/* * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #define PMUGRF_OS_REG0 0x300 #define PMUGRF_OS_REG1 0x304 #define PMUGRF_OS_REG2 0x308 #define PMUGRF_OS_REG3 0x30c #define CRU_SFTRST_DDR_CTRL(ch, n) ((0x1 << (8 + 16 + (ch) * 4)) | \ ((n) << (8 + (ch) * 4))) #define CRU_SFTRST_DDR_PHY(ch, n) ((0x1 << (9 + 16 + (ch) * 4)) | \ ((n) << (9 + (ch) * 4))) #define FBDIV_ENC(n) ((n) << 16) #define FBDIV_DEC(n) (((n) >> 16) & 0xfff) #define POSTDIV2_ENC(n) ((n) << 12) #define POSTDIV2_DEC(n) (((n) >> 12) & 0x7) #define POSTDIV1_ENC(n) ((n) << 8) #define POSTDIV1_DEC(n) (((n) >> 8) & 0x7) #define REFDIV_ENC(n) (n) #define REFDIV_DEC(n) ((n) & 0x3f) /* PMU CRU */ #define PMUCRU_RSTNHOLD_CON0 0x120 #define PMUCRU_RSTNHOLD_CON1 0x124 #define PRESET_GPIO0_HOLD(n) (((n) << 7) | WMSK_BIT(7)) #define PRESET_GPIO1_HOLD(n) (((n) << 8) | WMSK_BIT(8)) #define SYS_COUNTER_FREQ_IN_MHZ (SYS_COUNTER_FREQ_IN_TICKS / 1000000) /* * Copy @num registers from @src to @dst */ __sramfunc void sram_regcpy(uintptr_t dst, uintptr_t src, uint32_t num) { while (num--) { mmio_write_32(dst, mmio_read_32(src)); dst += sizeof(uint32_t); src += sizeof(uint32_t); } } static __sramfunc uint32_t sram_get_timer_value(void) { /* * Generic delay timer implementation expects the timer to be a down * counter. We apply bitwise NOT operator to the tick values returned * by read_cntpct_el0() to simulate the down counter. */ return (uint32_t)(~read_cntpct_el0()); } static __sramfunc void sram_udelay(uint32_t usec) { uint32_t start, cnt, delta, delta_us; /* counter is decreasing */ start = sram_get_timer_value(); do { cnt = sram_get_timer_value(); if (cnt > start) { delta = UINT32_MAX - cnt; delta += start; } else delta = start - cnt; delta_us = (delta * SYS_COUNTER_FREQ_IN_MHZ); } while (delta_us < usec); } static __sramfunc void configure_sgrf(void) { /* * SGRF_DDR_RGN_DPLL_CLK and SGRF_DDR_RGN_RTC_CLK: * IC ECO bug, need to set this register. * * SGRF_DDR_RGN_BYPS: * After the PD_CENTER suspend/resume, the DDR region * related registers in the SGRF will be reset, we * need to re-initialize them. */ mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON0_16(16), SGRF_DDR_RGN_DPLL_CLK | SGRF_DDR_RGN_RTC_CLK | SGRF_DDR_RGN_BYPS); } static __sramfunc void rkclk_ddr_reset(uint32_t channel, uint32_t ctl, uint32_t phy) { channel &= 0x1; ctl &= 0x1; phy &= 0x1; mmio_write_32(CRU_BASE + CRU_SOFTRST_CON(4), CRU_SFTRST_DDR_CTRL(channel, ctl) | CRU_SFTRST_DDR_PHY(channel, phy)); } static __sramfunc void phy_pctrl_reset(uint32_t ch) { rkclk_ddr_reset(ch, 1, 1); sram_udelay(10); rkclk_ddr_reset(ch, 1, 0); sram_udelay(10); rkclk_ddr_reset(ch, 0, 0); sram_udelay(10); } static __sramfunc void phy_dll_bypass_set(uint32_t ch, uint32_t hz) { if (hz <= 125 * MHz) { /* phy_sw_master_mode_X PHY_86/214/342/470 4bits offset_8 */ mmio_setbits_32(PHY_REG(ch, 86), (0x3 << 