/* * Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #include static struct amu_ctx amu_ctxs[PLATFORM_CORE_COUNT]; /* * Get AMU version value from aa64pfr0. * Return values * ID_AA64PFR0_AMU_V1: FEAT_AMUv1 supported (introduced in ARM v8.4) * ID_AA64PFR0_AMU_V1P1: FEAT_AMUv1p1 supported (introduced in ARM v8.6) * ID_AA64PFR0_AMU_NOT_SUPPORTED: not supported */ unsigned int amu_get_version(void) { return (unsigned int)(read_id_aa64pfr0_el1() >> ID_AA64PFR0_AMU_SHIFT) & ID_AA64PFR0_AMU_MASK; } #if AMU_GROUP1_NR_COUNTERS /* Check if group 1 counters is implemented */ bool amu_group1_supported(void) { uint64_t features = read_amcfgr_el0() >> AMCFGR_EL0_NCG_SHIFT; return (features & AMCFGR_EL0_NCG_MASK) == 1U; } #endif /* * Enable counters. This function is meant to be invoked * by the context management library before exiting from EL3. */ void amu_enable(bool el2_unused, cpu_context_t *ctx) { uint64_t v; unsigned int amu_version = amu_get_version(); if (amu_version == ID_AA64PFR0_AMU_NOT_SUPPORTED) { return; } #if AMU_GROUP1_NR_COUNTERS /* Check and set presence of group 1 counters */ if (!amu_group1_supported()) { ERROR("AMU Counter Group 1 is not implemented\n"); panic(); } /* Check number of group 1 counters */ uint64_t cnt_num = (read_amcgcr_el0() >> AMCGCR_EL0_CG1NC_SHIFT) & AMCGCR_EL0_CG1NC_MASK; VERBOSE("%s%llu. %s%u\n", "Number of AMU Group 1 Counters ", cnt_num, "Requested number ", AMU_GROUP1_NR_COUNTERS); if (cnt_num < AMU_GROUP1_NR_COUNTERS) { ERROR("%s%llu is less than %s%u\n", "Number of AMU Group 1 Counters ", cnt_num, "Requested number ", AMU_GROUP1_NR_COUNTERS); panic(); } #endif if (el2_unused) { /* * CPTR_EL2.TAM: Set to zero so any accesses to * the Activity Monitor registers do not trap to EL2. */ v = read_cptr_el2(); v &= ~CPTR_EL2_TAM_BIT; write_cptr_el2(v); } /* * Retrieve and update the CPTR_EL3 value from the context mentioned * in 'ctx'. Set CPTR_EL3.TAM to zero so that any accesses to * the Activity Monitor registers do not trap to EL3. */ v = read_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3); v &= ~TAM_BIT; write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, v); /* Enable group 0 counters */ write_amcntenset0_el0(AMU_GROUP0_COUNTERS_MASK); #if AMU_GROUP1_NR_COUNTERS /* Enable group 1 counters */ write_amcntenset1_el0(AMU_GROUP1_COUNTERS_MASK); #endif /* Initialize FEAT_AMUv1p1 features if present. */ if (amu_version < ID_AA64PFR0_AMU_V1P1) { return; } if (el2_unused) { /* Make sure virtual offsets are disabled if EL2 not used. */ write_hcr_el2(read_hcr_el2() & ~HCR_AMVOFFEN_BIT); } #if AMU_RESTRICT_COUNTERS /* * FEAT_AMUv1p1 adds a register field to restrict access to group 1 * counters at all but the highest implemented EL. This is controlled * with the AMU_RESTRICT_COUNTERS compile time flag, when set, system * register reads at lower ELs return zero. Reads from the memory * mapped view are unaffected. */ VERBOSE("AMU group 1 counter access restricted.