/* * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include #include #include /* Value used to initialize Non-Secure IRQ priorities four at a time */ #define GICD_IPRIORITYR_DEF_VAL \ (GIC_HIGHEST_NS_PRIORITY | \ (GIC_HIGHEST_NS_PRIORITY << 8) | \ (GIC_HIGHEST_NS_PRIORITY << 16) | \ (GIC_HIGHEST_NS_PRIORITY << 24)) static const irq_sec_cfg_t *g_irq_sec_ptr; static unsigned int g_num_irqs; /******************************************************************************* * Place the cpu interface in a state where it can never make a cpu exit wfi as * as result of an asserted interrupt. This is critical for powering down a cpu ******************************************************************************/ void tegra_gic_cpuif_deactivate(void) { unsigned int val; /* Disable secure, non-secure interrupts and disable their bypass */ val = gicc_read_ctlr(TEGRA_GICC_BASE); val &= ~(ENABLE_GRP0 | ENABLE_GRP1); val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0; val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1; gicc_write_ctlr(TEGRA_GICC_BASE, val); } /******************************************************************************* * Enable secure interrupts and set the priority mask register to allow all * interrupts to trickle in. ******************************************************************************/ static void tegra_gic_cpuif_setup(unsigned int gicc_base) { unsigned int val; val = ENABLE_GRP0 | ENABLE_GRP1 | FIQ_EN | FIQ_BYP_DIS_GRP0; val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1; gicc_write_ctlr(gicc_base, val); gicc_write_pmr(gicc_base, GIC_PRI_MASK); } /******************************************************************************* * Per cpu gic distributor setup which will be done by all cpus after a cold * boot/hotplug. This marks out the secure interrupts & enables them. ******************************************************************************/ static void tegra_gic_pcpu_distif_setup(unsigned int gicd_base) { unsigned int index, sec_ppi_sgi_mask = 0; assert(gicd_base); /* Setup PPI priorities doing four at a time */ for (index = 0; index < 32; index += 4) { gicd_write_ipriorityr(gicd_base, index, GICD_IPRIORITYR_DEF_VAL); } /* * Invert the bitmask to create a mask for non-secure PPIs and * SGIs. Program the GICD_IGROUPR0 with this bit mask. This write will * update the GICR_IGROUPR0 as well in case we are running on a GICv3 * system. This is critical if GICD_CTLR.ARE_NS=1. */ gicd_write_igroupr(gicd_base, 0, ~sec_ppi_sgi_mask); } /******************************************************************************* * Global gic distributor setup which will be done by the primary cpu after a * cold boot. It marks out the non secure SPIs, PPIs & SGIs and enables them. * It then enables the secure GIC distributor interface. ******************************************************************************/ static void tegra_gic_distif_setup(unsigned int gicd_base) { unsigned int index, num_ints, irq_num; uint8_t target_cpus; uint32_t val; /* * Mark out non-secure interrupts. Calculate number of * IGROUPR registers to consider. Will be equal to the * number of IT_LINES */ num_ints = gicd_read_typer(gicd_base) & IT_LINES_NO_MASK; num_ints = (num_ints + 1) << 5; for (index = MIN_SPI_ID; index < num_ints; index += 32) gicd_write_igroupr(gicd_base, index, ~0); /* Setup SPI priorities doing four at a time */ for (index = MIN_SPI_ID; index < num_ints; index += 4) { gicd_write_ipriorityr(gicd_base, index, GICD_IPRIORITYR_DEF_VAL); } /* Configure SPI secure interrupts now */ if (g_irq_sec_ptr) { for (index = 0; index < g_num_irqs; index++) { irq_num = (g_irq_sec_ptr + index)->irq; target_cpus = (g_irq_sec_ptr + index)->target_cpus; if (irq_num >= MIN_SPI_ID) { /* Configure as a secure interrupt */ gicd_clr_igroupr(gicd_base, irq_num); /* Configure SPI priority */ mmio_write_8(gicd_base + GICD_IPRIORITYR + irq_num, GIC_HIGHEST_SEC_PRIORITY & GIC_PRI_MASK); /* Configure as level triggered */ val = gicd_read_icfgr(gicd_base, irq_num); val |= (3 << ((irq_num & 0xF) << 1)); gicd_write_icfgr(gicd_base, irq_num, val); /* Route SPI to the target CPUs */ gicd_set_itargetsr(gicd_base, irq_num, target_cpus); /* Enable this interrupt */ gicd_set_isenabler(gicd_base, irq_num); } } } /* * Configure the SGI and PPI. This is done in a separated function * because each CPU is responsible for initializing its own private * interrupts. */ tegra_gic_pcpu_distif_setup(gicd_base); /* enable distributor */ gicd_write_ctlr(gicd_base, ENABLE_GRP0 | ENABLE_GRP1); } void tegra_gic_setup(const irq_sec_cfg_t *irq_sec_ptr, unsigned int num_irqs) { g_irq_sec_ptr = irq_sec_ptr; g_num_irqs = num_irqs; tegra_gic_cpuif_setup(TEGRA_GICC_BASE); tegra_gic_distif_setup(TEGRA_GICD_BASE); } /******************************************************************************* * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins. * The