2) << 8); mmio_setbits_32(PHY_REG(ch, 214), (0x3 << 2) << 8); mmio_setbits_32(PHY_REG(ch, 342), (0x3 << 2) << 8); mmio_setbits_32(PHY_REG(ch, 470), (0x3 << 2) << 8); /* phy_adrctl_sw_master_mode PHY_547/675/803 4bits offset_16 */ mmio_setbits_32(PHY_REG(ch, 547), (0x3 << 2) << 16); mmio_setbits_32(PHY_REG(ch, 675), (0x3 << 2) << 16); mmio_setbits_32(PHY_REG(ch, 803), (0x3 << 2) << 16); } else { /* phy_sw_master_mode_X PHY_86/214/342/470 4bits offset_8 */ mmio_clrbits_32(PHY_REG(ch, 86), (0x3 << 2) << 8); mmio_clrbits_32(PHY_REG(ch, 214), (0x3 << 2) << 8); mmio_clrbits_32(PHY_REG(ch, 342), (0x3 << 2) << 8); mmio_clrbits_32(PHY_REG(ch, 470), (0x3 << 2) << 8); /* phy_adrctl_sw_master_mode PHY_547/675/803 4bits offset_16 */ mmio_clrbits_32(PHY_REG(ch, 547), (0x3 << 2) << 16); mmio_clrbits_32(PHY_REG(ch, 675), (0x3 << 2) << 16); mmio_clrbits_32(PHY_REG(ch, 803), (0x3 << 2) << 16); } } static __sramfunc void set_cs_training_index(uint32_t ch, uint32_t rank) { /* PHY_8/136/264/392 phy_per_cs_training_index_X 1bit offset_24 */ mmio_clrsetbits_32(PHY_REG(ch, 8), 0x1 << 24, rank << 24); mmio_clrsetbits_32(PHY_REG(ch, 136), 0x1 << 24, rank << 24); mmio_clrsetbits_32(PHY_REG(ch, 264), 0x1 << 24, rank << 24); mmio_clrsetbits_32(PHY_REG(ch, 392), 0x1 << 24, rank << 24); } static __sramfunc void select_per_cs_training_index(uint32_t ch, uint32_t rank) { /* PHY_84 PHY_PER_CS_TRAINING_EN_0 1bit offset_16 */ if ((mmio_read_32(PHY_REG(ch, 84)) >> 16) & 1) set_cs_training_index(ch, rank); } static void override_write_leveling_value(uint32_t ch) { uint32_t byte; /* PHY_896 PHY_FREQ_SEL_MULTICAST_EN 1bit offset_0 */ mmio_setbits_32(PHY_REG(ch, 896), 1); /* * PHY_8/136/264/392 * phy_per_cs_training_multicast_en_X 1bit offset_16 */ mmio_clrsetbits_32(PHY_REG(ch, 8), 0x1 << 16, 1 << 16); mmio_clrsetbits_32(PHY_REG(ch, 136), 0x1 << 16, 1 << 16); mmio_clrsetbits_32(PHY_REG(ch, 264), 0x1 << 16, 1 << 16); mmio_clrsetbits_32(PHY_REG(ch, 392), 0x1 << 16, 1 << 16); for (byte = 0; byte < 4; byte++) mmio_clrsetbits_32(PHY_REG(ch, 63 + (128 * byte)), 0xffff << 16, 0x200 << 16); /* PHY_896 PHY_FREQ_SEL_MULTICAST_EN 1bit offset_0 */ mmio_clrbits_32(PHY_REG(ch, 896), 1); /* CTL_200 ctrlupd_req 1bit offset_8 */ mmio_clrsetbits_32(CTL_REG(ch, 200), 0x1 << 8, 0x1 << 8); } static __sramfunc int data_training(uint32_t ch, struct rk3399_sdram_params *sdram_params, uint32_t training_flag) { uint32_t obs_0, obs_1, obs_2, obs_3, obs_err = 0; uint32_t rank = sdram_params->ch[ch].rank; uint32_t rank_mask; uint32_t i, tmp; if (sdram_params->dramtype == LPDDR4) rank_mask = (rank == 1) ? 0x5 : 0xf; else rank_mask = (rank == 1) ? 