/* * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of ARM nor the names of its contributors may be used * to endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include "psci_private.h" /* * SPD power management operations, expected to be supplied by the registered * SPD on successful SP initialization */ const spd_pm_ops_t *psci_spd_pm; /******************************************************************************* * Arrays that hold the platform's power domain tree information for state * management of power domains. * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain * which is an ancestor of a CPU power domain. * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain ******************************************************************************/ non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] #if USE_COHERENT_MEM __attribute__ ((section("tzfw_coherent_mem"))) #endif ; cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; /******************************************************************************* * Pointer to functions exported by the platform to complete power mgmt. ops ******************************************************************************/ const plat_pm_ops_t *psci_plat_pm_ops; /******************************************************************************* * Check that the maximum power level supported by the platform makes sense * ****************************************************************************/ CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \ PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \ assert_platform_max_pwrlvl_check); /******************************************************************************* * This function is passed a cpu_index and the highest level in the topology * tree. It iterates through the nodes to find the highest power level at which * a domain is physically powered off. ******************************************************************************/ uint32_t psci_find_max_phys_off_pwrlvl(uint32_t end_pwrlvl, unsigned int cpu_idx) { int max_pwrlvl, level; unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; if (psci_get_phys_state(cpu_idx, PSCI_CPU_PWR_LVL) != PSCI_STATE_OFF) return PSCI_INVALID_DATA; max_pwrlvl = PSCI_CPU_PWR_LVL; for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) { if (psci_get_phys_state(parent_idx, level) == PSCI_STATE_OFF) max_pwrlvl = level; parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; } return max_pwrlvl; } /******************************************************************************* * This function verifies that the all the other cores in the system have been * turned OFF and the current CPU is the last running CPU in the system. * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) * otherwise. ******************************************************************************/ unsigned int psci_is_last_on_cpu(void) { unsigned long mpidr = read_mpidr_el1() & MPIDR_AFFINITY_MASK; unsigned int i; for (i = 0; i < PLATFORM_CORE_COUNT; i++) { if (psci_cpu_pd_nodes[i].mpidr == mpidr) { assert(psci_get_state(i, PSCI_CPU_PWR_LVL) == PSCI_STATE_ON); continue; } if (psci_get_state(i, PSCI_CPU_PWR_LVL) != PSCI_STATE_OFF) return 0; } return 1; } /******************************************************************************* * Routine to return the maximum power level to traverse to after a cpu has * been physically powered up. It is expected to be called immediately after * reset from assembler code. ******************************************************************************/ int get_power_on_target_pwrlvl(void) { int pwrlvl; #if DEBUG unsigned int state; /* * Sanity check the state of the cpu. It should be either suspend or "on * pending" */ state = psci_get_state(plat_my_core_pos(), PSCI_CPU_PWR_LVL); assert(state == PSCI_STATE_SUSPEND || state == PSCI_STATE_ON_PENDING); #endif /* * Assume that this cpu was suspended and retrieve its target power * level. If it is invalid then it could only have been turned off * earlier. PLAT_MAX_PWR_LVL will be the highest power level a * cpu can be turned off to. */ pwrlvl = psci_get_suspend_pwrlvl(); if (pwrlvl == PSCI_INVALID_DATA) pwrlvl = PLAT_MAX_PWR_LVL; return pwrlvl; } /******************************************************************************* * PSCI helper function to get the parent nodes corresponding to a cpu_index. ******************************************************************************/ void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, int end_lvl, unsigned int node_index[]) { unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; int i; for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) { *node_index++ = parent_node; parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; } } /******************************************************************************* * This function is passed a cpu_index and the highest level in the topology * tree and the state which each node should transition to. It updates the * state of each node between the specified power levels. ******************************************************************************/ void psci_do_state_coordination(int end_pwrlvl, unsigned int cpu_idx, uint32_t state) { int level; unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; psci_set_state(cpu_idx, state, PSCI_CPU_PWR_LVL); for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) { psci_set_state(parent_idx, state, level); parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; } } /******************************************************************************* * This function is passed a cpu_index and the highest level in the topology * tree that the operation should be applied to. It picks up locks in order of * increasing power domain level in the range specified. ******************************************************************************/ void psci_acquire_pwr_domain_locks(int end_pwrlvl, unsigned int cpu_idx) { unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; int level; /* No locking required for level 0. Hence start locking from level 1 */ for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) { psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; } } /******************************************************************************* * This function is passed a cpu_index and the highest level in the topology * tree that the operation should be applied to. It releases the locks in order * of decreasing power domain level in the range specified. ******************************************************************************/ void psci_release_pwr_domain_locks(int end_pwrlvl, unsigned int cpu_idx) { unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0}; int level; /* Get the parent nodes */ psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); /* Unlock top down. No unlocking required for level 0. */ for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) { parent_idx = parent_nodes[level - 1]; psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); } } /******************************************************************************* * Simple routine to determine whether a mpidr is valid or not. ******************************************************************************/ int psci_validate_mpidr(unsigned long mpidr) { if (plat_core_pos_by_mpidr(mpidr) < 0) return PSCI_E_INVALID_PARAMS; return PSCI_E_SUCCESS; } /******************************************************************************* * This function determines the full entrypoint information for the requested * PSCI entrypoint on power on/resume and returns it. ******************************************************************************/ int psci_get_ns_ep_info(entry_point_info_t *ep, uint64_t entrypoint, uint64_t context_id) { uint32_t ep_attr, mode, sctlr, daif, ee; uint32_t ns_scr_el3 = read_scr_el3(); uint32_t ns_sctlr_el1 = read_sctlr_el1(); sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1; ee = 0; ep_attr = NON_SECURE | EP_ST_DISABLE; if (sctlr & SCTLR_EE_BIT) { ep_attr |= EP_EE_BIG; ee = 1; } SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); ep->pc = entrypoint; memset(&ep->args, 0, sizeof(ep->args)); ep->args.arg0 = context_id; /* * Figure out whether the cpu enters the non-secure address space * in aarch32 or aarch64 */ if (ns_scr_el3 & SCR_RW_BIT) { /* * Check whether a Thumb entry point has been provided for an * aarch64 EL */ if (entrypoint & 0x1) return PSCI_E_INVALID_PARAMS; mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1; ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); } else { mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; /* * TODO: Choose async. exception bits if HYP mode is not * implemented according to the values of SCR.{AW, FW} bits */ daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif); } return PSCI_E_SUCCESS; } /******************************************************************************* * This function takes an index and level of a power domain node in the topology * tree and returns its state. State of a non-leaf node needs to be calculated. ******************************************************************************/ unsigned short psci_get_state(unsigned int idx, int level) { /* A cpu node just contains the state which can be directly returned */ if (level == PSCI_CPU_PWR_LVL) { flush_cpu_data_by_index(idx, psci_svc_cpu_data.psci_state); return get_cpu_data_by_index(idx, psci_svc_cpu_data.psci_state); } #if !USE_COHERENT_MEM flush_dcache_range((uint64_t) &psci_non_cpu_pd_nodes[idx], sizeof(psci_non_cpu_pd_nodes[idx])); #endif /* * For a power level higher than a cpu, the state has to be * calculated. It depends upon the value of the reference count * which is managed by each node at the next lower power level * e.g. for a cluster, each cpu increments/decrements the reference * count. If the reference count is 0 then the power level is * OFF else ON. */ if (psci_non_cpu_pd_nodes[idx].ref_count) return PSCI_STATE_ON; else return PSCI_STATE_OFF; } /******************************************************************************* * This function takes an index and level of a power domain node in the topology * tree and a target state. State of a non-leaf node needs to be converted to * a reference count. State of a leaf node can be set directly. ******************************************************************************/ void psci_set_state(unsigned int idx, unsigned short state, int level) { /* * For a power level higher than a cpu, the state is used * to decide whether the reference count is incremented or * decremented. Entry into the ON_PENDING state does not have * effect. */ if (level > PSCI_CPU_PWR_LVL) { switch (state) { case PSCI_STATE_ON: psci_non_cpu_pd_nodes[idx].ref_count++; break; case PSCI_STATE_OFF: