/* * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../bl1/bl1_private.h" #include "hikey_private.h" /* * Declarations of linker defined symbols which will help us find the layout * of trusted RAM */ extern unsigned long __COHERENT_RAM_START__; extern unsigned long __COHERENT_RAM_END__; /* * The next 2 constants identify the extents of the coherent memory region. * These addresses are used by the MMU setup code and therefore they must be * page-aligned. It is the responsibility of the linker script to ensure that * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to * page-aligned addresses. */ #define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__) #define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__) /* Data structure which holds the extents of the trusted RAM for BL1 */ static meminfo_t bl1_tzram_layout; enum { BOOT_NORMAL = 0, BOOT_USB_DOWNLOAD, BOOT_UART_DOWNLOAD, }; meminfo_t *bl1_plat_sec_mem_layout(void) { return &bl1_tzram_layout; } /******************************************************************************* * Function that takes a memory layout into which BL2 has been loaded and * populates a new memory layout for BL2 that ensures that BL1's data sections * resident in secure RAM are not visible to BL2. ******************************************************************************/ void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout, meminfo_t *bl2_mem_layout) { assert(bl1_mem_layout != NULL); assert(bl2_mem_layout != NULL); /* * Cannot remove BL1 RW data from the scope of memory visible to BL2 * like arm platforms because they overlap in hikey */ bl2_mem_layout->total_base = BL2_BASE; bl2_mem_layout->total_size = BL32_SRAM_LIMIT - BL2_BASE; flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t)); } /* * Perform any BL1 specific platform actions. */ void bl1_early_platform_setup(void) { /* Initialize the console to provide early debug support */ console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE); /* Allow BL1 to see the whole Trusted RAM */ bl1_tzram_layout.total_base = BL1_RW_BASE; bl1_tzram_layout.total_size = BL1_RW_SIZE; INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT, BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */ } /* * Perform the very early platform specific architecture setup here. At the * moment this only does basic initialization. Later architectural setup * (bl1_arch_setup()) does not do anything platform specific. */ void bl1_plat_arch_setup(void) { hikey_init_mmu_el3(bl1_tzram_layout.total_base, bl1_tzram_layout.total_size, BL1_RO_BASE, BL1_RO_LIMIT, BL1_COHERENT_RAM_BASE, BL1_COHERENT_RAM_LIMIT); } /* * Function which will perform any remaining platform-specific setup that can * occur after the MMU and data cache have been enabled. */ void bl1_platform_setup(void) { dw_mmc_params_t params; assert((HIKEY_BL1_MMC_DESC_BASE >= SRAM_BASE) && ((SRAM_BASE + SRAM_SIZE) >= (HIKEY_BL1_MMC_DATA_BASE + HIKEY_BL1_MMC_DATA_SIZE))); hikey_sp804_init(); hikey_gpio_init(); hikey_pmussi_init(); hikey_hi6553_init(); hikey_rtc_init(); hikey_mmc_pll_init(); memset(¶ms, 0, sizeof(dw_mmc_params_t)); params.reg_base = DWMMC0_BASE; params.desc_base = HIKEY_BL1_MMC_DESC_BASE; params.desc_size = 1 << 20; params.clk_rate = 24 * 1000 * 1000; params.bus_width = EMMC_BUS_WIDTH_8; params.flags = EMMC_FLAG_CMD23; dw_mmc_init(¶ms); hikey_io_setup(); } /* * The following function checks if Firmware update is needed, * by checking if TOC in FIP image is valid or not. */ unsigned int bl1_plat_get_next_image_id(void) { int32_t boot_mode; unsigned int ret; boot_mode = mmio_read_32(ONCHIPROM_PARAM_BASE); switch (boot_mode) { case BOOT_USB_DOWNLOAD: case BOOT_UART_DOWNLOAD: ret = NS_BL1U_IMAGE_ID; break; default: WARN("Invalid boot mode is found:%d\n", boot_mode); panic(); } return ret; } image_desc_t *bl1_plat_get_image_desc(unsigned int image_id) { unsigned int index = 0; while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) { if (bl1_tbbr_image_descs[index].image_id == image_id) return &bl1_tbbr_image_descs[index]; index++; } return NULL; } void bl1_plat_set_ep_info(unsigned int image_id, entry_point_info_t *ep_info) { uint64_t data = 0; if (image_id == BL2_IMAGE_ID) panic(); inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE); __asm__ volatile ("mrs %0, cpacr_el1" : "=r"(data)); do { data |= 3 << 20; __asm__ volatile ("msr cpacr_el1, %0" : : "r"(data)); __asm__ volatile ("mrs %0, cpacr_el1" : "=r"(data)); } while ((data & (3 << 20)) != (3 << 20)); INFO("cpacr_el1:0x%lx\n", data); ep_info->args.arg0 = 0xffff & read_mpidr(); ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); }