/* * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void prepare_cpu_pwr_dwn(void); extern void tegra186_cpu_reset_handler(void); extern uint32_t __tegra186_cpu_reset_handler_end, __tegra186_smmu_context; /* state id mask */ #define TEGRA186_STATE_ID_MASK 0xF /* constants to get power state's wake time */ #define TEGRA186_WAKE_TIME_MASK 0x0FFFFFF0 #define TEGRA186_WAKE_TIME_SHIFT 4 /* default core wake mask for CPU_SUSPEND */ #define TEGRA186_CORE_WAKE_MASK 0x180c /* context size to save during system suspend */ #define TEGRA186_SE_CONTEXT_SIZE 3 static uint32_t se_regs[TEGRA186_SE_CONTEXT_SIZE]; static struct t18x_psci_percpu_data { unsigned int wake_time; } __aligned(CACHE_WRITEBACK_GRANULE) percpu_data[PLATFORM_CORE_COUNT]; /* System power down state */ uint32_t tegra186_system_powerdn_state = TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF; int32_t tegra_soc_validate_power_state(unsigned int power_state, psci_power_state_t *req_state) { int state_id = psci_get_pstate_id(power_state) & TEGRA186_STATE_ID_MASK; int cpu = plat_my_core_pos(); /* save the core wake time (in TSC ticks)*/ percpu_data[cpu].wake_time = (power_state & TEGRA186_WAKE_TIME_MASK) << TEGRA186_WAKE_TIME_SHIFT; /* * Clean percpu_data[cpu] to DRAM. This needs to be done to ensure that * the correct value is read in tegra_soc_pwr_domain_suspend(), which * is called with caches disabled. It is possible to read a stale value * from DRAM in that function, because the L2 cache is not flushed * unless the cluster is entering CC6/CC7. */ clean_dcache_range((uint64_t)&percpu_data[cpu], sizeof(percpu_data[cpu])); /* Sanity check the requested state id */ switch (state_id) { case PSTATE_ID_CORE_IDLE: case PSTATE_ID_CORE_POWERDN: /* Core powerdown request */ req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id; req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id; break; default: ERROR("%s: unsupported state id (%d)\n", __func__, state_id); return PSCI_E_INVALID_PARAMS; } return PSCI_E_SUCCESS; } int tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state) { const plat_local_state_t *pwr_domain_state; unsigned int stateid_afflvl0, stateid_afflvl2; int cpu = plat_my_core_pos(); plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params(); mce_cstate_info_t cstate_info = { 0 }; uint64_t smmu_ctx_base; uint32_t val; /* get the state ID */ pwr_domain_state = target_state->pwr_domain_state; stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0] & TEGRA186_STATE_ID_MASK; stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] & TEGRA186_STATE_ID_MASK; if ((stateid_afflvl0 == PSTATE_ID_CORE_IDLE) || (stateid_afflvl0 == PSTATE_ID_CORE_POWERDN)) { /* Enter CPU idle/powerdown */ val = (stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ? TEGRA_ARI_CORE_C6 : TEGRA_ARI_CORE_C7; (void)mce_command_handler(MCE_CMD_ENTER_CSTATE, val, percpu_data[cpu].wake_time, 0); } else if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { /* save SE registers */ se_regs[0] = mmio_read_32(TEGRA_SE0_BASE + SE_MUTEX_WATCHDOG_NS_LIMIT); se_regs[1] = mmio_read_32(TEGRA_RNG1_BASE + RNG_MUTEX_WATCHDOG_NS_LIMIT); se_regs[2] = mmio_read_32(TEGRA_PKA1_BASE + PKA_MUTEX_WATCHDOG_NS_LIMIT); /* save 'Secure Boot' Processor Feature Config Register */ val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG); mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV6, val); /* save SMMU context to TZDRAM */ smmu_ctx_base = params_from_bl2->tzdram_base + ((uintptr_t)&__tegra186_smmu_context - (uintptr_t)tegra186_cpu_reset_handler); tegra_smmu_save_context((uintptr_t)smmu_ctx_base); /* Prepare for system suspend */ cstate_info.cluster = TEGRA_ARI_CLUSTER_CC7; cstate_info.system = TEGRA_ARI_SYSTEM_SC7; cstate_info.system_state_force = 1; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); /* Loop until system suspend is allowed */ do { val = mce_command_handler(MCE_CMD_IS_SC7_ALLOWED, TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0); } while (val == 0); /* Instruct the MCE to enter system suspend state */ (void)mce_command_handler(MCE_CMD_ENTER_CSTATE, TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0); } return PSCI_E_SUCCESS; } /******************************************************************************* * Platform handler to calculate the proper target power level at the * specified affinity level ******************************************************************************/ plat_local_state_t tegra_soc_get_target_pwr_state(unsigned int lvl, const plat_local_state_t *states, unsigned int ncpu) { plat_local_state_t target = *states; int cpu = plat_my_core_pos(), ret, cluster_powerdn = 1; int core_pos = read_mpidr() & MPIDR_CPU_MASK; mce_cstate_info_t cstate_info = { 0 }; /* get the current core's power state */ target = *(states + core_pos); /* CPU suspend */ if (lvl == MPIDR_AFFLVL1 && target == PSTATE_ID_CORE_POWERDN) { /* Program default wake mask */ cstate_info.wake_mask = TEGRA186_CORE_WAKE_MASK; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); /* Check if CCx state is allowed. */ ret = mce_command_handler(MCE_CMD_IS_CCX_ALLOWED, TEGRA_ARI_CORE_C7, percpu_data[cpu].wake_time, 0); if (ret) return PSTATE_ID_CORE_POWERDN; } /* CPU off */ if (lvl == MPIDR_AFFLVL1 && target == PLAT_MAX_OFF_STATE) { /* find out the number of ON cpus in the cluster */ do { target = *states++; if (target != PLAT_MAX_OFF_STATE) cluster_powerdn = 0; } while (--ncpu); /* Enable cluster powerdn from last CPU in the cluster */ if (cluster_powerdn) { /* Enable CC7 state and turn off wake mask */ cstate_info.cluster = TEGRA_ARI_CLUSTER_CC7; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); /* Check if CCx state is allowed. */ ret = mce_command_handler(MCE_CMD_IS_CCX_ALLOWED, TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0); if (ret) return PSTATE_ID_CORE_POWERDN; } else { /* Turn off wake_mask */ cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); } } /* System Suspend */ if ((lvl == MPIDR_AFFLVL2) || (target == PSTATE_ID_SOC_POWERDN)) return PSTATE_ID_SOC_POWERDN; /* default state */ return PSCI_LOCAL_STATE_RUN; } int tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state) { const plat_local_state_t *pwr_domain_state = target_state->pwr_domain_state; plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params(); unsigned int stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] & TEGRA186_STATE_ID_MASK; uint64_t val; if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { /* * The TZRAM loses power when we enter system suspend. To * allow graceful exit from system suspend, we need to copy * BL3-1 over to TZDRAM. */ val = params_from_bl2->tzdram_base + ((uintptr_t)&__tegra186_cpu_reset_handler_end - (uintptr_t)tegra186_cpu_reset_handler); memcpy16((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE, (uintptr_t)&__BL31_END__ - (uintptr_t)BL31_BASE); } return PSCI_E_SUCCESS; } int tegra_soc_pwr_domain_on(u_register_t mpidr) { int target_cpu = mpidr & MPIDR_CPU_MASK; int target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >> MPIDR_AFFINITY_BITS; if (target_cluster > MPIDR_AFFLVL1) { ERROR("%s: unsupported CPU (0x%lx)\n", __func__, mpidr); return PSCI_E_NOT_PRESENT; } /* construct the target CPU # */ target_cpu |= (target_cluster << 2); mce_command_handler(MCE_CMD_ONLINE_CORE, target_cpu, 0, 0); return PSCI_E_SUCCESS; } int tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state) { int stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL]; int stateid_afflvl0 = target_state->pwr_domain_state[MPIDR_AFFLVL0]; mce_cstate_info_t cstate_info = { 0 }; /* * Reset power state info for CPUs when onlining, we set * deepest power when offlining a core but that may not be * requested by non-secure sw which controls idle states. It * will re-init this info from non-secure software when the * core come online. */ if (stateid_afflvl0 == PLAT_MAX_OFF_STATE) { cstate_info.cluster = TEGRA_ARI_CLUSTER_CC1; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); } /* * Check if we are exiting from deep sleep and restore SE * context if we are. */ if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) { mmio_write_32(TEGRA_SE0_BASE + SE_MUTEX_WATCHDOG_NS_LIMIT, se_regs[0]); mmio_write_32(TEGRA_RNG1_BASE + RNG_MUTEX_WATCHDOG_NS_LIMIT, se_regs[1]); mmio_write_32(TEGRA_PKA1_BASE + PKA_MUTEX_WATCHDOG_NS_LIMIT, se_regs[2]); /* Init SMMU */ tegra_smmu_init(); /* * Reset power state info for the last core doing SC7 * entry and exit, we set deepest power state as CC7 * and SC7 for SC7 entry which may not be requested by * non-secure SW which controls idle states. */ cstate_info.cluster = TEGRA_ARI_CLUSTER_CC7; cstate_info.system = TEGRA_ARI_SYSTEM_SC1; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); } return PSCI_E_SUCCESS; } int tegra_soc_pwr_domain_off(const psci_power_state_t *target_state) { int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK; /* Disable Denver's DCO operations */ if (impl == DENVER_IMPL) denver_disable_dco(); /* Turn off CPU */ (void)mce_command_handler(MCE_CMD_ENTER_CSTATE, TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0); return PSCI_E_SUCCESS; } __dead2 void tegra_soc_prepare_system_off(void) { mce_cstate_info_t cstate_info = { 0 }; uint32_t val; if (tegra186_system_powerdn_state == TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) { /* power off the entire system */ mce_enter_ccplex_state(tegra186_system_powerdn_state); } else if (tegra186_system_powerdn_state == TEGRA_ARI_SYSTEM_SC8) { /* Prepare for quasi power down */ cstate_info.cluster = TEGRA_ARI_CLUSTER_CC7; cstate_info.system = TEGRA_ARI_SYSTEM_SC8; cstate_info.system_state_force = 1; cstate_info.update_wake_mask = 1; mce_update_cstate_info(&cstate_info); /* loop until other CPUs power down */ do { val = mce_command_handler(MCE_CMD_IS_SC7_ALLOWED, TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0); } while (val == 0); /* Enter quasi power down state */ (void)mce_command_handler(MCE_CMD_ENTER_CSTATE, TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0); /* disable GICC */ tegra_gic_cpuif_deactivate(); /* power down core */ prepare_cpu_pwr_dwn(); /* flush L1/L2 data caches */ dcsw_op_all(DCCISW); } else { ERROR("%s: unsupported power down state (%d)\n", __func__, tegra186_system_powerdn_state); } wfi(); /* wait for the system to power down */ for (;;) { ; } } int tegra_soc_prepare_system_reset(void) { mce_enter_ccplex_state(TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT); return PSCI_E_SUCCESS; }