case PSCI_STATE_SUSPEND: psci_non_cpu_pd_nodes[idx].ref_count--; break; case PSCI_STATE_ON_PENDING: /* * A power level higher than a cpu will not undergo * a state change when it is about to be turned on */ return; default: assert(0); #if !USE_COHERENT_MEM flush_dcache_range((uint64_t) &psci_non_cpu_pd_nodes[idx], sizeof(psci_non_cpu_pd_nodes[idx])); #endif } } else { set_cpu_data_by_index(idx, psci_svc_cpu_data.psci_state, state); flush_cpu_data_by_index(idx, psci_svc_cpu_data.psci_state); } } /******************************************************************************* * A power domain could be on, on_pending, suspended or off. These are the * logical states it can be in. Physically either it is off or on. When it is in * the state on_pending then it is about to be turned on. It is not possible to * tell whether that's actually happened or not. So we err on the side of * caution & treat the power domain as being turned off. ******************************************************************************/ unsigned short psci_get_phys_state(unsigned int idx, int level) { unsigned int state; state = psci_get_state(idx, level); return get_phys_state(state); } /******************************************************************************* * Generic handler which is called when a cpu is physically powered on. It * traverses the node information and finds the highest power level powered * off and performs generic, architectural, platform setup and state management * to power on that power level and power levels below it. * e.g. For a cpu that's been powered on, it will call the platform specific * code to enable the gic cpu interface and for a cluster it will enable * coherency at the interconnect level in addition to gic cpu interface. ******************************************************************************/ void psci_power_up_finish(int end_pwrlvl, pwrlvl_power_on_finisher_t pon_handler) { unsigned int cpu_idx = plat_my_core_pos(); unsigned int max_phys_off_pwrlvl; /* * This function acquires the lock corresponding to each power * level so that by the time all locks are taken, the system topology * is snapshot and state management can be done safely. */ psci_acquire_pwr_domain_locks(end_pwrlvl, cpu_idx); max_phys_off_pwrlvl = psci_find_max_phys_off_pwrlvl(end_pwrlvl, cpu_idx); assert(max_phys_off_pwrlvl != PSCI_INVALID_DATA); /* Perform generic, architecture and platform specific handling */ pon_handler(cpu_idx, max_phys_off_pwrlvl); /* * This function updates the state of each power instance * corresponding to the cpu index in the range of power levels * specified. */ psci_do_state_coordination(end_pwrlvl, cpu_idx, PSCI_STATE_ON); /* * This loop releases the lock corresponding to each power level * in the reverse order to which they were acquired. */ psci_release_pwr_domain_locks(end_pwrlvl, cpu_idx); } /******************************************************************************* * This function initializes the set of hooks that PSCI invokes as part of power * management operation. The power management hooks are expected to be provided * by the SPD, after it finishes all its initialization ******************************************************************************/ void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) { assert(pm); psci_spd_pm = pm; if (pm->svc_migrate) psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); if (pm->svc_migrate_info) psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) | define_psci_cap(PSCI_MIG_INFO_TYPE); } /******************************************************************************* * This function invokes the migrate info hook in the spd_pm_ops. It performs * the necessary return value validation. If the Secure Payload is UP and * migrate capable, it returns the mpidr of the CPU on which the Secure payload * is resident through the mpidr parameter. Else the value of the parameter on * return is undefined. ******************************************************************************/ int psci_spd_migrate_info(uint64_t *mpidr) { int rc; if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info) return PSCI_E_NOT_SUPPORTED; rc = psci_spd_pm->svc_migrate_info(mpidr); assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \ || rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED); return rc; } /******************************************************************************* * This function prints the state of all power domains present in the * system ******************************************************************************/ void psci_print_power_domain_map(void) { #if LOG_LEVEL >= LOG_LEVEL_INFO unsigned int idx, state; /* This array maps to the PSCI_STATE_X definitions in psci.h */ static const char *psci_state_str[] = { "ON", "OFF", "ON_PENDING", "SUSPEND" }; INFO("PSCI Power Domain Map:\n"); for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT); idx++) { state = psci_get_state(idx, psci_non_cpu_pd_nodes[idx].level); INFO(" Domain Node : Level %u, parent_node %d, State %s\n", psci_non_cpu_pd_nodes[idx].level, psci_non_cpu_pd_nodes[idx].parent_node, psci_state_str[state]); } for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) { state = psci_get_state(idx, PSCI_CPU_PWR_LVL); INFO(" CPU Node : MPID 0x%lx, parent_node %d, State %s\n", psci_cpu_pd_nodes[idx].mpidr, psci_cpu_pd_nodes[idx].parent_node, psci_state_str[state]); } #endif }