/* * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include "../common/gic_common_private.h" #include "gicv3_private.h" /* * Accessor to read the GIC Distributor IGRPMODR corresponding to the * interrupt `id`, 32 interrupt IDs at a time. */ unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id) { unsigned int n = id >> IGRPMODR_SHIFT; return mmio_read_32(base + GICD_IGRPMODR + (n << 2)); } /* * Accessor to write the GIC Distributor IGRPMODR corresponding to the * interrupt `id`, 32 interrupt IDs at a time. */ void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val) { unsigned int n = id >> IGRPMODR_SHIFT; mmio_write_32(base + GICD_IGRPMODR + (n << 2), val); } /* * Accessor to get the bit corresponding to interrupt ID * in GIC Distributor IGRPMODR. */ unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U); unsigned int reg_val = gicd_read_igrpmodr(base, id); return (reg_val >> bit_num) & 0x1U; } /* * Accessor to set the bit corresponding to interrupt ID * in GIC Distributor IGRPMODR. */ void gicd_set_igrpmodr(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U); unsigned int reg_val = gicd_read_igrpmodr(base, id); gicd_write_igrpmodr(base, id, reg_val | (1U << bit_num)); } /* * Accessor to clear the bit corresponding to interrupt ID * in GIC Distributor IGRPMODR. */ void gicd_clr_igrpmodr(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U); unsigned int reg_val = gicd_read_igrpmodr(base, id); gicd_write_igrpmodr(base, id, reg_val & ~(1U << bit_num)); } /* * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the * interrupt `id`, 4 interrupts IDs at a time. */ unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id) { unsigned int n = id >> IPRIORITYR_SHIFT; return mmio_read_32(base + GICR_IPRIORITYR + (n << 2)); } /* * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the * interrupt `id`, 4 interrupts IDs at a time. */ void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val) { unsigned int n = id >> IPRIORITYR_SHIFT; mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val); } /* * Accessor to get the bit corresponding to interrupt ID * from GIC Re-distributor IGROUPR0. */ unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U); unsigned int reg_val = gicr_read_igroupr0(base); return (reg_val >> bit_num) & 0x1U; } /* * Accessor to set the bit corresponding to interrupt ID * in GIC Re-distributor IGROUPR0. */ void gicr_set_igroupr0(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U); unsigned int reg_val = gicr_read_igroupr0(base); gicr_write_igroupr0(base, reg_val | (1U << bit_num)); } /* * Accessor to clear the bit corresponding to interrupt ID * in GIC Re-distributor IGROUPR0. */ void gicr_clr_igroupr0(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << IGROUPR_SHIFT) - 1U); unsigned int reg_val = gicr_read_igroupr0(base); gicr_write_igroupr0(base, reg_val & ~(1U << bit_num)); } /* * Accessor to get the bit corresponding to interrupt ID * from GIC Re-distributor IGRPMODR0. */ unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U); unsigned int reg_val = gicr_read_igrpmodr0(base); return (reg_val >> bit_num) & 0x1U; } /* * Accessor to set the bit corresponding to interrupt ID * in GIC Re-distributor IGRPMODR0. */ void gicr_set_igrpmodr0(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U); unsigned int reg_val = gicr_read_igrpmodr0(base); gicr_write_igrpmodr0(base, reg_val | (1U << bit_num)); } /* * Accessor to clear the bit corresponding to interrupt ID * in GIC Re-distributor IGRPMODR0. */ void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << IGRPMODR_SHIFT) - 1U); unsigned int reg_val = gicr_read_igrpmodr0(base); gicr_write_igrpmodr0(base, reg_val & ~(1U << bit_num)); } /* * Accessor to set the bit corresponding to interrupt ID * in GIC Re-distributor ISENABLER0. */ void gicr_set_isenabler0(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << ISENABLER_SHIFT) - 1U); gicr_write_isenabler0(base, (1U << bit_num)); } /* * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor * ICENABLER0. */ void gicr_set_icenabler0(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << ICENABLER_SHIFT) - 1U); gicr_write_icenabler0(base, (1U << bit_num)); } /* * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor * ISACTIVER0. */ unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << ISACTIVER_SHIFT) - 1U); unsigned int reg_val = gicr_read_isactiver0(base); return (reg_val >> bit_num) & 0x1U; } /* * Accessor to clear the bit corresponding to interrupt ID in GIC Re-distributor * ICPENDRR0. */ void gicr_set_icpendr0(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << ICPENDR_SHIFT) - 1U); gicr_write_icpendr0(base, (1U << bit_num)); } /* * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor * ISPENDR0. */ void gicr_set_ispendr0(uintptr_t base, unsigned int id) { unsigned int bit_num = id & ((1U << ISPENDR_SHIFT) - 1U); gicr_write_ispendr0(base, (1U << bit_num)); } /* * Accessor to set the byte corresponding to interrupt ID * in GIC Re-distributor IPRIORITYR. */ void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri) { uint8_t val = pri & GIC_PRI_MASK; mmio_write_8(base + GICR_IPRIORITYR + id, val); } /* * Accessor to set the bit fields corresponding to interrupt ID * in GIC Re-distributor ICFGR0. */ void gicr_set_icfgr0(uintptr_t base, unsigned int id, unsigned int cfg) { /* Interrupt configuration is a 2-bit field */ unsigned int bit_num = id & ((1U << ICFGR_SHIFT) - 1U); unsigned int bit_shift = bit_num << 1U; uint32_t reg_val = gicr_read_icfgr0(base); /* Clear the field, and insert required configuration */ reg_val &= ~(GIC_CFG_MASK << bit_shift); reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift); gicr_write_icfgr0(base, reg_val); } /* * Accessor to set the bit fields corresponding to interrupt ID * in GIC Re-distributor ICFGR1. */ void gicr_set_icfgr1(uintptr_t base, unsigned int id, unsigned int cfg) { /* Interrupt configuration is a 2-bit field */ unsigned int bit_num = id & ((1U << ICFGR_SHIFT) - 1U); unsigned int bit_shift = bit_num << 1U; uint32_t reg_val = gicr_read_icfgr1(base); /* Clear the field, and insert required configuration */ reg_val &= ~(GIC_CFG_MASK << bit_shift); reg_val |= ((cfg & GIC_CFG_MASK) << bit_shift); gicr_write_icfgr1(base, reg_val); } /****************************************************************************** * This function marks the core as awake in the re-distributor and * ensures that the interface is active. *****************************************************************************/ void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base) { /* * The WAKER_PS_BIT should be changed to 0 * only when WAKER_CA_BIT is 1. */ assert((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U); /* Mark the connected core as awake */ gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT); /* Wait till the WAKER_CA_BIT changes to 0 */ while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) != 0U) ; } /****************************************************************************** * This function marks the core as asleep in the re-distributor and ensures * that the interface is quiescent. *****************************************************************************/ void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base) { /* Mark the connected core as asleep */ gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT); /* Wait till the WAKER_CA_BIT changes to 1 */ while ((gicr_read_waker(gicr_base) & WAKER_CA_BIT) == 0U) ; } /******************************************************************************* * This function probes the Redistributor frames when the driver is initialised * and saves their base addresses. These base addresses are used later to * initialise each Redistributor interface. ******************************************************************************/ void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs, unsigned int rdistif_num, uintptr_t gicr_base, mpidr_hash_fn mpidr_to_core_pos) { u_register_t mpidr; unsigned int proc_num; uint64_t typer_val; uintptr_t rdistif_base = gicr_base; assert(rdistif_base_addrs != NULL); /* * Iterate over the Redistributor frames. Store the base address of each * frame in the platform provided array. Use the "Processor Number" * field to index into the array if the