\n"); write_amcr_el0(read_amcr_el0() | AMCR_CG1RZ_BIT); #else write_amcr_el0(read_amcr_el0() & ~AMCR_CG1RZ_BIT); #endif } /* Read the group 0 counter identified by the given `idx`. */ uint64_t amu_group0_cnt_read(unsigned int idx) { assert(amu_get_version() != ID_AA64PFR0_AMU_NOT_SUPPORTED); assert(idx < AMU_GROUP0_NR_COUNTERS); return amu_group0_cnt_read_internal(idx); } /* Write the group 0 counter identified by the given `idx` with `val` */ void amu_group0_cnt_write(unsigned int idx, uint64_t val) { assert(amu_get_version() != ID_AA64PFR0_AMU_NOT_SUPPORTED); assert(idx < AMU_GROUP0_NR_COUNTERS); amu_group0_cnt_write_internal(idx, val); isb(); } /* * Read the group 0 offset register for a given index. Index must be 0, 2, * or 3, the register for 1 does not exist. * * Using this function requires FEAT_AMUv1p1 support. */ uint64_t amu_group0_voffset_read(unsigned int idx) { assert(amu_get_version() >= ID_AA64PFR0_AMU_V1P1); assert(idx < AMU_GROUP0_NR_COUNTERS); assert(idx != 1U); return amu_group0_voffset_read_internal(idx); } /* * Write the group 0 offset register for a given index. Index must be 0, 2, or * 3, the register for 1 does not exist. * * Using this function requires FEAT_AMUv1p1 support. */ void amu_group0_voffset_write(unsigned int idx, uint64_t val) { assert(amu_get_version() >= ID_AA64PFR0_AMU_V1P1); assert(idx < AMU_GROUP0_NR_COUNTERS); assert(idx != 1U); amu_group0_voffset_write_internal(idx, val); isb(); } #if AMU_GROUP1_NR_COUNTERS /* Read the group 1 counter identified by the given `idx` */ uint64_t amu_group1_cnt_read(unsigned int idx) { assert(amu_get_version() != ID_AA64PFR0_AMU_NOT_SUPPORTED); assert(amu_group1_supported()); assert(idx < AMU_GROUP1_NR_COUNTERS); return amu_group1_cnt_read_internal(idx); } /* Write the group 1 counter identified by the given `idx` with `val` */ void amu_group1_cnt_write(unsigned int idx, uint64_t val) { assert(amu_get_version() != ID_AA64PFR0_AMU_NOT_SUPPORTED); assert(amu_group1_supported()); assert(idx < AMU_GROUP1_NR_COUNTERS); amu_group1_cnt_write_internal(idx, val); isb(); } /* * Read the group 1 offset register for a given index. * * Using this function requires FEAT_AMUv1p1 support. */ uint64_t amu_group1_voffset_read(unsigned int idx) { assert(amu_get_version() >= ID_AA64PFR0_AMU_V1P1); assert(amu_group1_supported()); assert(idx < AMU_GROUP1_NR_COUNTERS); assert(((read_amcg1idr_el0() >> AMCG1IDR_VOFF_SHIFT) & (1ULL << idx)) != 0ULL); return amu_group1_voffset_read_internal(idx); } /* * Write the group 1 offset register for a given index. * * Using this function requires FEAT_AMUv1p1 support. */ void amu_group1_voffset_write(unsigned int idx, uint64_t val) { assert(amu_get_version() >= ID_AA64PFR0_AMU_V1P1); assert(amu_group1_supported()); assert(idx < AMU_GROUP1_NR_COUNTERS); assert(((read_amcg1idr_el0() >> AMCG1IDR_VOFF_SHIFT) & (1ULL << idx)) != 0ULL); amu_group1_voffset_write_internal(idx, val); isb(); } /* * Program the event type register for the given `idx` with * the event number `val` */ void amu_group1_set_evtype(unsigned int idx, unsigned int val) { assert(amu_get_version() != ID_AA64PFR0_AMU_NOT_SUPPORTED); assert(amu_group1_supported()); assert(idx < AMU_GROUP1_NR_COUNTERS); amu_group1_set_evtype_internal(idx, val); isb(); } #endif /* AMU_GROUP1_NR_COUNTERS */ static void *amu_context_save(const void *arg) { struct amu_ctx *ctx = &amu_ctxs[plat_my_core_pos()]; unsigned int i; if (amu_get_version() == ID_AA64PFR0_AMU_NOT_SUPPORTED) { return (void *)-1; } #if AMU_GROUP1_NR_COUNTERS if (!amu_group1_supported()) { return (void *)-1; } #endif /* Assert that group 0/1 counter configuration is what we expect */ assert(read_amcntenset0_el0() == AMU_GROUP0_COUNTERS_MASK); #if AMU_GROUP1_NR_COUNTERS assert(read_amcntenset1_el0() == AMU_GROUP1_COUNTERS_MASK); #endif /* * Disable group 0/1 counters to avoid other