0x1 : 0x3; /* PHY_927 PHY_PAD_DQS_DRIVE RPULL offset_22 */ mmio_setbits_32(PHY_REG(ch, 927), (1 << 22)); if (training_flag == PI_FULL_TRAINING) { if (sdram_params->dramtype == LPDDR4) { training_flag = PI_WRITE_LEVELING | PI_READ_GATE_TRAINING | PI_READ_LEVELING | PI_WDQ_LEVELING; } else if (sdram_params->dramtype == LPDDR3) { training_flag = PI_CA_TRAINING | PI_WRITE_LEVELING | PI_READ_GATE_TRAINING; } else if (sdram_params->dramtype == DDR3) { training_flag = PI_WRITE_LEVELING | PI_READ_GATE_TRAINING | PI_READ_LEVELING; } } /* ca training(LPDDR4,LPDDR3 support) */ if ((training_flag & PI_CA_TRAINING) == PI_CA_TRAINING) { for (i = 0; i < 4; i++) { if (!(rank_mask & (1 << i))) continue; select_per_cs_training_index(ch, i); /* PI_100 PI_CALVL_EN:RW:8:2 */ mmio_clrsetbits_32(PI_REG(ch, 100), 0x3 << 8, 0x2 << 8); /* PI_92 PI_CALVL_REQ:WR:16:1,PI_CALVL_CS:RW:24:2 */ mmio_clrsetbits_32(PI_REG(ch, 92), (0x1 << 16) | (0x3 << 24), (0x1 << 16) | (i << 24)); while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = mmio_read_32(PI_REG(ch, 174)) >> 8; /* * check status obs * PHY_532/660/788 phy_adr_calvl_obs1_:0:32 */ obs_0 = mmio_read_32(PHY_REG(ch, 532)); obs_1 = mmio_read_32(PHY_REG(ch, 660)); obs_2 = mmio_read_32(PHY_REG(ch, 788)); if (((obs_0 >> 30) & 0x3) || ((obs_1 >> 30) & 0x3) || ((obs_2 >> 30) & 0x3)) obs_err = 1; if ((((tmp >> 11) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 5) & 0x1) == 0x0) && (obs_err == 0)) break; else if ((((tmp >> 5) & 0x1) == 0x1) || (obs_err == 1)) return -1; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ mmio_write_32(PI_REG(ch, 175), 0x00003f7c); } mmio_clrbits_32(PI_REG(ch, 100), 0x3 << 8); } /* write leveling(LPDDR4,LPDDR3,DDR3 support) */ if ((training_flag & PI_WRITE_LEVELING) == PI_WRITE_LEVELING) { for (i = 0; i < rank; i++) { select_per_cs_training_index(ch, i); /* PI_60 PI_WRLVL_EN:RW:8:2 */ mmio_clrsetbits_32(PI_REG(ch, 60), 0x3 << 8, 0x2 << 8); /* PI_59 PI_WRLVL_REQ:WR:8:1,PI_WRLVL_CS:RW:16:2 */ mmio_clrsetbits_32(PI_REG(ch, 59), (0x1 << 8) | (0x3 << 16), (0x1 << 8) | (i << 16)); while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = mmio_read_32(PI_REG(ch, 174)) >> 8; /* * check status obs, if error maybe can not * get leveling done PHY_40/168/296/424 * phy_wrlvl_status_obs_X:0:13 */ obs_0 = mmio_read_32(PHY_REG(ch, 40)); obs_1 = mmio_read_32(PHY_REG(ch, 168)); obs_2 = mmio_read_32(PHY_REG(ch, 296)); obs_3 = mmio_read_32(PHY_REG(ch, 424)); if (((obs_0 >> 12) & 0x1) || ((obs_1 >> 12) & 0x1) || ((obs_2 >> 12) & 0x1) || ((obs_3 >> 12) & 0x1)) obs_err = 1; if ((((tmp >> 10) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 4) & 0x1) == 0x0) && (obs_err == 0)) break; else if ((((tmp >> 4) & 0x1) == 0x1) || (obs_err == 1)) return -1; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ mmio_write_32(PI_REG(ch, 175), 0x00003f7c); } override_write_leveling_value(ch); mmio_clrbits_32(PI_REG(ch, 60), 0x3 << 8); } /* read gate training(LPDDR4,LPDDR3,DDR3 support) */ if ((training_flag & PI_READ_GATE_TRAINING) == PI_READ_GATE_TRAINING) { for (i = 0; i < rank; i++) { select_per_cs_training_index(ch, i); /* PI_80 PI_RDLVL_GATE_EN:RW:24:2 */ mmio_clrsetbits_32(PI_REG(ch, 80), 0x3 << 24, 0x2 << 24); /* * PI_74 PI_RDLVL_GATE_REQ:WR:16:1 * PI_RDLVL_CS:RW:24:2 */ mmio_clrsetbits_32(PI_REG(ch, 74), (0x1 << 16) | (0x3 << 24), (0x1 << 16) | (i << 24)); while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = mmio_read_32(PI_REG(ch, 174)) >> 8; /* * check status obs * PHY_43/171/299/427 * PHY_GTLVL_STATUS_OBS_x:16:8 */ obs_0 = mmio_read_32(PHY_REG(ch, 43)); obs_1 = mmio_read_32(PHY_REG(ch, 171)); obs_2 = mmio_read_32(PHY_REG(ch, 299)); obs_3 = mmio_read_32(PHY_REG(ch, 427)); if (((obs_0 >> (16 + 6)) & 0x3) || ((obs_1 >> (16 + 6)) & 0x3) || ((obs_2 >> (16 + 6)) & 0x3) || ((obs_3 >> (16 + 6)) & 0x3)) obs_err = 1; if ((((tmp >> 9) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 3) & 0x1) == 0x0) && (obs_err == 0)) break; else if ((((tmp >> 3) & 0x1) == 0x1) || (obs_err == 1)) return -1; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ mmio_write_32(PI_REG(ch, 175), 0x00003f7c); } mmio_clrbits_32(PI_REG(ch, 80), 0x3 << 24); } /* read leveling(LPDDR4,LPDDR3,DDR3 support) */ if ((training_flag & PI_READ_LEVELING) == PI_READ_LEVELING) { for (i = 0; i < rank; i++) { select_per_cs_training_index(ch, i); /* PI_80 PI_RDLVL_EN:RW:16:2 */ mmio_clrsetbits_32(PI_REG(ch, 80), 0x3 << 16, 0x2 << 16); /* PI_74 PI_RDLVL_REQ:WR:8:1,PI_RDLVL_CS:RW:24:2 */ mmio_clrsetbits_32(PI_REG(ch, 74), (0x1 << 8) | (0x3 << 24), (0x1 << 8) | (i << 24)); while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = mmio_read_32(PI_REG(ch, 174)) >> 8; /* * make sure status obs not report error bit * PHY_46/174/302/430 * phy_rdlvl_status_obs_X:16:8 */ if ((((tmp >> 8) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 2) & 0x1) == 0x0)) break; else if (((tmp >> 2) & 0x1) == 0x1) return -1; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ mmio_write_32(PI_REG(ch, 175), 0x00003f7c); } mmio_clrbits_32(PI_REG(ch, 80), 0x3 << 16); } /* wdq leveling(LPDDR4 support) */ if ((training_flag & PI_WDQ_LEVELING) == PI_WDQ_LEVELING) { for (i = 0; i < 4; i++) { if (!(rank_mask & (1 << i))) continue; select_per_cs_training_index(ch, i); /* * disable PI_WDQLVL_VREF_EN before wdq leveling? * PI_181 PI_WDQLVL_VREF_EN:RW:8:1 */ mmio_clrbits_32(PI_REG(ch, 181), 0x1 << 8); /* PI_124 PI_WDQLVL_EN:RW:16:2 */ mmio_clrsetbits_32(PI_REG(ch, 124), 0x3 << 16, 0x2 << 16); /* PI_121 PI_WDQLVL_REQ:WR:8:1,PI_WDQLVL_CS:RW:16:2 */ mmio_clrsetbits_32(PI_REG(ch, 121), (0x1 << 8) | (0x3 << 16), (0x1 << 8) | (i << 16)); while (1) { /* PI_174 PI_INT_STATUS:RD:8:18 */ tmp = mmio_read_32(PI_REG(ch, 174)) >> 8; if ((((tmp >> 12) & 0x1) == 0x1) && (((tmp >> 13) & 0x1) == 0x1) && (((tmp >> 6) & 0x1) == 0x0)) break; else if (((tmp >> 6) & 0x1) == 0x1) return -1; } /* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */ mmio_write_32(PI_REG(ch, 175), 