platform has not provided a hash * function to convert an MPIDR (obtained from the "Affinity Value" * field into a linear index. */ do { typer_val = gicr_read_typer(rdistif_base); if (mpidr_to_core_pos != NULL) { mpidr = mpidr_from_gicr_typer(typer_val); proc_num = mpidr_to_core_pos(mpidr); } else { proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) & TYPER_PROC_NUM_MASK; } assert(proc_num < rdistif_num); rdistif_base_addrs[proc_num] = rdistif_base; rdistif_base += (1U << GICR_PCPUBASE_SHIFT); } while ((typer_val & TYPER_LAST_BIT) == 0U); } /******************************************************************************* * Helper function to configure the default attributes of SPIs. ******************************************************************************/ void gicv3_spis_config_defaults(uintptr_t gicd_base) { unsigned int index, num_ints; num_ints = gicd_read_typer(gicd_base); num_ints &= TYPER_IT_LINES_NO_MASK; num_ints = (num_ints + 1U) << 5; /* * Treat all SPIs as G1NS by default. The number of interrupts is * calculated as 32 * (IT_LINES + 1). We do 32 at a time. */ for (index = MIN_SPI_ID; index < num_ints; index += 32U) gicd_write_igroupr(gicd_base, index, ~0U); /* Setup the default SPI priorities doing four at a time */ for (index = MIN_SPI_ID; index < num_ints; index += 4U) gicd_write_ipriorityr(gicd_base, index, GICD_IPRIORITYR_DEF_VAL); /* * Treat all SPIs as level triggered by default, write 16 at * a time */ for (index = MIN_SPI_ID; index < num_ints; index += 16U) gicd_write_icfgr(gicd_base, index, 0U); } #if !ERROR_DEPRECATED /******************************************************************************* * Helper function to configure secure G0 and G1S SPIs. ******************************************************************************/ void gicv3_secure_spis_config(uintptr_t gicd_base, unsigned int num_ints, const unsigned int *sec_intr_list, unsigned int int_grp) { unsigned int index, irq_num; unsigned long long gic_affinity_val; assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0)); /* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */ if (num_ints != 0U) assert(sec_intr_list != NULL); for (index = 0U; index < num_ints; index++) { irq_num = sec_intr_list[index]; if (irq_num >= MIN_SPI_ID) { /* Configure this interrupt as a secure interrupt */ gicd_clr_igroupr(gicd_base, irq_num); /* Configure this interrupt as G0 or a G1S interrupt */ if (int_grp == INTR_GROUP1S) gicd_set_igrpmodr(gicd_base, irq_num); else gicd_clr_igrpmodr(gicd_base, irq_num); /* Set the priority of this interrupt */ gicd_set_ipriorityr(gicd_base, irq_num, GIC_HIGHEST_SEC_PRIORITY); /* Target SPIs to the primary CPU */ gic_affinity_val = gicd_irouter_val_from_mpidr(read_mpidr(), 0U); gicd_write_irouter(gicd_base, irq_num, gic_affinity_val); /* Enable this interrupt */ gicd_set_isenabler(gicd_base, irq_num); } } } #endif /******************************************************************************* * Helper function to configure properties of secure SPIs ******************************************************************************/ unsigned int gicv3_secure_spis_config_props(uintptr_t gicd_base, const interrupt_prop_t *interrupt_props, unsigned int interrupt_props_num) { unsigned int i; const interrupt_prop_t *current_prop; unsigned long long gic_affinity_val; unsigned int ctlr_enable = 0U; /* Make sure there's a valid property array */ if (interrupt_props_num > 0U) assert(interrupt_props != NULL); for (i = 0U; i < interrupt_props_num; i++) { current_prop = &interrupt_props[i]; if (current_prop->intr_num < MIN_SPI_ID) continue; /* Configure this interrupt as a secure interrupt */ gicd_clr_igroupr(gicd_base, current_prop->intr_num); /* Configure this interrupt as G0 or a G1S interrupt */ assert((current_prop->intr_grp == INTR_GROUP0) || (current_prop->intr_grp == INTR_GROUP1S)); if (current_prop->intr_grp == INTR_GROUP1S) { gicd_set_igrpmodr(gicd_base, current_prop->intr_num); ctlr_enable |= CTLR_ENABLE_G1S_BIT; } else { gicd_clr_igrpmodr(gicd_base, current_prop->intr_num); ctlr_enable |= CTLR_ENABLE_G0_BIT; } /* Set interrupt configuration */ gicd_set_icfgr(gicd_base, current_prop->intr_num, current_prop->intr_cfg); /* Set the priority of this interrupt */ gicd_set_ipriorityr(gicd_base, current_prop->intr_num, current_prop->intr_pri); /* Target SPIs to the primary CPU */ gic_affinity_val = gicd_irouter_val_from_mpidr(read_mpidr(), 0U); gicd_write_irouter(gicd_base, current_prop->intr_num, gic_affinity_val); /* Enable this interrupt */ gicd_set_isenabler(gicd_base, current_prop->intr_num); } return ctlr_enable; } /******************************************************************************* * Helper function to configure the default attributes of SPIs. ******************************************************************************/ void gicv3_ppi_sgi_config_defaults(uintptr_t gicr_base) { unsigned int index; /* * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a * more scalable approach as it avoids clearing the enable bits in the * GICD_CTLR */ gicr_write_icenabler0(gicr_base, ~0U); gicr_wait_for_pending_write(gicr_base); /* Treat all SGIs/PPIs as G1NS by default. */ gicr_write_igroupr0(gicr_base, ~0U); /* Setup the default PPI/SGI priorities doing four at a time */ for (index = 0U; index < MIN_SPI_ID; index += 4U) gicr_write_ipriorityr(gicr_base, index, GICD_IPRIORITYR_DEF_VAL); /* Configure all PPIs as level triggered by default */ gicr_write_icfgr1(gicr_base, 0U); } #if !ERROR_DEPRECATED /******************************************************************************* * Helper function to configure secure G0 and G1S SPIs. ******************************************************************************/ void gicv3_secure_ppi_sgi_config(uintptr_t gicr_base, unsigned int num_ints, const unsigned int *sec_intr_list, unsigned int int_grp) { unsigned int index, irq_num; assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0)); /* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */ if (num_ints != 0U) assert(sec_intr_list != NULL); for (index = 0; index < num_ints; index++) { irq_num = sec_intr_list[index]; if (irq_num < MIN_SPI_ID) { /* Configure this interrupt as a secure interrupt */ gicr_clr_igroupr0(gicr_base, irq_num); /* Configure this interrupt as G0 or a G1S interrupt */ if (int_grp == INTR_GROUP1S) gicr_set_igrpmodr0(gicr_base, irq_num); else gicr_clr_igrpmodr0(gicr_base, irq_num); /* Set the priority of this interrupt */ gicr_set_ipriorityr(gicr_base, irq_num, GIC_HIGHEST_SEC_PRIORITY); /* Enable this interrupt */ gicr_set_isenabler0(gicr_base, irq_num); } } } #endif /******************************************************************************* * Helper function to configure properties of secure G0 and G1S PPIs and SGIs. ******************************************************************************/ unsigned int gicv3_secure_ppi_sgi_config_props(uintptr_t gicr_base, const interrupt_prop_t *interrupt_props, unsigned int interrupt_props_num) { unsigned int i; const interrupt_prop_t *current_prop; unsigned int ctlr_enable = 0U; /* Make sure there's a valid property array */ if (interrupt_props_num > 0U) assert(interrupt_props != NULL); for (i = 0U; i < interrupt_props_num; i++) { current_prop = &interrupt_props[i]; if (current_prop->intr_num >= MIN_SPI_ID) continue; /* Configure this interrupt as a secure interrupt */ gicr_clr_igroupr0(gicr_base, current_prop->intr_num); /* Configure this interrupt as G0 or a G1S interrupt */ assert((current_prop->intr_grp == INTR_GROUP0) || (current_prop->intr_grp == INTR_GROUP1S)); if (current_prop->intr_grp == INTR_GROUP1S) { gicr_set_igrpmodr0(gicr_base, current_prop->intr_num); ctlr_enable |= CTLR_ENABLE_G1S_BIT; } else { gicr_clr_igrpmodr0(gicr_base, current_prop->intr_num); ctlr_enable |= CTLR_ENABLE_G0_BIT; } /* Set the priority of this interrupt */ gicr_set_ipriorityr(gicr_base, current_prop->intr_num, current_prop->intr_pri); /* * Set interrupt configuration for PPIs. Configuration for SGIs * are ignored. */ if ((current_prop->intr_num >= MIN_PPI_ID) && (current_prop->intr_num < MIN_SPI_ID)) { gicr_set_icfgr1(gicr_base, current_prop->intr_num, current_prop->intr_cfg); } /* Enable this interrupt */ gicr_set_isenabler0(gicr_base, current_prop->intr_num); } return ctlr_enable; }