observers like SCP sampling * counter values from the future via the memory mapped view. */ write_amcntenclr0_el0(AMU_GROUP0_COUNTERS_MASK); #if AMU_GROUP1_NR_COUNTERS write_amcntenclr1_el0(AMU_GROUP1_COUNTERS_MASK); #endif isb(); /* Save all group 0 counters */ for (i = 0U; i < AMU_GROUP0_NR_COUNTERS; i++) { ctx->group0_cnts[i] = amu_group0_cnt_read(i); } /* Save group 0 virtual offsets if supported and enabled. */ if ((amu_get_version() >= ID_AA64PFR0_AMU_V1P1) && ((read_hcr_el2() & HCR_AMVOFFEN_BIT) != 0ULL)) { /* Not using a loop because count is fixed and index 1 DNE. */ ctx->group0_voffsets[0U] = amu_group0_voffset_read(0U); ctx->group0_voffsets[1U] = amu_group0_voffset_read(2U); ctx->group0_voffsets[2U] = amu_group0_voffset_read(3U); } #if AMU_GROUP1_NR_COUNTERS /* Save group 1 counters */ for (i = 0U; i < AMU_GROUP1_NR_COUNTERS; i++) { if ((AMU_GROUP1_COUNTERS_MASK & (1UL << i)) != 0U) { ctx->group1_cnts[i] = amu_group1_cnt_read(i); } } /* Save group 1 virtual offsets if supported and enabled. */ if ((amu_get_version() >= ID_AA64PFR0_AMU_V1P1) && ((read_hcr_el2() & HCR_AMVOFFEN_BIT) != 0ULL)) { u_register_t amcg1idr = read_amcg1idr_el0() >> AMCG1IDR_VOFF_SHIFT; amcg1idr = amcg1idr & AMU_GROUP1_COUNTERS_MASK; for (i = 0U; i < AMU_GROUP1_NR_COUNTERS; i++) { if (((amcg1idr >> i) & 1ULL) != 0ULL) { ctx->group1_voffsets[i] = amu_group1_voffset_read(i); } } } #endif return (void *)0; } static void *amu_context_restore(const void *arg) { struct amu_ctx *ctx = &amu_ctxs[plat_my_core_pos()]; unsigned int i; if (amu_get_version() == ID_AA64PFR0_AMU_NOT_SUPPORTED) { return (void *)-1; } #if AMU_GROUP1_NR_COUNTERS if (!amu_group1_supported()) { return (void *)-1; } #endif /* Counters were disabled in `amu_context_save()` */ assert(read_amcntenset0_el0() == 0U); #if AMU_GROUP1_NR_COUNTERS assert(read_amcntenset1_el0() == 0U); #endif /* Restore all group 0 counters */ for (i = 0U; i < AMU_GROUP0_NR_COUNTERS; i++) { amu_group0_cnt_write(i, ctx->group0_cnts[i]); } /* Restore group 0 virtual offsets if supported and enabled. */ if ((amu_get_version() >= ID_AA64PFR0_AMU_V1P1) && ((read_hcr_el2() & HCR_AMVOFFEN_BIT) != 0ULL)) { /* Not using a loop because count is fixed and index 1 DNE. */ amu_group0_voffset_write(0U, ctx->group0_voffsets[0U]); amu_group0_voffset_write(2U, ctx->group0_voffsets[1U]); amu_group0_voffset_write(3U, ctx->group0_voffsets[2U]); } /* Restore group 0 counter configuration */ write_amcntenset0_el0(AMU_GROUP0_COUNTERS_MASK); #if AMU_GROUP1_NR_COUNTERS /* Restore group 1 counters */ for (i = 0U; i < AMU_GROUP1_NR_COUNTERS; i++) { if ((AMU_GROUP1_COUNTERS_MASK & (1UL << i)) != 0U) { amu_group1_cnt_write(i, ctx->group1_cnts[i]); } } /* Restore group 1 virtual offsets if supported and enabled. */ if ((amu_get_version() >= ID_AA64PFR0_AMU_V1P1) && ((read_hcr_el2() & HCR_AMVOFFEN_BIT) != 0ULL)) { u_register_t amcg1idr = read_amcg1idr_el0() >> AMCG1IDR_VOFF_SHIFT; amcg1idr = amcg1idr & AMU_GROUP1_COUNTERS_MASK; for (i = 0U; i < AMU_GROUP1_NR_COUNTERS; i++) { if (((amcg1idr >> i) & 1ULL) != 0ULL) { amu_group1_voffset_write(i, ctx->group1_voffsets[i]); } } } /* Restore group 1 counter configuration */ write_amcntenset1_el0(AMU_GROUP1_COUNTERS_MASK); #endif return (void *)0; } SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_start, amu_context_save); SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_finish, amu_context_restore);