/* * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include "pm_ipi.h" #define ERROR_CODE_MASK 0xFFFFU DEFINE_BAKERY_LOCK(pm_secure_lock); /** * pm_ipi_init() - Initialize IPI peripheral for communication with * remote processor * * @proc Pointer to the processor who is initiating request * @return On success, the initialization function must return 0. * Any other return value will cause the framework to ignore * the service * * Called from pm_setup initialization function */ int pm_ipi_init(const struct pm_proc *proc) { bakery_lock_init(&pm_secure_lock); ipi_mb_open(proc->ipi->local_ipi_id, proc->ipi->remote_ipi_id); return 0; } /** * pm_ipi_send_common() - Sends IPI request to the remote processor * @proc Pointer to the processor who is initiating request * @payload API id and call arguments to be written in IPI buffer * * Send an IPI request to the power controller. Caller needs to hold * the 'pm_secure_lock' lock. * * @return Returns status, either success or error+reason */ static enum pm_ret_status pm_ipi_send_common(const struct pm_proc *proc, uint32_t payload[PAYLOAD_ARG_CNT], uint32_t is_blocking) { int status; unsigned int offset = 0; uintptr_t buffer_base = proc->ipi->buffer_base + IPI_BUFFER_TARGET_REMOTE_OFFSET + IPI_BUFFER_REQ_OFFSET; #if IPI_CRC_CHECK payload[PAYLOAD_CRC_POS] = calculate_crc(payload, IPI_W0_TO_W6_SIZE); #endif /* Write payload into IPI buffer */ for (size_t i = 0; i < PAYLOAD_ARG_CNT; i++) { mmio_write_32(buffer_base + offset, payload[i]); offset += PAYLOAD_ARG_SIZE; } /* Generate IPI to remote processor */ status = ipi_mb_notify(proc->ipi->local_ipi_id, proc->ipi->remote_ipi_id, is_blocking); if (status == 0) { return PM_RET_SUCCESS; } return PM_RET_ERROR_TIMEOUT; } /** * pm_ipi_send_non_blocking() - Sends IPI request to the remote processor * without blocking notification * @proc Pointer to the processor who is initiating request * @payload API id and call arguments to be written in IPI buffer * * Send an IPI request to the power controller. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_ipi_send_non_blocking(const struct pm_proc *proc, uint32_t payload[PAYLOAD_ARG_CNT]) { enum pm_ret_status ret; bakery_lock_get(&pm_secure_lock); ret = pm_ipi_send_common(proc, payload, IPI_NON_BLOCKING); bakery_lock_release(&pm_secure_lock); return ret; } /** * pm_ipi_send() - Sends IPI request to the remote processor * @proc Pointer to the processor who is initiating request * @payload API id and call arguments to be written in IPI buffer * * Send an IPI request to the power controller. * * @return Returns status, either success or error+reason */ enum pm_ret_status pm_ipi_send(const struct pm_proc *proc, uint32_t payload[PAYLOAD_ARG_CNT]) { enum pm_ret_status ret; bakery_lock_get(&pm_secure_lock); ret = pm_ipi_send_common(proc, payload, IPI_BLOCKING); bakery_lock_release(&pm_secure_lock); return ret; } /** * pm_ipi_buff_read() - Reads IPI response after remote processor has handled * interrupt * @proc Pointer to the processor who is waiting and reading response * @value Used to return value from IPI buffer element (optional) * @count Number of values to return in @value * * @return Returns status, either success or error+reason */ static enum pm_ret_status pm_ipi_buff_read(const struct pm_proc *proc, unsigned int *value, size_t count) { size_t i; #if IPI_CRC_CHECK size_t j; unsigned int response_payload[PAYLOAD_ARG_CNT]; #endif uintptr_t buffer_base = proc->ipi->buffer_base + IPI_BUFFER_TARGET_REMOTE_OFFSET + IPI_BUFFER_RESP_OFFSET; /* * Read response from