interrupt controller knows which pin/line it uses to signal a type of * interrupt. This function provides a common implementation of * plat_interrupt_type_to_line() in an ARM GIC environment for optional re-use * across platforms. It lets the interrupt management framework determine * for a type of interrupt and security state, which line should be used in the * SCR_EL3 to control its routing to EL3. The interrupt line is represented as * the bit position of the IRQ or FIQ bit in the SCR_EL3. ******************************************************************************/ uint32_t tegra_gic_interrupt_type_to_line(uint32_t type, uint32_t security_state) { assert(type == INTR_TYPE_S_EL1 || type == INTR_TYPE_EL3 || type == INTR_TYPE_NS); assert(sec_state_is_valid(security_state)); /* * We ignore the security state parameter under the assumption that * both normal and secure worlds are using ARM GICv2. This parameter * will be used when the secure world starts using GICv3. */ #if ARM_GIC_ARCH == 2 return gicv2_interrupt_type_to_line(TEGRA_GICC_BASE, type); #else #error "Invalid ARM GIC architecture version specified for platform port" #endif /* ARM_GIC_ARCH */ } #if ARM_GIC_ARCH == 2 /******************************************************************************* * This function returns the type of the highest priority pending interrupt at * the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no * interrupt pending. ******************************************************************************/ uint32_t tegra_gic_get_pending_interrupt_type(void) { uint32_t id; unsigned int index; id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK; /* get the interrupt type */ if (id < 1022) { for (index = 0; index < g_num_irqs; index++) { if (id == (g_irq_sec_ptr + index)->irq) return (g_irq_sec_ptr + index)->type; } } if (id == GIC_SPURIOUS_INTERRUPT) return INTR_TYPE_INVAL; return INTR_TYPE_NS; } /******************************************************************************* * This function returns the id of the highest priority pending interrupt at * the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no * interrupt pending. ******************************************************************************/ uint32_t tegra_gic_get_pending_interrupt_id(void) { uint32_t id; id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK; if (id < 1022) return id; if (id == 1023) return INTR_ID_UNAVAILABLE; /* * Find out which non-secure interrupt it is under the assumption that * the GICC_CTLR.AckCtl bit is 0. */ return gicc_read_ahppir(TEGRA_GICC_BASE) & INT_ID_MASK; } /******************************************************************************* * This functions reads the GIC cpu interface Interrupt Acknowledge register * to start handling the pending interrupt. It returns the contents of the IAR. ******************************************************************************/ uint32_t tegra_gic_acknowledge_interrupt(void) { return gicc_read_IAR(TEGRA_GICC_BASE); } /******************************************************************************* * This functions writes the GIC cpu interface End Of Interrupt register with * the passed value to finish handling the active interrupt ******************************************************************************/ void tegra_gic_end_of_interrupt(uint32_t id) { gicc_write_EOIR(TEGRA_GICC_BASE, id); } /******************************************************************************* * This function returns the type of the interrupt id depending upon the group * this interrupt has been configured under by the interrupt controller i.e. * group0 or group1. ******************************************************************************/ uint32_t tegra_gic_get_interrupt_type(uint32_t id) { uint32_t group; unsigned int index; group = gicd_get_igroupr(TEGRA_GICD_BASE, id); /* get the interrupt type */ if (group == GRP0) { for (index = 0; index < g_num_irqs; index++) { if (id == (g_irq_sec_ptr + index)->irq) return (g_irq_sec_ptr + index)->type; } } return INTR_TYPE_NS; } #else #error "Invalid ARM GIC architecture version specified for platform port" #endif /* ARM_GIC_ARCH */ uint32_t plat_ic_get_pending_interrupt_id(void) { return tegra_gic_get_pending_interrupt_id(); } uint32_t plat_ic_get_pending_interrupt_type(void) { return tegra_gic_get_pending_interrupt_type(); } uint32_t plat_ic_acknowledge_interrupt(void) { return tegra_gic_acknowledge_interrupt(); } uint32_t plat_ic_get_interrupt_type(uint32_t id) { return tegra_gic_get_interrupt_type(id); } void plat_ic_end_of_interrupt(uint32_t id) { tegra_gic_end_of_interrupt(id); } uint32_t plat_interrupt_type_to_line(uint32_t type, uint32_t security_state) { return tegra_gic_interrupt_type_to_line(type, security_state); }