET(REG, (id))) #define GICR_WRITE_8(REG, base, id, val) \ mmio_write_8((base) + GICR_OFFSET_8(REG, (id)), (val)) #define GICR_WRITE(REG, base, id, val) \ mmio_write_32((base) + GICR_OFFSET(REG, (id)), (val)) /* * Bit operations on GIC Redistributor register * corresponding to its interrupt ID */ /* Get bit in GIC Redistributor register */ #define GICR_GET_BIT(REG, base, id) \ ((mmio_read_32((base) + GICR_OFFSET(REG, (id))) >> \ BIT_NUM(REG, (id))) & 1U) /* Write bit in GIC Redistributor register */ #define GICR_WRITE_BIT(REG, base, id) \ mmio_write_32((base) + GICR_OFFSET(REG, (id)), \ ((uint32_t)1 << BIT_NUM(REG, (id)))) /* Set bit in GIC Redistributor register */ #define GICR_SET_BIT(REG, base, id) \ mmio_setbits_32((base) + GICR_OFFSET(REG, (id)), \ ((uint32_t)1 << BIT_NUM(REG, (id)))) /* Clear bit in GIC Redistributor register */ #define GICR_CLR_BIT(REG, base, id) \ mmio_clrbits_32((base) + GICR_OFFSET(REG, (id)), \ ((uint32_t)1 << BIT_NUM(REG, (id)))) /* * Macro to convert an mpidr to a value suitable for programming into a * GICD_IROUTER. Bits[31:24] in the MPIDR are cleared as they are not relevant * to GICv3. */ static inline u_register_t gicd_irouter_val_from_mpidr(u_register_t mpidr, unsigned int irm) { return (mpidr & ~(U(0xff) << 24)) | ((irm & IROUTER_IRM_MASK) << IROUTER_IRM_SHIFT); } /* * Macro to convert a GICR_TYPER affinity value into a MPIDR value. Bits[31:24] * are zeroes. */ #ifdef __aarch64__ static inline u_register_t mpidr_from_gicr_typer(uint64_t typer_val) { return (((typer_val >> 56) & MPIDR_AFFLVL_MASK) << MPIDR_AFF3_SHIFT) | ((typer_val >> 32) & U(0xffffff)); } #else static inline u_register_t mpidr_from_gicr_typer(uint64_t typer_val) { return (((typer_val) >> 32) & U(0xffffff)); } #endif /******************************************************************************* * GICv3 private global variables declarations ******************************************************************************/ extern const gicv3_driver_data_t *gicv3_driver_data; /******************************************************************************* * Private GICv3 function prototypes for accessing entire registers. * Note: The raw register values correspond to multiple interrupt IDs and * the number of interrupt IDs involved depends on the register accessed. ******************************************************************************/ unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id); unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id); void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val); void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val); /******************************************************************************* * Private GICv3 function prototypes for accessing the GIC registers * corresponding to a single interrupt ID. These functions use bitwise * operations or appropriate register accesses to modify or return * the bit-field corresponding the single interrupt ID. ******************************************************************************/ unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id); unsigned int gicr_get_igrpmodr(uintptr_t base, unsigned int id); unsigned int gicr_get_igroupr(uintptr_t base, unsigned int id); unsigned int gicr_get_isactiver(uintptr_t base, unsigned int id); void gicd_set_igrpmodr(uintptr_t base, unsigned int id); void gicr_set_igrpmodr(uintptr_t base, unsigned int id); void gicr_set_isenabler(uintptr_t base, unsigned int id); void gicr_set_icenabler(uintptr_t base, unsigned int id); void gicr_set_ispendr(uintptr_t base, unsigned int id); void gicr_set_icpendr(uintptr_t base, unsigned int id); void gicr_set_igroupr(uintptr_t base, unsigned int id); void gicd_clr_igrpmodr(uintptr_t base, unsigned int id); void gicr_clr_igrpmodr(uintptr_t base, unsigned int id); void gicr_clr_igroupr(uintptr_t base, unsigned int id); void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri); void gicr_set_icfgr(uintptr_t base, unsigned int id, unsigned int cfg); /******************************************************************************* * Private GICv3 helper function prototypes ******************************************************************************/ unsigned int gicv3_get_spi_limit(uintptr_t gicd_base); unsigned int gicv3_get_espi_limit(uintptr_t gicd_base); void gicv3_spis_config_defaults(uintptr_t gicd_base); void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base); unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base, const interrupt_prop_t *interrupt_props, unsigned int interrupt_props_num); unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base, const interrupt_prop_t *interrupt_props, unsigned int interrupt_props_num); void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs, unsigned int rdistif_num, uintptr_t gicr_base, mpidr_hash_fn mpidr_to_core_pos); void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base); void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base); /******************************************************************************* * GIC Distributor interface accessors ******************************************************************************/ /* * Wait for updates to: * GICD_CTLR[2:0] - the Group Enables * GICD_CTLR[7:4] - the ARE bits, E1NWF bit and DS bit * GICD_ICENABLER - the clearing of enable state for SPIs */ static inline void gicd_wait_for_pending_write(uintptr_t gicd_base) { while ((gicd_read_ctlr(gicd_base) & GICD_CTLR_RWP_BIT) != 0U) { } } static inline uint32_t gicd_read_pidr2(uintptr_t base) { return mmio_read_32(base + GICD_PIDR2_GICV3); } static inline uint64_t gicd_read_irouter(uintptr_t base, unsigned int id) { assert(id >= MIN_SPI_ID); return GICD_READ_64(IROUTE, base, id); } static inline void gicd_write_irouter(uintptr_t base, unsigned int id, uint64_t affinity) { assert(id >= MIN_SPI_ID); GICD_WRITE_64(IROUTE, base, id, affinity); } static inline void gicd_clr_ctlr(uintptr_t base, unsigned int bitmap, unsigned int rwp) { gicd_write_ctlr(base, gicd_read_ctlr(base) & ~bitmap); if (rwp != 0U) { gicd_wait_for_pending_write(base); } } static inline void gicd_set_ctlr(uintptr_t base, unsigned int bitmap, unsigned int rwp) { gicd_write_ctlr(base, gicd_read_ctlr(base) | bitmap); if (rwp != 0U) { gicd_wait_for_pending_write(base); } } /******************************************************************************* * GIC Redistributor interface accessors ******************************************************************************/ static inline uint32_t gicr_read_ctlr(uintptr_t base) { return mmio_read_32(base + GICR_CTLR); } static inline void gicr_write_ctlr(uintptr_t base, uint32_t val) { mmio_write_32(base + GICR_CTLR, val); } static inline uint64_t gicr_read_typer(uintptr_t base) { return mmio_read_64(base + GICR_TYPER); } static inline uint32_t gicr_read_waker(uintptr_t base) { return mmio_read_32(base + GICR_WAKER); } static inline void gicr_write_waker(uintptr_t base, uint32_t val) { mmio_write_32(base + GICR_WAKER, val); } /* * Wait for updates to: * GICR_ICENABLER0 * GICR_CTLR.DPG1S * GICR_CTLR.DPG1NS * GICR_CTLR.DPG0 * GICR_CTLR, which clears EnableLPIs from 1 to 0 */ static inline void gicr_wait_for_pending_write(uintptr_t gicr_base) { while ((gicr_read_ctlr(gicr_base) & GICR_CTLR_RWP_BIT) != 0U) { } } static inline void gicr_wait_for_upstream_pending_write(uintptr_t gicr_base) { while ((gicr_read_ctlr(gicr_base) & GICR_CTLR_UWP_BIT) != 0U) { } } /* Private implementation of Distributor power control hooks */ void arm_gicv3_distif_pre_save(unsigned int rdist_proc_num); void arm_gicv3_distif_post_restore(unsigned int rdist_proc_num); /******************************************************************************* * GIC Redistributor functions for accessing entire registers. * Note: The raw register values correspond to multiple interrupt IDs and * the number of interrupt IDs involved depends on the register accessed. ******************************************************************************/ /* * Accessors to read/write GIC Redistributor ICENABLER0 register */ static inline unsigned int gicr_read_icenabler0(uintptr_t base) { return mmio_read_32(base + GICR_ICENABLER0); } static inline void gicr_write_icenabler0(uintptr_t base, unsigned int