0x00003f7c); } mmio_clrbits_32(PI_REG(ch, 124), 0x3 << 16); } /* PHY_927 PHY_PAD_DQS_DRIVE RPULL offset_22 */ mmio_clrbits_32(PHY_REG(ch, 927), (1 << 22)); return 0; } static __sramfunc void set_ddrconfig(struct rk3399_sdram_params *sdram_params, unsigned char channel, uint32_t ddrconfig) { /* only need to set ddrconfig */ struct rk3399_sdram_channel *ch = &sdram_params->ch[channel]; unsigned int cs0_cap = 0; unsigned int cs1_cap = 0; cs0_cap = (1 << (ch->cs0_row + ch->col + ch->bk + ch->bw - 20)); if (ch->rank > 1) cs1_cap = cs0_cap >> (ch->cs0_row - ch->cs1_row); if (ch->row_3_4) { cs0_cap = cs0_cap * 3 / 4; cs1_cap = cs1_cap * 3 / 4; } mmio_write_32(MSCH_BASE(channel) + MSCH_DEVICECONF, ddrconfig | (ddrconfig << 6)); mmio_write_32(MSCH_BASE(channel) + MSCH_DEVICESIZE, ((cs0_cap / 32) & 0xff) | (((cs1_cap / 32) & 0xff) << 8)); } static __sramfunc void dram_all_config(struct rk3399_sdram_params *sdram_params) { unsigned int i; for (i = 0; i < 2; i++) { struct rk3399_sdram_channel *info = &sdram_params->ch[i]; struct rk3399_msch_timings *noc = &info->noc_timings; if (sdram_params->ch[i].col == 0) continue; mmio_write_32(MSCH_BASE(i) + MSCH_DDRTIMINGA0, noc->ddrtiminga0.d32); mmio_write_32(MSCH_BASE(i) + MSCH_DDRTIMINGB0, noc->ddrtimingb0.d32); mmio_write_32(MSCH_BASE(i) + MSCH_DDRTIMINGC0, noc->ddrtimingc0.d32); mmio_write_32(MSCH_BASE(i) + MSCH_DEVTODEV0, noc->devtodev0.d32); mmio_write_32(MSCH_BASE(i) + MSCH_DDRMODE, noc->ddrmode.d32); /* rank 1 memory clock disable (dfi_dram_clk_disable = 1) */ if (sdram_params->ch[i].rank == 1) mmio_setbits_32(CTL_REG(i, 276), 1 << 17); } DDR_STRIDE(sdram_params->stride); /* reboot hold register set */ mmio_write_32(PMUCRU_BASE + CRU_PMU_RSTHOLD_CON(1), CRU_PMU_SGRF_RST_RLS | PRESET_GPIO0_HOLD(1) | PRESET_GPIO1_HOLD(1)); mmio_clrsetbits_32(CRU_BASE + CRU_GLB_RST_CON, 0x3, 0x3); } static __sramfunc void pctl_cfg(uint32_t ch, struct rk3399_sdram_params *sdram_params) { const uint32_t *params_ctl = sdram_params->pctl_regs.denali_ctl; const uint32_t *params_phy = sdram_params->phy_regs.denali_phy; const uint32_t *params_pi = sdram_params->pi_regs.denali_pi; uint32_t tmp, tmp1, tmp2; /* * Workaround controller bug: * Do not program DRAM_CLASS until NO_PHY_IND_TRAIN_INT is programmed */ sram_regcpy(CTL_REG(ch, 1), (uintptr_t)¶ms_ctl[1], CTL_REG_NUM - 1); mmio_write_32(CTL_REG(ch, 0), params_ctl[0]); sram_regcpy(PI_REG(ch, 0), (uintptr_t)¶ms_pi[0], PI_REG_NUM); mmio_write_32(PHY_REG(ch, 910), params_phy[910]); mmio_write_32(PHY_REG(ch, 911), params_phy[911]); mmio_write_32(PHY_REG(ch, 912), params_phy[912]); mmio_clrsetbits_32(CTL_REG(ch, 68), PWRUP_SREFRESH_EXIT, PWRUP_SREFRESH_EXIT); /* PHY_DLL_RST_EN */ mmio_clrsetbits_32(PHY_REG(ch, 957), 0x3 << 24, 1 << 24); dmbst(); mmio_setbits_32(PI_REG(ch, 0), START); mmio_setbits_32(CTL_REG(ch, 0), START); /* wait lock */ while (1) { tmp = mmio_read_32(PHY_REG(ch, 920)); tmp1 = mmio_read_32(PHY_REG(ch, 921)); tmp2 = mmio_read_32(PHY_REG(ch, 922)); if ((((tmp >> 16) & 0x1) == 0x1) && (((tmp1 >> 16) & 0x1) == 0x1) && (((tmp1 >> 0) & 0x1) == 0x1) && (((tmp2 >> 0) & 0x1) == 0x1)) break; /* if PLL bypass,don't need wait lock */ if (mmio_read_32(PHY_REG(ch, 911)) & 0x1) break; } sram_regcpy(PHY_REG(ch, 896), (uintptr_t)¶ms_phy[896], 63); sram_regcpy(PHY_REG(ch, 0), (uintptr_t)¶ms_phy[0], 91); sram_regcpy(PHY_REG(ch, 128), (uintptr_t)¶ms_phy[128], 91); sram_regcpy(PHY_REG(ch, 256), (uintptr_t)¶ms_phy[256], 91); sram_regcpy(PHY_REG(ch, 384), (uintptr_t)¶ms_phy[384], 91); sram_regcpy(PHY_REG(ch, 512), (uintptr_t)¶ms_phy[512], 38); sram_regcpy(PHY_REG(ch, 640), (uintptr_t)¶ms_phy[640], 38); sram_regcpy(PHY_REG(ch, 768), (uintptr_t)¶ms_phy[768], 38); } static __sramfunc int dram_switch_to_next_index( struct rk3399_sdram_params *sdram_params) { uint32_t ch, ch_count; uint32_t fn = ((mmio_read_32(CTL_REG(0, 111)) >> 16) + 1) & 0x1; mmio_write_32(CIC_BASE + CIC_CTRL0, (((0x3 << 4) | (1 << 2) | 1) << 16) | (fn << 4) | (1 << 2) | 1); while (!(mmio_read_32(CIC_BASE + CIC_STATUS0) & (1 << 2))) ; mmio_write_32(CIC_BASE + CIC_CTRL0, 0x20002); while (!(mmio_read_32(CIC_BASE + CIC_STATUS0) & (1 << 0))) ; ch_count = sdram_params->num_channels; /* LPDDR4 f2 cann't do training, all training will fail */ for (ch = 0; ch < ch_count; ch++) { mmio_clrsetbits_32(PHY_REG(ch, 896), (0x3 << 8) | 1, fn << 8); /* data_training failed */ if (data_training(ch, sdram_params, PI_FULL_TRAINING)) return -1; } return 0; } /* * Needs to be done for both channels at once in case of a shared reset signal * between channels. */ static __sramfunc int pctl_start(uint32_t channel_mask, struct rk3399_sdram_params *sdram_params) { uint32_t count; mmio_setbits_32(CTL_REG(0, 68), PWRUP_SREFRESH_EXIT); mmio_setbits_32(CTL_REG(1, 68), PWRUP_SREFRESH_EXIT); /* need de-access IO retention before controller START */ if (channel_mask & (1 << 0)) mmio_setbits_32(PMU_BASE + PMU_PWRMODE_CON, (1 << 19)); if (channel_mask & (1 << 1)) mmio_setbits_32(PMU_BASE + PMU_PWRMODE_CON, (1 << 23)); /* PHY_DLL_RST_EN */ if (channel_mask & (1 << 0)) mmio_clrsetbits_32(PHY_REG(0, 957), 0x3 << 24, 0x2 << 24); if (channel_mask & (1 << 1)) mmio_clrsetbits_32(PHY_REG(1, 957), 0x3 << 24, 0x2 << 24); /* check ERROR bit */ if (channel_mask & (1 << 0)) { count = 0; while (!(mmio_read_32(CTL_REG(0, 203)) & (1 << 3))) { /* CKE is low, loop 10ms */ if (count > 100) return -1; sram_udelay(100); count++; } mmio_clrbits_32(CTL_REG(0, 68), PWRUP_SREFRESH_EXIT); } if (channel_mask & (1 << 1)) { count = 0; while (!