IPI buffer * buf-0: success or error+reason * buf-1: value * buf-2: unused * buf-3: unused */ for (i = 1; i <= count; i++) { *value = mmio_read_32(buffer_base + (i * PAYLOAD_ARG_SIZE)); value++; } #if IPI_CRC_CHECK for (j = 0; j < PAYLOAD_ARG_CNT; j++) response_payload[j] = mmio_read_32(buffer_base + (j * PAYLOAD_ARG_SIZE)); if (response_payload[PAYLOAD_CRC_POS] != calculate_crc(response_payload, IPI_W0_TO_W6_SIZE)) NOTICE("ERROR in CRC response payload value:0x%x\n", response_payload[PAYLOAD_CRC_POS]); #endif return mmio_read_32(buffer_base); } /** * pm_ipi_buff_read_callb() - Reads IPI response after remote processor has * handled interrupt * @value Used to return value from IPI buffer element (optional) * @count Number of values to return in @value * * @return Returns status, either success or error+reason */ void pm_ipi_buff_read_callb(unsigned int *value, size_t count) { size_t i; #if IPI_CRC_CHECK size_t j; unsigned int response_payload[PAYLOAD_ARG_CNT]; #endif uintptr_t buffer_base = IPI_BUFFER_REMOTE_BASE + IPI_BUFFER_TARGET_LOCAL_OFFSET + IPI_BUFFER_REQ_OFFSET; if (count > IPI_BUFFER_MAX_WORDS) count = IPI_BUFFER_MAX_WORDS; for (i = 0; i <= count; i++) { *value = mmio_read_32(buffer_base + (i * PAYLOAD_ARG_SIZE)); value++; } #if IPI_CRC_CHECK for (j = 0; j < PAYLOAD_ARG_CNT; j++) response_payload[j] = mmio_read_32(buffer_base + (j * PAYLOAD_ARG_SIZE)); if (response_payload[PAYLOAD_CRC_POS] != calculate_crc(response_payload, IPI_W0_TO_W6_SIZE)) NOTICE("ERROR in CRC response payload value:0x%x\n", response_payload[PAYLOAD_CRC_POS]); #endif } /** * pm_ipi_send_sync() - Sends IPI request to the remote processor * @proc Pointer to the processor who is initiating request * @payload API id and call arguments to be written in IPI buffer * @value Used to return value from IPI buffer element (optional) * @count Number of values to return in @value * * Send an IPI request to the power controller and wait for it to be handled. * * @return Returns status, either success or error+reason and, optionally, * @value */ enum pm_ret_status pm_ipi_send_sync(const struct pm_proc *proc, uint32_t payload[PAYLOAD_ARG_CNT], unsigned int *value, size_t count) { enum pm_ret_status ret; bakery_lock_get(&pm_secure_lock); ret = pm_ipi_send_common(proc, payload, IPI_BLOCKING); if (ret != PM_RET_SUCCESS) goto unlock; ret = ERROR_CODE_MASK & (pm_ipi_buff_read(proc, value, count)); unlock: bakery_lock_release(&pm_secure_lock); return ret; } void pm_ipi_irq_enable(const struct pm_proc *proc) { ipi_mb_enable_irq(proc->ipi->local_ipi_id, proc->ipi->remote_ipi_id); } void pm_ipi_irq_clear(const struct pm_proc *proc) { ipi_mb_ack(proc->ipi->local_ipi_id, proc->ipi->remote_ipi_id); } uint32_t pm_ipi_irq_status(const struct pm_proc *proc) { int ret; ret = ipi_mb_enquire_status(proc->ipi->local_ipi_id, proc->ipi->remote_ipi_id); if (ret & IPI_MB_STATUS_RECV_PENDING) return 1; else return 0; } #if IPI_CRC_CHECK uint32_t calculate_crc(uint32_t *payload, uint32_t bufsize) { uint32_t crcinit = CRC_INIT_VALUE; uint32_t order = CRC_ORDER; uint32_t polynom = CRC_POLYNOM; uint32_t i, j, c, bit, datain, crcmask, crchighbit; uint32_t crc = crcinit; crcmask = ((uint32_t)((1U << (order - 1U)) - 1U) << 1U) | 1U; crchighbit = (uint32_t)(1U << (order - 1U)); for (i = 0U; i < bufsize; i++) { datain = mmio_read_8((unsigned long)payload + i); c = datain; j = 0x80U; while (j != 0U) { bit = crc & crchighbit; crc <<= 1U; if (0U != (c & j)) bit ^= crchighbit; if (bit != 0U) crc ^= polynom; j >>= 1U; } crc &= crcmask; } return crc; } #endif