val) { mmio_write_32(base + GICR_ICENABLER0, val); } /* * Accessors to read/write GIC Redistributor ICENABLER0 and ICENABLERE * register corresponding to its number */ static inline unsigned int gicr_read_icenabler(uintptr_t base, unsigned int reg_num) { return mmio_read_32(base + GICR_ICENABLER + (reg_num << 2)); } static inline void gicr_write_icenabler(uintptr_t base, unsigned int reg_num, unsigned int val) { mmio_write_32(base + GICR_ICENABLER + (reg_num << 2), val); } /* * Accessors to read/write GIC Redistributor ICFGR0, ICFGR1 registers */ static inline unsigned int gicr_read_icfgr0(uintptr_t base) { return mmio_read_32(base + GICR_ICFGR0); } static inline unsigned int gicr_read_icfgr1(uintptr_t base) { return mmio_read_32(base + GICR_ICFGR1); } static inline void gicr_write_icfgr0(uintptr_t base, unsigned int val) { mmio_write_32(base + GICR_ICFGR0, val); } static inline void gicr_write_icfgr1(uintptr_t base, unsigned int val) { mmio_write_32(base + GICR_ICFGR1, val); } /* * Accessors to read/write GIC Redistributor ICFGR0, ICFGR1 and ICFGRE * register corresponding to its number */ static inline unsigned int gicr_read_icfgr(uintptr_t base, unsigned int reg_num) { return mmio_read_32(base + GICR_ICFGR + (reg_num << 2)); } static inline void gicr_write_icfgr(uintptr_t base, unsigned int reg_num, unsigned int val) { mmio_write_32(base + GICR_ICFGR + (reg_num << 2), val); } /* * Accessor to write GIC Redistributor ICPENDR0 register */ static inline void gicr_write_icpendr0(uintptr_t base, unsigned int val) { mmio_write_32(base + GICR_ICPENDR0, val); } /* * Accessor to write GIC Redistributor ICPENDR0 and ICPENDRE * register corresponding to its number */ static inline void gicr_write_icpendr(uintptr_t base, unsigned int reg_num, unsigned int val) { mmio_write_32(base + GICR_ICPENDR + (reg_num << 2), val); } /* * Accessors to read/write GIC Redistributor IGROUPR0 register */ static inline unsigned int gicr_read_igroupr0(uintptr_t base) { return mmio_read_32(base + GICR_IGROUPR0); } static inline void gicr_write_igroupr0(uintptr_t base, unsigned int val) { mmio_write_32(base + GICR_IGROUPR0, val); } /* * Accessors to read/write GIC Redistributor IGROUPR0 and IGROUPRE * register corresponding to its number */ static inline unsigned int gicr_read_igroupr(uintptr_t base, unsigned int reg_num) { return mmio_read_32(base + GICR_IGROUPR + (reg_num << 2)); } static inline void gicr_write_igroupr(uintptr_t base, unsigned int reg_num, unsigned int val) { mmio_write_32(base + GICR_IGROUPR + (reg_num << 2), val); } /* * Accessors to read/write GIC Redistributor IGRPMODR0 register */ static inline unsigned int gicr_read_igrpmodr0(uintptr_t base) { return mmio_read_32(base + GICR_IGRPMODR0); } static inline void gicr_write_igrpmodr0(uintptr_t base, unsigned int val) { mmio_write_32(base + GICR_IGRPMODR0, val); } /* * Accessors to read/write GIC Redistributor IGRPMODR0 and IGRPMODRE * register corresponding to its number */ static inline unsigned int gicr_read_igrpmodr(uintptr_t base, unsigned int reg_num) { return mmio_read_32(base + GICR_IGRPMODR + (reg_num << 2)); } static inline void gicr_write_igrpmodr(uintptr_t base, unsigned int reg_num, unsigned int val) { mmio_write_32(base + GICR_IGRPMODR + (reg_num << 2), val); } /* * Accessors to read/write the GIC Redistributor IPRIORITYR(E) register * corresponding to its number, 4 interrupts IDs at a time. */ static inline unsigned int gicr_ipriorityr_read(uintptr_t base, unsigned int reg_num) { return mmio_read_32(base + GICR_IPRIORITYR + (reg_num << 2)); } static inline void gicr_ipriorityr_write(uintptr_t base, unsigned int reg_num, unsigned int val) { mmio_write_32(base + GICR_IPRIORITYR + (reg_num << 2), val); } /* * Accessors to read/write GIC Redistributor ISACTIVER0 register */ static inline unsigned int gicr_read_isactiver0(uintptr_t base) { return mmio_read_32(base + GICR_ISACTIVER0); } static inline void gicr_write_isactiver0(uintptr_t base, unsigned int val) { mmio_write_32(base + GICR_ISACTIVER0, val); } /* * Accessors to read/write GIC Redistributor ISACTIVER0 and ISACTIVERE * register corresponding to