(mmio_read_32(CTL_REG(1, 203)) & (1 << 3))) { /* CKE is low, loop 10ms */ if (count > 100) return -1; sram_udelay(100); count++; } mmio_clrbits_32(CTL_REG(1, 68), PWRUP_SREFRESH_EXIT); } return 0; } void dmc_save(void) { struct rk3399_sdram_params *sdram_params = &sdram_config; uint32_t *params_ctl; uint32_t *params_pi; uint32_t *params_phy; uint32_t refdiv, postdiv2, postdiv1, fbdiv; uint32_t tmp; params_ctl = sdram_params->pctl_regs.denali_ctl; params_pi = sdram_params->pi_regs.denali_pi; params_phy = sdram_params->phy_regs.denali_phy; fbdiv = mmio_read_32(CRU_BASE + CRU_PLL_CON(DPLL_ID, 0)) & 0xfff; tmp = mmio_read_32(CRU_BASE + CRU_PLL_CON(DPLL_ID, 1)); postdiv2 = POSTDIV2_DEC(tmp); postdiv1 = POSTDIV1_DEC(tmp); refdiv = REFDIV_DEC(tmp); sdram_params->ddr_freq = ((fbdiv * 24) / (refdiv * postdiv1 * postdiv2)) * MHz; INFO("sdram_params->ddr_freq = %d\n", sdram_params->ddr_freq); sdram_params->odt = (((mmio_read_32(PHY_REG(0, 5)) >> 16) & 0x7) != 0) ? 1 : 0; /* copy the registers CTL PI and PHY */ sram_regcpy((uintptr_t)¶ms_ctl[0], CTL_REG(0, 0), CTL_REG_NUM); /* mask DENALI_CTL_00_DATA.START, only copy here, will trigger later */ params_ctl[0] &= ~(0x1 << 0); sram_regcpy((uintptr_t)¶ms_pi[0], PI_REG(0, 0), PI_REG_NUM); /* mask DENALI_PI_00_DATA.START, only copy here, will trigger later*/ params_pi[0] &= ~(0x1 << 0); sram_regcpy((uintptr_t)¶ms_phy[0], PHY_REG(0, 0), 91); sram_regcpy((uintptr_t)¶ms_phy[128], PHY_REG(0, 128), 91); sram_regcpy((uintptr_t)¶ms_phy[256], PHY_REG(0, 256), 91); sram_regcpy((uintptr_t)¶ms_phy[384], PHY_REG(0, 384), 91); sram_regcpy((uintptr_t)¶ms_phy[512], PHY_REG(0, 512), 38); sram_regcpy((uintptr_t)¶ms_phy[640], PHY_REG(0, 640), 38); sram_regcpy((uintptr_t)¶ms_phy[768], PHY_REG(0, 768), 38); sram_regcpy((uintptr_t)¶ms_phy[896], PHY_REG(0, 896), 63); /* set DENALI_PHY_957_DATA.PHY_DLL_RST_EN = 0x1 */ params_phy[957] &= ~(0x3 << 24); params_phy[957] |= 1 << 24; params_phy[896] |= 1; params_phy[896] &= ~(0x3 << 8); } __sramfunc void dmc_restore(void) { struct rk3399_sdram_params *sdram_params = &sdram_config; uint32_t channel_mask = 0; uint32_t channel; configure_sgrf(); retry: for (channel = 0; channel < sdram_params->num_channels; channel++) { phy_pctrl_reset(channel); phy_dll_bypass_set(channel, sdram_params->ddr_freq); if (channel >= sdram_params->num_channels) continue; pctl_cfg(channel, sdram_params); } for (channel = 0; channel < 2; channel++) { if (sdram_params->ch[channel].col) channel_mask |= 1 << channel; } if (pctl_start(channel_mask, sdram_params) < 0) goto retry; for (channel = 0; channel < sdram_params->num_channels; channel++) { /* LPDDR2/LPDDR3 need to wait DAI complete, max 10us */ if (sdram_params->dramtype == LPDDR3) sram_udelay(10); /* If traning fail, retry to do it again. */ if (data_training(channel, sdram_params, PI_FULL_TRAINING)) goto retry; set_ddrconfig(sdram_params, channel, sdram_params->ch[channel].ddrconfig); } dram_all_config(sdram_params); /* Switch to index 1 and prepare for DDR frequency switch. */ dram_switch_to_next_index(sdram_params); }