its number */ static inline unsigned int gicr_read_isactiver(uintptr_t base, unsigned int reg_num) { return mmio_read_32(base + GICR_ISACTIVER + (reg_num << 2)); } static inline void gicr_write_isactiver(uintptr_t base, unsigned int reg_num, unsigned int val) { mmio_write_32(base + GICR_ISACTIVER + (reg_num << 2), val); } /* * Accessors to read/write GIC Redistributor ISENABLER0 register */ static inline unsigned int gicr_read_isenabler0(uintptr_t base) { return mmio_read_32(base + GICR_ISENABLER0); } static inline void gicr_write_isenabler0(uintptr_t base, unsigned int val) { mmio_write_32(base + GICR_ISENABLER0, val); } /* * Accessors to read/write GIC Redistributor ISENABLER0 and ISENABLERE * register corresponding to its number */ static inline unsigned int gicr_read_isenabler(uintptr_t base, unsigned int reg_num) { return mmio_read_32(base + GICR_ISENABLER + (reg_num << 2)); } static inline void gicr_write_isenabler(uintptr_t base, unsigned int reg_num, unsigned int val) { mmio_write_32(base + GICR_ISENABLER + (reg_num << 2), val); } /* * Accessors to read/write GIC Redistributor ISPENDR0 register */ static inline unsigned int gicr_read_ispendr0(uintptr_t base) { return mmio_read_32(base + GICR_ISPENDR0); } static inline void gicr_write_ispendr0(uintptr_t base, unsigned int val) { mmio_write_32(base + GICR_ISPENDR0, val); } /* * Accessors to read/write GIC Redistributor ISPENDR0 and ISPENDRE * register corresponding to its number */ static inline unsigned int gicr_read_ispendr(uintptr_t base, unsigned int reg_num) { return mmio_read_32(base + GICR_ISPENDR + (reg_num << 2)); } static inline void gicr_write_ispendr(uintptr_t base, unsigned int reg_num, unsigned int val) { mmio_write_32(base + GICR_ISPENDR + (reg_num << 2), val); } /* * Accessors to read/write GIC Redistributor NSACR register */ static inline unsigned int gicr_read_nsacr(uintptr_t base) { return mmio_read_32(base + GICR_NSACR); } static inline void gicr_write_nsacr(uintptr_t base, unsigned int val) { mmio_write_32(base + GICR_NSACR, val); } /* * Accessors to read/write GIC Redistributor PROPBASER register */ static inline uint64_t gicr_read_propbaser(uintptr_t base) { return mmio_read_64(base + GICR_PROPBASER); } static inline void gicr_write_propbaser(uintptr_t base, uint64_t val) { mmio_write_64(base + GICR_PROPBASER, val); } /* * Accessors to read/write GIC Redistributor PENDBASER register */ static inline uint64_t gicr_read_pendbaser(uintptr_t base) { return mmio_read_64(base + GICR_PENDBASER); } static inline void gicr_write_pendbaser(uintptr_t base, uint64_t val) { mmio_write_64(base + GICR_PENDBASER, val); } /******************************************************************************* * GIC ITS functions to read and write entire ITS registers. ******************************************************************************/ static inline uint32_t gits_read_ctlr(uintptr_t base) { return mmio_read_32(base + GITS_CTLR); } static inline void gits_write_ctlr(uintptr_t base, uint32_t val) { mmio_write_32(base + GITS_CTLR, val); } static inline uint64_t gits_read_cbaser(uintptr_t base) { return mmio_read_64(base + GITS_CBASER); } static inline void gits_write_cbaser(uintptr_t base, uint64_t val) { mmio_write_64(base + GITS_CBASER, val); } static inline uint64_t gits_read_cwriter(uintptr_t base) { return mmio_read_64(base + GITS_CWRITER); } static inline void gits_write_cwriter(uintptr_t base, uint64_t val) { mmio_write_64(base + GITS_CWRITER, val); } static inline uint64_t gits_read_baser(uintptr_t base, unsigned int its_table_id) { assert(its_table_id < 8U); return mmio_read_64(base + GITS_BASER + (8U * its_table_id)); } static inline void gits_write_baser(uintptr_t base, unsigned int its_table_id, uint64_t val) { assert(its_table_id < 8U); mmio_write_64(base + GITS_BASER + (8U * its_table_id), val); } /* * Wait for Quiescent bit when GIC ITS is disabled */ static inline void gits_wait_for_quiescent_bit(uintptr_t gits_base) { assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0U); while ((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) == 0U) { } } #endif /* GICV3_PRIVATE_H */